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Feuille d’exercices numéro 0

— Calcul dans C, a toute allure —

1 Des gammes plus ou moins exponentielles

1.1) Calculer les parties réelle et imaginaire, le module, et 'argument principal de \/53_31,, de j = ¥7/3 et
de ﬁ Montrer que 1 + 5 + 52 = 0. Quelles sont les racines du polynéme X2 4+ X +1 ?

1.2) Montrer que pour tout z € C, |e*| = e®* et arg(e®) = I(2) [27].

1.3) Résoudre I'équation e* =1 dans C.

1.4) Plus généralement, si w € C, résoudre I’équation e* = w dans C. Est-il vrai que Pexponentielle établit
une bijection (et donc un isomorphisme de groupes) entre C et C* ?

1.5) Soit n € N*. Quelles sont les racines du polynéme X" — 1 ?

2 Pentagone
On note w = €2"/5. Montrer que
1 1
er o) e
w w

En déduire que cos27/5 est solution d’une équation polynomiale de degré 2. Donner une expression exacte de
cos 2m/5 et sin 27 /5 en fonction de /5 et comparer avec les valeurs approchées d’une calculatrice.

3 Un tout petit peu de géométrie euclidienne
3.1) Montrer que si u,v € C\ {0}, si on note (u|v) le produit scalaire entre les vecteurs d’affixes u et v, alors
(ulv) = R (av) et det (14 (u,v) =3 (Ww).

3.2) Quel est 'ensemble des nombres complexes z tels que |z —i| = |z + 2| 7 Méme question en remplagant i
et —2 par deux nombres complexes quelconques a et b.

3.3) Soient a,b € C. Montrer, lorsqu’elle a du sens, la formule

1—e  e%?ginag/2

1 —ed  ¢ib/2ginb/2’

[Pour aller plus loin : montrer que cette égalité prouve un théoréme célebre de géométrie euclidienne.]

3.4) Théoréme de Gauss-Lucas
Soit P € C[X] un polynéme de degré 3.

(i) Montrer que les racines de P’ sont dans ’enveloppe

convexe de I’ensemble des racines de P.
[On pourra raisonner a partir de la dérivée logarithmique de P].

(ii) Pour aller plus loin : dans les cas non triviaux, mon-
trer les égalités angulaires de la figure ci-contre (nota-
tions évidentes).

(iii) Pour aller encore plus loin : montrer qu’il existe une unique ellipse
tangente aux trois cotés du triangle des racines de P dont les foyers
sont les racines de P’.

(iv) Que subsiste-t-il de ces énoncés lorsque P est de
degré quelconque ?
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4 Un tout petit peu de topologie dans C
Dessiner, calculer ’adhérence, 'intérieur et la frontiere des parties de C suivantes, pour la topologie usuelle :
(i) {z€C, |z| <2} (ii)) {z € C, |z| > 1} (i) {z € C, 1 < |2] < 2} (iv) iR
(V) {z€C, |z=-1<1}U{z€eC, |z+1| <1} (vi) {z € C, |2| <1 et R(2) € Q}
(vii) {z +iy, € {-1,1} ety e [-L, 1} u{o+iy, ve[-11) ety e {-1,1}}

(viii) {z € C, S(2)R(z) =1} (ix) {t'*7, t €[0,1]}.

5 Sommes géométriques
Montrer que pour nombre complexe z ¢ 277,

sin (n+ %) z

1
- +cosz+cos2z+ .-+ cosnz = —
2 2sin

Que se passe-t-il lorsque sin 5 = 0 7 Pour quels z € C cela arrive-t-il 7

6 Une limite complexe

On note S* le cercle unité du plan complexe : S* = {z € C, |2| = 1}. Montrer que la formule

Z"—1

11m
n—+oo 2" + 1

flz) =

définit une fonction continue sur le complémentaire de S' dans C, qui n’admet de prolongement par continuité
en aucun point de S*.

7 Module du sinus

Soit z un nombre complexe. On note z sa partie réelle et y sa partie imaginaire. Montrer que
lsin z|> = (sinz)? 4 (sinhy)? .

