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Abstract

It is known that the joint distribution of the number of nodes of each
type of an m-ary search tree is asymptotically multivariate normal when
m ≤ 26.

When m ≥ 27, we show the following strong asymptotics of the random
vector Xn = t(X

(1)
n , . . . , X

(m−1)
n ), where X

(i)
n denotes the number of nodes

containing i− 1 keys after having introduced n− 1 keys in the tree: there
exist (nonrandom) vectors X, C and S and random variables ρ and ϕ

such that

Xn − nX

nσ2

− ρ
`

C cos(τ2 log n + ϕ) + S sin(τ2 log n + ϕ)
´

−→
n→∞

0

almost surely and in L2; σ2 and τ2 denote the real and imaginary parts of
one of the eigenvalues of the transition matrix, having the second greatest
real part.

1 Introduction

An m-ary search tree is a data structure that grows by the progressive insertion
of keys into a tree with branch factor m (first sentence in Lew’s and Mahmoud’s
paper [8]). Each node of such a tree contains 0, 1, . . . or m − 1 keys and gives
rise to m branches (see section 2 for the detailed definition of an m-ary search
tree).

Our purpose is to make precise the asymptotic behaviour of the vector Xn

whose coordinates are (with our notations) the number of nodes containing
0, . . . , m− 2 keys in a random m-ary search tree holding n− 1 keys, as n tends
to infinity.

Several cost measures on random m-ary search trees have been studied in
the literature, one of them being frequently the total number of nodes Sn also
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called space requirement; in the vectorial frame, just notice that Sn is an affine
function of Xn. This cost is classically studied using generating functions and
the method of moments. Mahmoud and Pittel ([11]) describe the asymptotics
of the mean and the variance of Sn and derive a normal limit distribution for
m ≤ 15. Lew and Mahmoud ([8]) extend this range to m ≤ 26. Smythe ([16])
and Mahmoud and Smythe ([12]) conjecture that the limit distribution is not
normal for m > 26. In the related frame of branching processes, the change of
normal limit laws to non-normal ones depends on the second eigenvalue of the
transition matrix (which corresponds for m-ary search trees to the transition at
m = 26) and already appears for instance in Athreya and Ney’s book ([1]). It
has been often noticed by the previous authors dealing with m-ary search trees
(see for instance exemple 3.1 in Smythe [16]).

The state of the art can be found in Chern and Hwang’s paper ([3]): a phase
transition occurs between m = 26 and m = 27. It is quite readable on the
variance of the space requirement, the asymptotics of which having two types of
behaviour depending on the values of m: for small m (m ≤ 26), the variance is
of order n and the rescaled space requirement is asymptotically normal, but for
m ≥ 27, the variance is of order n2σ for some (known) real number σ, σ > 1/2
and a periodic phenomenon appears.

In the range m ≥ 27, the challenge comes from the questions asked by
Chern and Hwang: they prove (in [3], Corollary 2) that the distribution of
Sn, even conveniently renormalized, does not approach any fixed distribution
function but fluctuates via some periodic function. They ask for more intuitive
explanations of the phase transition than pure analytic reasons.

The asymptotic normality for m ≤ 26 can also be found by contraction
method (see for instance Neininger and Rueschendorf [14]). Interestingly, the
same phase transition for the variance is noticed by physicists in the close context
of random fragmentation problem (for instance in Dean and Majumdar [4]).

The literature on the subject, including limit distribution results by con-
traction method, mostly takes advantage of the “divide-and-conquer” recursiv-
ity (sometimes called “backward” method). Another point of view on these
processes is based on the dynamical recursivity (sometimes called “forward”
method), already used in Smythe’s ([16]) and Mahmoud’s and Smythe’s ([12])
papers.

We consider (Xn)n≥1 as a Markov process, and we notice that Xn is a kind of
Pólya urn model, or a random walk or a multitype branching process, depending
on one’s favourite background.

In section 2 and 3, we see how (Xn)n≥1 can be viewed as a Markovian process
with values in Rm−1 and that its evolution is driven by a transition-type matrix
A in the following remarkable (since linear) way:

EFn (Xn+1) =

(

Id +
A

n

)

Xn , (1)

where Fn is the past before time n and Id is the identity matrix. Our method
is based on exploiting the linearity of this evolution.
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Thus Cm−1 is decomposed along the eigenspaces of A and if Sp(A) denotes
the set of eigenvalues of A (all its eigenvalues are simple), we have

C
m−1 =

⊕

λ∈Sp(A)

ker(A − λ Id) (2)

Id =
∑

λ∈Sp(A)

πλ

A =
∑

λ∈Sp(A)

λπλ

where πλ denotes the projection on the eigenspace ker(A−λ Id) relatively to the
decomposition (2). Moreover, 1 is an eigenvalue, the other ones having a real
part strictly less than 1. If λ2 and λ2 are the eigenvalues having the greatest
real part, say σ2, σ2 < 1, we write the following fundamental decomposition of
vector Xn (x denotes the conjugate of a complex number x):