Trouver et prouver des formules analogues pour le module de cos z, de sinh z et de cosh z.
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Feuille d’exercices numéro 1 : vers ’holomorphie

8 Dérivation au sens complexe

8.1) Soient f une fonction dérivable au sens complexe, g une fonction dérivable de la variable réelle a valeurs
réelles et z un nombre complexe. On note h la fonction de la variable réelle définie partout ou cela a un sens
par

h(t) = flg(t)z].
Est-il vrai que h est dérivable et que h'(t) = f'[g(t)z] X ¢'(t) x z ?
8.2) Dessiner le graphe des fonctions sinh et cosh sur R. Calculer les zéros complexes de sinh et de cosh.
Montrer que pour tout n € Z,

coshz — (—=1)"
lim coshz = (=D _
z—iTn Z —1TTn
zF#imn

Les paysages de sinh et de sin

9 Polynomes

9.1) Prolongement analytique pour les polynémes
Soient f et g deux fonctions polynomiales & coefficients réels. Est-il vrai que si f et g prennent les mémes
valeurs sur |0, 1[NQ, elles ont les mémes coefficients (et donc sont égales sur R) ?

Rassembler tout ce que vous savez sur l'ensemble des racines d’un polyndme a coefficients complexes (en étant
bien au point sur les preuves qui ménent a ces résultats).

9.2) Une preuve classique du théoréme de d’Alembert-Gauss

Soit P un polynome a coefficients complexes.

(1) Montrer qu'il existe zg € C tel que
[P(z0)| = min|P).

(ii) On suppose que P n’est pas constant. S’assurer que P(zp + z) est un polyndéme qui s’écrit sous la forme
P(zo+2) = ag + ap2" + app 12" + -+ agz? on 1 <n <det a, #0. Montrer qu’il existe § € R, M > 0 et
e > 0 tels que

‘P (20 + rei®) ] < |P (20)| (1 — M)

pour tout r € [0,¢]. En déduire que P(zp) = 0, ce qui prouve le théoréme de d’Alembert-Gauss.
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10 Un peu de connexité

10.1) Soient A une partie de C et D une partie discrete de C. Montrer qu’une application A — D est continue
si, et seulement si elle est localement constante.

10.2) Soit A une partie de C. On note Int(A) l'intérieur de A et Ext(A) sont extérieur, qui est le complémentaire
dans C de son adhérence. Soit C une partie connexe de C. Montrer que si C' N Int(A) et C' N Ext(A) sont non
vides, alors C rencontre aussi la frontiere de A ; autrement dit, C' N QA est également non vide.

10.3) L’objet de l'exercice est de montrer que le complémentaire C\ D d’une partie dénombrable de C est
connexe par arcs — donc connexe.

(i) Soient D une partie dénombrable de C et 2,y € C\ D. On suppose que z et y sont distincts et on note M
la médiatrice du segment [z,y]. Pour tout m € M, on note R,, la réunion des segments

Ry = [z, m] U [m, y]

— il est recommandé de faire un dessin, comme souvent. Montrer que m # m' = R,, N Ry = {z,y} ; en
déduire que {m € M, R,, N D # 0} est au plus dénombrable.

(ii) Montrer qu'il existe m € M tel que R,, C C\ D.
(iil) Montrer que C\ D est connexe par arcs.

10.4) Les sous-ensembles de C suivants sont-ils connexes ?

HQ (@{HC\Q (i) C\(Q+iQ) (iv)C\{zeC, [z|=1}
v){zeC1<|z—i|<3} (viC\{zeC/1<|z—1i|<3}

10.5) Montrer qu'un cercle et un segment ne sont pas homéomorphes — & moins qu’ils ne soient tous les deux
réduits a un point.

10.6) Montrer que GL (2,R) n’est pas connexe — pour la topologie usuelle de R*.

[Mieux : montrer que ce groupe a deux composantes connexes.]

11  Quelques images

11.1) Dessiner le carré abed ot a = 1/2, b= 3/2, ¢ = 3/2+1i,d = 1/2+1 et son image par les fonctions z + 22
et z — ﬁ (on pourra, a cet effet, chercher un paramétrage dudit carré).

11.2) Dessiner le rectangle efgh oie =0, f =1, g = 1+ 3¢, h = 3i et son image par la fonction exponentielle.
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12 Chemins et lacets : premiers pas

12.1) Donner une paramétrisation des chemins décrits géométriquement ci-dessous.

(i) Le cercle trigonométrique parcouru une fois dans le sens direct (on oriente le plan complexe par sa base (1,14),
comme d’habitude)

(ii) Le cercle trigonométrique parcouru trois fois dans le sens direct
(iii) Le cercle trigonométrique parcouru trois fois dans le sens indirect

(iv) Le demi cercle, intersection du cercle trigonométrique avec le demi-plan supérieur {z, $(z) > 0}, parcouru
une fois dans le sens direct

(v) Le cercle de centre w € C et de rayon R > 0 parcouru une fois dans le sens direct
(vi) Le triangle (1, 7, j2) parcouru une fois dans le sens direct, o1 j = exp(2i7/3).