Xn = π1Xn + πλ2
Xn + πλ2

Xn +
∑

λ6=1,λ2,λ2

πλXn . (3)

This spectral decomposition of Xn coincides, as m ≥ 27, with the almost sure
asymptotic expansion of Xn for the first three terms; it is a key phenomenon.
For this purpose, the analysis of each projection πλXn is performed by rescaling
it in order to get a martingale. Notice that appearance of martingale methods
is not surprising, considering the evolution given by formula (1). The result
then comes from the spectral decomposition (3) and from the lemmas in section
4 explaining successively that the first projection is of order n, the projections
πλXn for <(λ) > 1/2 are of order nλ by a L2-convergence theorem of martingales
and the remaining projections πλXn for <(λ) ≤ 1/2 are asymptotically almost
surely negligible. One can find the complete theorem with its proof in section
5. Simulations in section 6 help to visualize the phenomena.

Notice that our approach is somehow complementary to Mahmoud’s one in
his recent paper [10] where the frame (Pólya schemes) is quite large, including
m-ary search trees, and focuses on the leading term of Xn; our study goes
further in the expansion of Xn but is restricted here to m-ary search trees.

Using similar arguments, we hope that the asymptotics of the “profile”
(meaning the number of nodes level by level in the tree) of an m-ary search
tree is tractable: a natural generalization of the binary search tree case ([6])
to higher dimensions would consist in considering the number of nodes of each
type level by level, and introducing some “level polynomial” vectors. It will be
the subject of a forthcoming paper.

2 Definition and Markovianity of the process

One throws a sequence of numbers in [0, 1], named the keys, uniformly in [0, 1]N
∗

.
The keys are placed one after another in an m-ary tree (one node-root, from
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each node grow m branches). The following recursive rule describes the way a
key named k is inserted in the tree.

i) If the root contains strictly less than m− 1 keys, then k is inserted in the
root. One draws usually keys in a root from left to right in increasing order.

ii) If the root is already saturated, i.e. if it contains m − 1 keys named
k1, . . . , km−1, ordered such that ki < ki+1, then corresponds to each interval
I1 =] − ∞, k1[, Ij+1 =]kj , kj+1[ (1 ≤ j ≤ m − 2), Im =]km−1, +∞[ a subtree
being itself an m-ary search tree. One draws usually the branches corresponding
to I1, . . . , Im from left to right. In this situation, k in inserted in the subtree
that corresponds to the interval Ij such that k ∈ Ij .

1

Figure 1 is an example of 4-ary tree obtained by insertion of the numbers
0.3, 0.1, 0.4, 0.15, 0.9, 0.2, 0.6, 0.5, 0.35, 0.8, 0.97, 0.93, 0.23, 0.84, 0.62, 0.64,
0.33, 0.83 in this order.

PSfrag replacements

0.1 0.3 0.4

0.15 0.2 0.23 0.33 0.35 0.5 0.6 0.9

0.62 0.8 0.84 0.93 0.97

0.64 0.83

Figure 1: insertion of the keys 0.3, 0.1, 0.4, 0.15, 0.9, 0.2, 0.6, 0.5, 0.35, 0.8,
0.97, 0.93, 0.23, 0.84, 0.62, 0.64, 0.33, 0.83 in a 4-ary tree

Although it is not explicitely used later on, let us mention (see Mahmoud’s
book [9] for details) that such a sequence (Tn)n∈N of trees has the same distri-
bution as the one obtained by construction of Tn from a random permutation

1In this paper, our convention is that empty nodes (corresponding to the m above intervals)
appear when the concerned internal node has just been saturated by the insertion of a m−1-st
key. Other conventions are possible, for instance, empty nodes could appear once the first key
is stored in the concerned internal node. Anyway, the choice of any convention has no impact
on the results.
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of n integers, with a uniform distribution on the set of permutations. It is the
so-called random permutation model.

In the sequel, (Tn)n∈N and other parameters of interest are random variables
on the space Ω of infinite m-ary trees 2. The space is endowed with the natural
filtration (Fn)n∈N, Fn being the σ-field generated up to time n.

For each i = {1, . . . , m} and n ≥ 1, we define the number X
(i)
n as the number

of nodes which contain i−1 keys after insertion of the (n−1)-st key; such nodes
are named nodes of type i. The question consists in describing the asymptotic

behaviour of the X
(i)
n as n tends to infinity.

Counting the total number of keys in nodes of each type in the tree holding
(n − 1) keys leads to the formula

n − 1 =

m
∑

i=1

(i − 1)X(i)
n . (4)

This formula which binds the X
(i)
n allows to limit the study to the m − 1 first

indices i. It should not be confused with the relation (8) later on which counts
the number of free places (or gaps) in the tree.