12.2) On note v : [0,27] — C le lacet suivant (attention, son support n’est pas une lemniscate de Bernoulli) :
Yt € [0,27], v(t) = 2cost + isin(2t).

(i) Dessiner le support de 7.

(if) Vérifier que v est homotope, dans C\ {—1, 1}, au lacet formé de la concaténation des chemins suivants :
- le demi-cercle de centre 1 et de rayon 1 parcouru une fois dans le sens direct en partant du point 2

- le cercle de centre —1 et de rayon 1 parcouru une fois dans le sens indirect a partir de 0

- le le demi-cercle de centre 1 et de rayon 1 parcouru une fois dans le sens direct en partant du point 0.

Pour “vérifier” cela, on se contentera de 1’évidence de 1’énoncé tout en décrivant ce que serait une démarche
complete de preuve.

(iii) En admettant — ce sera démontré dans le cours — que deux lacets C\ {u}-homotopes ont le méme indice
par rapport a u, calculer I'indice de + par rapport aux points 1, ¢, —1 et —1.

(iv) Ecrire la longueur de v sous forme intégrale.

[On tombe sur une intégrale elliptique qu'on ne cherchera pas & calculer.]

12.3) Dans les situations suivantes, les arcs vy et 1 : I — C sont-ils homotopes dans 'ouvert U ?
(i) I =[0,27], 70(t) = €, m(t) = =1 +2¢", U = C\ {0}

(i) I =[0,27], o(t) = €®*, y1(t) = —1 + 2¢, U = C \ {0}

(iii) I = [0,27], Yo(t) = 2€%, v1(t) = 2cost +isint, U = C\ [0,1]
(iv) I =[0,27], y0(t) = €”, n(t) =i, U = C\ {2i}

(v) I =[0,27], yo(t) = ie™, 71 (t) =i, U = C\ {2i}

(vi) I =10,2n], yo(t) =ie”, m(t) =i, U=C\ {-3%

13 Intégrales curvilignes, échauffement

13.1) Soient a € C et R > 0. Soit C le demi-cercle de diametre [—R, R] contenu dans le demi-plan des parties
R

e**dz. Comparer ce nombre 51/ e*dux.

imaginaires positives et parcouru dans le sens positif. Calculer /
-R

c
13.2) Dessiner les chemins v suivants, dont I’ensemble de départ est toujours [0, 1] :
(i) v(@t) =1+t (ii) y(t) = e (iii) y(t) = e @ (iv) v(t) =1+ it + t2

et calculer I'intégrale sur ces arcs des fonctions

(i) 23 (i) z (iii) 1/z.
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13.3) Calculer

(i) /Tz"dz ou T est le triangle (1, j, j%) parcouru une fois dans le sens direct, j = exp (%) et n € Z
(i) / R(z)dz et / |2|%dz
T T
(iii) / 2"dz ol @ est le carré (1 —4,1+1i,—144,—1 —4) parcouru une fois dans le sens direct et n € Z
Q

(iv) / e*dz et / |e*| dz ou «y est successivement le triangle et le carré des questions (i) et (iii)
g gl

1
(v) / dz ol a = 2i/3 et o 7y est successivement le triangle et le carré des questions (i) et (iii).
L Z—a

13.4) Soient v un chemin de C et f : Suppy x X — C une application continue, ot X est une partie de C*.
Montrer que ’application

xH%f(z,x)dz,
8!

définie sur X, est continue.

13.5) Sir >0et s >0, on note R, le rectangle [—r,r] +i[—s, s] et OR, s son bord parcouru une fois dans le
sens direct. On note aussi h, I’hexagone parcouru une fois dans le sens direct, dont le support est la réunion
des segments [e?#7/3 ¢/ (F+DT/3] pour 0 < k < 5. Calculer

dz dz dz dz
-, -, = et —.
2 2
AR, s * OR,. s * h. % hy %

14 Calculs de rayons, pour s’exercer

14.1) Calculer les rayons des séries entiéres suivantes.

0 Y nl )Y \% (i) Y g™z (i) Y ¢V mougeC  (v) Y 2"

n

T—2n% - 18
(vi) Z %z” (vii) Z anz" ol a, = 1/3™ si n est pair et a, = 4" si n est impair
n
(vii) Y(n)" () Y e
viii nn)’z ix e
n n

14.2) Soit (an)n>0 une suite de nombres complexes. Les séries entieres

E anz", g n(n —1)apz", E nan,z"*2, g 2", 2"
n n n

n

ont-elles toutes le méme rayon ?