In the whole paper, we call

V = R
m−1

(or more exactly the real vector space of matrices having one column and m−1
rows). The random vector Xn ∈ V is defined for all n ≥ 1 as

Xn =









X
(1)
n

...

X
(m−1)
n









,

and evolves as follows. The first m + 1 vectors Xn are nonrandom:



































X1 = t(1, 0, . . . , 0)
X2 = t(0, 1, . . . , 0)
...

Xm−1 = t(0, . . . , 0, 1)
Xm = t(m, 0, . . . , 0)
Xm+1 = t(m − 1, 1, 0, . . . ).

The following ones are random. For instance, Xm+2 = t(m − 2, 2, 0, . . . ) with
probability m−1

m+1 , and Xm+2 = t(m−1, 0, 1, 0, . . . ) with probability 2
m+1 . These

probabilities are computed with the rules of the random permutation model:

2It is necessary to define random variables on this (big) probability space in order to give
a meaning to almost sure and L2-convergences later on. For tree probability spaces, see for
instance Neveu ([15]).
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when n−1 keys are inserted, the probability that the n-th one falls between two
of them is 1/n (the probability that it falls on the left-hand side of the smallest
one or on the right-hand side of the greatest one is 1/n too). Consequently, only
the relative order of the keys is taken into account (not their values).

More generally, the transition rules between the states at time n and n + 1
are the following: for each i between 1 and m−1, if the n-th key falls on a node
of type i, then

Xn+1 = Xn + ∆i,

where


























∆1 = t(−1, 1, 0, 0, . . . )
∆2 = t(0,−1, 1, 0, . . . )

...
∆m−2 = t(0, . . . , 0,−1, 1)
∆m−1 = t(m, 0, . . . , 0,−1)

,

and this event takes place with probability i
n
X

(i)
n because each node of type i

contains i free places.

Let us emphasize here that this last probability, containing the randomness
of the evolution of the process is linear in Xn. For this reason, for each i ∈
{1, . . . , m − 1}, let li be the linear form of V defined as

li = idxi,

where dxi is the i-th coordinate form of V = Rm−1. The process (Xn)n in V is
now defined by the first vector X1 and the transition condition for each n ≥ 1:











Xn+1 = Xn + ∆1, with probability 1
n
l1(Xn),

...
Xn+1 = Xn + ∆m−1, with probability 1

n
lm−1(Xn).

(5)

In other words, the process is a random walk in V defined by X1 and a
random increment ∆(n + 1) between times n and n + 1:

Xn+1 = Xn + ∆(n + 1), (6)

with the transition probabilities

P
(

∆(n + 1) = ∆i|Xn

)

=
1

n
li(Xn), 1 ≤ i ≤ m − 1. (7)

Note that the process (Xn) satisfies the relation

m−1
∑

i=1

iX(i)
n =

m−1
∑

i=1

li(Xn) = n (8)

available for each n ≥ 1, meaning that the numbers li(Xn)/n are probabilities of
disjoint events whose union is the total probability space. The interpretation of
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this relation in terms of m-ary trees is just the distribution of the n free places
where the n-th key may be inserted into nodes of different types (each node of
type i contains i free places). This relation plays a crucial role in the theorem.

Other relations are satisfied by the li and ∆i, namely

∀i ∈ {1, . . . , m − 1},
m−1
∑

j=1

lj(∆i) = 1. (9)

Remarks. i) As noticed in [10], Xn also describes the composition of a
Pólya urn model, where the m− 1 colours are the m− 1 types of the nodes and
where the balls are the free places. The addition matrix of this Pólya urn, say
Add is thus

Add =



















−1 2
−2 3

−3 4
. . .

. . .

−(m − 2) m − 1
m −(m − 1)



















as given in [10], section 8.2. This addition matrix Add is similar to our transition
matrix A given later on in (11). A straightforward computation gives

A = P−1 t(Add) P

where the change of basis from counting nodes to counting free places is given
by matrix P

P =











1
2

. . .

m − 1











.

ii) System (5) is also the description of a discrete multitype branching process
(Xn), where transitions from state i = t(i1, . . . , im−1) to state j = t(j1, . . . , jm−1)
in Rm−1 are given by P(i, j) = P(Xn+1 = j|Xn = i): all the P(i, j) equal 0 ex-
cept if j = i + ∆k, 1 ≤ k ≤ m − 1; in that case,

P(i, i + ∆k) =
1

n
lk(i).

The set of types is S = {1, 2, . . . , m− 1} and the offspring distribution satisfies
any moment condition, since the number of descendants is bounded above by m.
These processes are well known in the homogeneous case where the transition
does not depend on the current state ([1, 13]). Here we are in the so-called
finite-type varying environment case, studied for instance in [7] and [2], mainly
by martingale methods, in the same way as our lemma 3 later on.
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iii) Note on this kind of process. The above random walk of an m-ary search
tree belongs to a larger family of vector processes (Zn)n in Rs (for any integer
s ≥ 1). Such a process can be defined as a random walk starting from some
Z1 ∈ Rs, with random increments which take their values in a finite set of
vectors {∆1, . . . , ∆s}:

∀n ≥ 1, Zn+1 = Zn + ∆(n + 1),

with the transition probabilities

∀n ≥ 1, P
(

∆(n + 1) = ∆i|Zn

)

=
1

n
li(Zn), 1 ≤ i ≤ s

where the li’s are linear forms on Rs. The process is Markovian and the tran-
sition probabilities between time n and time n + 1 depend linearly on the state
at time n.

In order to guarantee that such a process is well defined, that is to say that
the numbers li(Zn)/n are almost surely nonnegative and that their sum equals
1 for all n, one needs further assumptions on the parameters, namely on Z1, the
li and the ∆i (all these assumptions are satisfied by m-ary search trees). First,
hypotheses that allow Z2 to be well defined:

s
∑

i=1

li(Z1) = 1 and ∀j ∈ {1, . . . , s}, lj(Z1) ≥ 0;

then the hypotheses on the increments (an elementary induction shows that they
are enough to make sure that the process is well defined): for all j, k ∈ {1, . . . , s},







∑s
i=1 li(∆j) = 1,

j 6= k =⇒ lj(∆k) ≥ 0,
lj(∆j) = 0 or lj(Z1)Z +

∑s
i=1 lj(∆i)Z = lj(∆j)Z.

Only the diagonal terms lj(∆j) are allowed to be negative. The last arithmetical
condition just indicates that if lj(∆j) is nonzero for some j, it divides (as real
number) lj(Z1) and all the lj(∆i).

The conditions defining such a model remain stable after an invertible linear
change of coordinates. Keeping in mind remark i), it means that these condi-
tions are sufficient to guarantee that the corresponding generalized Pólya urn is
tenable. The choice of a good basis of V is the key point of what follows.

3 Evolution of the process and average-case anal-

ysis

Both are based on the computation of the conditional expectation:

EFn(Xn+1) =
m−1
∑

i=1

1

n
li(Xn)(Xn + ∆i) .
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If one denotes by A the endomorphism of V defined by

∀Z ∈ V, AZ =

m−1
∑

i=1

li(Z)∆i,

one gets the following formula which makes precise that the above conditional
expectation is a linear function of the state at time n:

EFn (Xn+1) =

(

IdV +
A

n

)

Xn (10)

where IdV is the identity map of V . An immediate consequence of this fact is
the computation of the expectation of the random vector Xn: define Γ1 = IdV

and

Γn =

n−1
∏

k=1

(

IdV +
A

k

)

for all n ≥ 2, so that one gets the expression

E(Xn) = ΓnX1.

In the canonical basis of V , the matrix of A is

A =





















−1 m(m − 1)
1 −2

2 −3
. . .

. . .

. . . −(m − 2)
m − 2 −(m − 1)





















, (11)

where an empty entry means a zero entry. This matrix A is the transition matrix
(or endomorphism) of the process. The characteristic polynomial of A is

χA(z) =

m−1
∏

k=1

(z + k) − m!. (12)

The matrix A has only simple (complex) eigenvalues and 1 is the eigenvalue
having the greatest real part. Furthermore, when m is even, 1 is the only real
eigenvalue; when m is odd, the only other real eigenvalue is −m − 1. Figure 2,
made with the help of Maple, shows the complex eigenvalues of A when m equals
50. The plot of all roots of A in the complex plane seems to have always the
same shape: regularly spaced points on the algebraic curve defined by equation
∏

1≤k≤m−1 |z + k|2 = (m!)2. An important fact for the sequel is that all the
eigenvalues different from 1 have a real part less than 1/2 if and only
if m ≤ 26.
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Figure 2: roots of χA when m = 50

We denote by Sp(A) the set of (complex) eigenvalues of A, and

VC = C
m−1,

or more exactly VC = V ⊗R C. For every λ ∈ Sp(A), we denote by πλ the
projection of VC on the eigenspace ker(A−λ IdVC

) relatively to the decomposition

VC =
⊕

µ∈Sp(A)

ker(A − µ IdVC
) .

Then, define γ1(λ) = 1 and

γn(λ) =

n−1
∏

k=1

(

1 +
λ

k

)

for all n ≥ 2, so that the endomorphism Γn splits into the sum Γn =
∑

λ γn(λ)πλ,
and the expectation of Xn equals E(Xn) =

∑

λ γn(λ)πλX1. Since 1 is the eigen-
value of A having the greatest real part, and since by Stirling formula

γn(λ) =
Γ(n + λ)

Γ(λ + 1)Γ(n)
=

nλ

Γ(λ + 1)
+ O(nλ−1) (13)

as n tends to infinity, the first term in the above expansion of E(Xn) is γn(1)π1X1

and one gets

lim
n→∞

E(Xn)

n
= π1X1. (14)

Note that this limit is nonzero, since otherwise E(Xn) = o(n) and taking ex-
pectation in formula (8) provides a contradiction. The coordinates of the vector
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π1X1 are explicitely given in section 5 (see (17)) proving once again that π1X1

is nonzero.

4 Local study along principal directions

Keeping in mind the spectral decomposition of the process

Xn = π1Xn + πλ2
Xn + πλ2

Xn +
∑

λ6=1,λ2,λ2

πλXn ,

we achieve in this section the local study of the projections πλXn for every
eigenvalue λ of the transition matrix A, via three lemmas.

The first lemma describes explicitely the projection π1 on the fixed points of
the matrix A. It is available for every process as the one defined at the end of
section 2 (see remark iii)) as soon as 1 is a simple eigenvalue of A. It is applied
for the final result to Y = Xn and π1X1 is explicitely computed in section 5,
thus giving the first term of the expansion of Xn.

Lemma 1 (First projection lemma)

∀Y ∈ V, π1Y =





m−1
∑

j=1

lj(Y )



π1X1.

Proof of lemma 1. Let L be the endomorphism of V defined for all Y in V by

LY =





m−1
∑

j=1

lj(Y )



π1X1 .

Note that L is nonzero because π1X1 6= 0 (recall the end of the previous section).
Because of the relation

∑

j lj(∆i) = 1 for all i (see (9)), the value of L at each
∆i is π1X1. Thus for all Y in V ,

LA(Y ) = L

(

m−1
∑

i=1

li(Y )∆i

)

=
m−1
∑

i=1

li(Y )π1X1 = L(Y ) ,

hence LA = L. But since π1X1 is a fixed point of A, one has AL = L too. Then
A and L commute, and this product is L.

Since π1 is a polynomial in A, the endomorphisms π1 and L commute. Be-
cause

∑

i li(X1) = 1 (relation (8) for n = 1), the endomorphisms π1 and Lπ1

(and π1L too) have the same value at X1. Since they are zero on the hyperplane
spanned by the eigenvectors associated to eigenvalues different from 1, they are
equal. Then, π1 = Lπ1 = π1L. But π1L = L, obviously. Thus π1 = L . ut

Lemma 2 gives the asymptotics of the moments of all projections πλXn.
There appear the different behaviours of these moments, depending on the po-
sition of the real part of λ with respect to 1/2. This result is to be compared
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with similar ones for the second moments in the literature and contains the tech-
nical reason of the phase transition mentioned by these authors. It is available
for every process defined at the end of section 2. Notice that the L2-convergence
in the final result only requires the second moment asymptotics, but the almost
sure convergence comes from the higher moments asymptotics.

Lemma 2 (Moments lemma) Let λ be an eigenvalue of A, σ its real part,
(.|.) any positive definite Hermitian form on VC, and Z ∈ VC. Then, for every
nonnegative integer p, if σ 6= 1/2,

{

E
(

|(Z|πλXn)|2p
)

= O(np + n2pσ)
E
(

|(Z|πλXn)|2p+1
)

= O(np+1 + n2pσ+1)

as n tends to infinity. If σ = 1/2,

{

E
(

|(Z|πλXn)|2p
)

= O(np log n)
E
(

|(Z|πλXn)|2p+1
)

= O(np+1 log n)

as n tends to infinity.

In other words, as n tends to infinity,

if <(λ) < 1/2 then

{

E
(

|(Z|πλXn)|2p
)

= O(np)
E
(

|(Z|πλXn)|2p+1
)

= O(np+1)

if <(λ) = 1/2 then

{

E
(

|(Z|πλXn)|2p
)

= O(np log n)
E
(

|(Z|πλXn)|2p+1
)

= O(np+1 log n)

and if <(λ) > 1/2 then

{

E
(

|(Z|πλXn)|2p
)

= O(n2pσ)
E
(

|(Z|πλXn)|2p+1
)

= O(n2pσ+1).

Remark. Note that we do not know if some value of m leads to <(λ) = 1/2
for some eigenvalue λ. It has no consequence on the final result.

Proof of lemma 2. By induction on the integer p. If p = 0, only the assertion on
the moment of order 2p + 1 is nontrivial. If ‖.‖ denotes the norm associated to
the Hermitian form, it follows directly from the definition of the process (Xn)n

that almost surely
‖Xn+1‖ ≤ ‖Xn‖ + max

1≤i≤m−1
‖∆i‖

for every n ≥ 1. Therefore, there is some positive constant c depending only on
m such that almost surely, for every n ≥ 1,

‖Xn‖ ≤ cn. (15)

The result for p = 0 follows from this inequality.
Although it is not needed to make the proof complete, we prove the second

moments inequality before presenting the induction; it helps the understanding
of the general case, and it is used several times later on. An elementary com-
putation of the conditional expectation, based on the dynamics of the process
(Xn) leads to:
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EFn

(

|(Z|Xn+1)|
2
)

=

m−1
∑

i=1

1

n
li(Xn)

(

Z|Xn + ∆i

)(

Z|Xn + ∆i

)

= |(Z|Xn)|2 + 2<
[

m−1
∑

i=1

1

n
li(Xn)(Z|Xn)(Z|∆i)

]

+
m−1
∑

i=1

1

n
li(Xn)|(Z|∆i)|

2

= <
[

(

Z|Xn

)(

Z|(I +
2A

n
)Xn

)

]

+
m−1
∑

i=1

1

n
li(Xn)|(Z|∆i)|

2.

Take now the expectation and apply this formula to the vector π∗
λZ where u∗

denotes the adjoint endomorphism of u relative to the positive definite Hermitian
form (.|.). If σ is the real part of λ, one gets

E
(

|(Z|πλXn+1)|
2
)

=
(

1 +
2σ

n

)

E
(

|(Z|πλXn)|2
)

+ bn

where bn =
∑

i li(EXn/n)|(Z|πλ∆i)|
2, the sum being extended to all i between

1 and m − 1. Since bn has a limit as n tends to infinity (see (14)), bn = O(1).
We get the explicit form

E
(

|(Z|πλXn)|2
)

= γn(2σ)

(

|(Z|πλX1)|
2 +

n−1
∑

k=1

bk

γk+1(2σ)

)

and since by (13),

γn(2σ) =
n2σ

Γ(1 + 2σ)
+ O(n2σ−1) ,

the above series has not the same behaviour depending on the position of 2σ
with respect to 1. This shows the following second moments asymptotics:

E
(

|(Z|πλXn)|2
)

=







O(n) if σ < 1/2
O(n log n) if σ = 1/2
O(n2σ) if σ > 1/2.

(16)

Suppose now p ≥ 1. On one hand, if x and y are complex numbers, the
binomial formula implies that |x + y|2p = |xp + pxp−1y + z|2 where z is a
polynomial in x and y whose degree in x equals p − 2. Thus

|x + y|2p ≤ |x|2p−2<
[

x(x + 2py)
]

+ P (|x|, |y|)

where P (X, Y ) is a polynomial whose degree in X does not exceed 2p − 2. On
the other hand, the inequality (15) provides a positive constant (depending only
on m) which bounds from above the number |li(Xn)/n| for all i and for all n.
The use of the last two facts to bound from above the conditional expectation

EFn

(

|(Z|Xn+1)|
2p
)

=
m−1
∑

i=1

1

n
li(Xn) |(Z|Xn) + (Z|∆i)|

2p

13



leads to the existence of a polynomial Q of degree ≤ 2p− 2 such that for every
n ≥ 1,

EFn

(

|(Z|Xn+1)|
2p
)

≤ |(Z|Xn)|
2p−2

<
[

(

Z|Xn

)(

Z|(I +
2pA

n
)Xn

)

]

+Q
(

|(Z|Xn)|
)

.

Now, the same arguments as in the preceding proof for the second moments
allow to show the inequality

E
(

∣

∣ (Z|πλXn+1)
∣

∣

2p
)

≤
(

1 +
2pσ

n

)

E
(

∣

∣ (Z|πλXn)
∣

∣

2p
)

+ EQ
(

|(Z|πλXn)|
)

,

which gives the result by induction, assuming the result for all integers < 2p.
Using (15), the result for the moments of order 2p + 1 is a straightforward
consequence of the inequality

E
∣

∣ (Z|Xn)
∣

∣

2p+1
≤ max

Ω

∣

∣ (Z|Xn)
∣

∣× E
∣

∣ (Z|Xn)
∣

∣

2p
,

where Ω is the underlying probability space (see beginning of section 2). ut

Lemma 3 is a direct consequence of lemma 2. It makes precise the con-
vergence of the martingale associated to Xn after rescaling with relation (1),
establishing that some projections πλXn have an L2 and a.s. limit. This lemma
is applied for the final result to the first terms of the spectral decomposition of
Xn.

Lemma 3 (L2-convergence lemma) Let λ be an eigenvalue of A. If <(λ) >
1/2, then the martingale γ−1

n (λ)πλXn converges in L2 (thus almost surely).

Proof of lemma 3. The random vector γ−1
n (λ)πλXn is a Fn martingale

due to equation (1) and because the restriction of Γn to the image of πλ is the
multiplication by γn(λ). Moreover, under the hypothesis on <(λ), estimation
(16) on the second moments implies that E

(

‖πλXn‖
2
)

= O(n2σ); indeed, it is
enough to choose a suitable (orthonormal) basis (Zi)1≤i≤m−1 of VC such that

‖πλXn‖
2 =

m−1
∑

i=1

|(Zi|πλXn)|2

and apply lemma 2 to each vector Zi. Combining this with (13) gives that

E
(

‖γ−1
n (λ)πλXn‖

2
)

= |γ−2
n (λ)|E

(

‖πλXn‖
2
)

is a bounded sequence indexed by n so that the martingale γ−1
n (λ)πλXn con-

verges in L2 and thus almost surely by standard theorems on martingales. ut
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5 Theorem

Theorem Assume m ≥ 27. Let λ2 = σ2 + iτ2 be the eigenvalue of the
transition matrix A, having the second greatest real part σ2 (σ2 > 1/2) and a
positive imaginary part τ2 > 0.

For every eigenvalue λ of the transition matrix A, let πλ be the projection
on the eigenspace ker(A − λ Id) associated to λ, relatively to the decomposition
of VC in eigenspaces of A. Let X := π1X1.

1.

X = lim
n→∞

EXn

n
=

1

Hm − 1











1
1×2
1

2×3
...
1

(m−1)×m











(17)

where Hm is the harmonic sum Hm =
∑

1≤k≤m 1/k.

2. If Λ denotes the limit of the L2-convergent martingale γ−1
n (λ2)πλ2

Xn, then

Xn = nX + 2<
[ nλ2Λ

Γ(1 + λ2)

]

+ nσ2εn (18)

where the random vector εn converges to zero almost surely and in L2 as n tends
to infinity.

Corollary 1 With the same notations as in the theorem, let C and S be the
real (and nonrandom) vectors of VC defined by the relation

πλ2
X1 = C − iS . (19)

Let ρ and ϕ be respectively the modulus and the argument of the random vector
2Λ

Γ(1+λ2) along the line generated by πλ2
X1:

ρ exp(iϕ) πλ2
X1 =

2Λ

Γ(1 + λ2)
, ρ ≥ 0, ϕ ∈ [0, 2π[ . (20)

Then

Xn = nX + nσ2ρ
(

C cos(τ2 log n + ϕ) + S sin(τ2 log n + ϕ)
)

+ nσ2εn,

where the random vector εn converges to zero almost surely and in L2 as n tends
to infinity.

In other words, the random vector

Xn − nX

nσ2

− ρ
(

C cos(τ2 log n + ϕ) + S sin(τ2 log n + ϕ)
)

converges to zero almost surely and in L2.
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The corollary is a straightforward consequence of the theorem. Just write
Λ in (20) as the product of a complex random variable and of the nonrandom
complex vector πλ2

X1, and separate the real and imaginary parts of πλ2
X1

((19)). Also note that nλ2 = nσ2eiτ2 log n. Notice that X , C and S are linearly
independent vectors of VC (because πλ1

X1, πλ2
X1 and πλ2

X1 are).

Computation of X, C, S. X is the projection of the first vector X1 on the
vector line of the fixed vectors of A. The first equality of (17) has already been
shown (see (14)). An easy computation (compute a fixed vector, and add the
condition

∑

i li(π1X1) = limn

∑

i li(E(Xn/n)) = 1)) shows (17).

To express the vectors C and S we sum up how one can compute the projec-
tion πλX1 of X1 on the eigenspace ker(A−λ Id) for every eigenvalue λ, and give
the result: for each λ, compute first the eigenvector of A associated to λ having
1 as (m−1)-st coordinate. Name it Fλ. Decompose X1 =

∑

λ∈Sp(A) aλFλ where
aλ is the complex number such that πλX1 = aλFλ. Then, for all p ≥ 0, one
has ApX1 =

∑

λ aλλpFλ. With the explicit form of A, one can easily compute
the (m − 1)-st coordinate of the vectors ApX1 for 0 ≤ p ≤ m− 2 (an induction
shows that its p-th coordinate is p!, its j-th ones are zero for all j ≥ p + 1) and
solve the system

dxm−1A
pX1 =

∑

λ∈Sp(A)

aλλp, 0 ≤ p ≤ m − 2

with Cramer’s formula; one writes this way the number aλ as the product of
(m−2)! by the quotient of two Vandermonde determinants. After simplification,
one gets aλ = (m − 2)!/χ′

A(λ) where χA denotes the characteristic polynomial
of A (see (12)). The computation of the logarithmic derivative of χA +m! gives
rise to the expression

χ′
A(λ) =

∏

µ∈Sp(A)\{λ}

(λ − µ) = m!

m−1
∑

j=1

1

λ + j
.

The result is now the following: for every eigenvalue λ ∈ Sp(A),

πλX1 =
1

χ′
A(λ)







$1(λ)
...

$m−1(λ)






,

where, for every j ∈ {1, . . . , m − 1},

$j(λ) = (j − 1)!

m−1
∏

k=j+1

(k + λ) = (j − 1)!
Γ(m + λ)

Γ(j + 1 + λ)
=

m!

jγj+1(λ)
.
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Proof of the theorem. The proof consists in examining the decomposition

Xn = π1Xn + πλ2
Xn + πλ2

Xn +
∑

<(λ)<σ2

πλXn, (21)

in order to get the expected asymptotic order of magnitude of each term.
The first projection lemma describes the first term, because relation (8)

between the number of nodes of each type gives that for every n

m−1
∑

i=1

li(Xn) = n ,

so that
π1Xn = nπ1X1. (22)

For the following two terms in (21), recall that the assumption m ≥ 27
implies that σ2 > 1/2. Let

Λ = lim
n→+∞

γ−1
n (λ2)πλ2

Xn

and notice that the random vector Λ is both the L2 and the almost sure limit of
this martingale as guaranteed by the L2-convergence lemma (lemma 3) applied
to λ2. In other words,

γ−1
n (λ2)πλ2

Xn = Λ + εn

where εn tends to zero a.s. and in L2. In the following, εn always denotes a
generic random variable which tends to zero a.s. and in L2 when n tends to
infinity, even if it changes from place to place.

Multiply by γn(λ2) the previous equality and recall the asymptotics of the
γn given in formula (13) to get:

πλ2
Xn = γn(λ2)Λ + nσ2εn

=
nλ2

Γ(1 + λ2)
Λ + nσ2εn .

Summing with πλ2
Xn and noticing that πλXn = πλXn gives

πλ2
Xn + πλ2

Xn = 2<
[ nλ2 Λ

Γ(1 + λ2)

]

+ nσ2εn (23)

which provides the second term in (18).

It remains to show that if λ is an eigenvalue of A different from 1, λ2 and λ2,
then πλXn = nσ2εn, where εn tends to zero a.s. and in L2 as n tends to infinity.
Let σ be the real part of such an eigenvalue, we know that σ < σ2. The case
σ > 1/2 is easy: lemma 3 of martingale convergence still holds hence L2 and
almost sure convergence are shown together for the martingale γ−1

n (λ)πλXn.
Thus πλXn is of order nσ which is negligible to nσ2 .
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In case σ ≤ 1/2, let us first prove L2-convergence: as in the proof of lemma
3, we have as a corollary of the moments lemma

E
(

‖πλXn‖
2
)

= O(n) or O(n log n)

hence (recall that σ2 > 1/2),

πλXn

nσ2

−→
L2

0 .

For the almost sure convergence to zero of πλXn/nσ2 , we use Borel-Cantelli
lemma: it is sufficient to show that for any ε > 0, the series

∑

n P
(

‖πλXn

nσ2
‖ > ε

)

is convergent. By Markov inequality, it is sufficient to show that for some integer
p, the moment E‖πλXn

nσ2
‖2p is the general term of a convergent numerical series.

It is true, for p large enough, because of the moments lemma: for every positive
definite Hermitian form and complex vector Z, for every nonnegative integer p,

E

(

∣

∣

∣

∣

(Z|
πλXn)

nσ2

)

∣

∣

∣

∣

2p
)

= O(
1

np(2σ2−1)
) .

Summarizing, for every eigenvalue λ of A different from 1, λ2 and λ2,

πλXn

nσ2

−→
n→∞

0 a.s. and in L2. (24)

To get the final result, it is now enough to put (21), (22), (23) and (24)
together. ut

Corollary 2 Suppose m ≥ 27. If χ is any linear form on V , there exist a real
number xχ and real random variables ρχ and ϕχ such that

χ(Xn) = nxχ + nσ2ρχ cos(τ2 log n + ϕχ) + nσ2εn,

where εn tends to zero almost surely and in L2 as n tends to infinity .

To prove this, see what happens to χ(Xn) with corollary 1, and put the
sine and cosine terms together to get a new random phase and a new random
amplitude.

This corollary describes for example the asymptotic behaviour of the number
of nodes of a given type (take χ = dxi, the i-th coordinate of Rm−1), or of the
total (except saturated nodes) number of nodes (take χ =

∑

dxi, where i ranges
over all i between 1 and m − 1).

A natural question arises: what are the laws of the random variables ρ and
ϕ of the theorem ?

18



6 Simulations

Figure 3 represents simulations for the total number of nodes for m = 30. We
put the number n of keys inserted in the tree on the x-axis, and xn−nxχ on the
y-axis, where xn is the total number of nodes (except saturated nodes, those
with m − 1 keys) at time n and xχ the coefficient lim+∞ E(xn)/n of its drift.
The graph remains fairly smooth around an “nσ2 cos log n” curve. Note that we
only drew one point over one thousand.

Figure 4 illustrates the random amplitude ρχ and the random phase ϕχ for
the asymptotics of the total number of nodes xn. On the x-axis, log n; on the
y-axis, (xn − nxχ)/nσ2 for two simulations. Note the difference between the
amplitudes and the phases of both simulations.
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