14.3) Soit (ay), ¢y une suite de nombres complexes. On suppose que la série entiere ) a,z" est de rayon 1.
On suppose en outre que

0<> nlan| < las].

n>2
o0
Montrer que la série converge en tout point z tel que |z|] = 1 et que z — Z an,z" est injective sur le disque
n=0

unité ouvert.

“En toute généralité, X est un espace topologique quelconque.
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14.4) Soit (ay) la suite de nombres complexes définie par agp = a; =1 et

neN

Vn €N, apto = ant1 + 3an.

Dans l'ordre que 'on voudra :
(i) calculer le rayon de la série entiere ) a,2" ;
o0
(ii) montrer que la fonction z — Z a, 2" est une fraction rationnelle que 'on explicitera.

n=0

Meéme question en remplagant a,4+92 = an4+1 + 3@y, PAr Apt2 = Apy1 — 3Gy, PUIS par anio = 6ay+1 — 9a,.

15 Prélude aux frontiéres naturelles

15.1) En quels points du cercle unité la somme de la série entiere ) 2™ converge-t-elle ? Au voisinage de
quels points du cercle unité peut-on prolonger la somme de cette série en une fonction analytique 7

15.2) En quels points du cercle unité la somme de la série entiere ) %z” converge-t-elle 7

15.3) Calculer le rayon de la série entiere ) 22" . Montrer que la série diverge en tous les points d’une partie
dense du cercle de convergence.

16 Autour d’Abel radial

+oo
_1)n
16.1) Montrer que Z = g 2( _31.
n
n=0

16.2) Soient (an),cy et (bn), oy deux suites de nombres complexes. Pour tout n € N, on note

Cn = E arbn_k.

0<k<n
On suppose que les trois séries numériques > an,, > b, et > ¢, convergent. En utilisant le théoréme d’Abel

radial, montrer que
ch = (Z an> (Z bn> .
n=0 n=0

n=0

17 Fonction développable en série entiere

17.1) La série géométrique
Prouver soigneusement que la série ) 2" converge pour tout z € C tel que |z] < 1 et que

Zz”: liz'

n>0

Dire en passant tout ce que vous pouvez sur le type convergence (ou de divergence) de la série numérique »_, 2"
(pour tout z) et de la série de fonctions (de z) ), 2™.

17.2) Introduction au prolongement analytique

Montrer que la fonction z +— est développable en série entiere au voisinage de n’importe quel nombre

complexe différent de 1. Pour tout a # 1, écrire le développement en série entiere en a de et calculer son

—Z

rayon de convergence. Montrer que si a, b et 1 ne sont pas alignés, les disques de convergence des DSE de 1

en a et b ont une intersection non vide.
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17.3) Des gammes
1
Se rappeler les DSE(0) de 1
-z

cos z, sin z, In(1 — z) (dans ce dernier cas, pour z réel, on reviendra dans le cours sur le sens du logarithme d’un
nombre complexe), (1 — z)® lorsque a est un nombre complexe (méme remarque que pour le logarithme lorsque
a n’est pas entier), arctan z.

et de exp(z). En déduire les DSE(0) usuels (et leurs rayons) de cosh z, sinh z,

Comment calculer le (début du) DSE(0) de tan z, de tanh z, de ?

z

e —1
17.4) Soit a € C. Montrer que

> _A\n

Vz € C, eZ:e“—l—eaZM.

n=1

n!

17.5) Fonction plate
Montrer que la fonction f : R — R définie par f(0) =0 et

Vo #0, f(z) = exp (~1/2))

est de classe C* sur R mais n’est pas développable en série entiere en 0.

17.6) Une équation différentielle
Soit d un entier naturel. Trouver toutes les solutions DSE(0) de I’équation différentielle linéaire

x2y" +my’ 4 (332 _ d2)y =0

— on trouve une droite vectorielle de fonctions, engendrée par la célebre fonction de Bessel de premiere espéce
d’ordre d.

17.7) Soit f une fonction DSE en u € C. On suppose que f n’est pas localement constante en u. Montrer
qu’il existe un voisinage V' de u tel que

VzeV, f(z) = flu) = z=u.

18 Nombres de Bernoulli

18.1) Trouver les trois premiers termes non nuls des développements en séries entiéres & I’origine de la fonction

tangente et de la fonction z — Z—.

18.2) Trouver le plus grand R > 0 tel que la fonction z — —*5 soit analytique sur le disque ouvert de centre 0

et de rayon R. On note B, /n! le coefficient d’ordre n du développement en série entiere & lorigine de cette
fonction ; ainsi, pour tout z € C,

B,
|z2| < R = Z1:Z—z".

eZ_

Les B, sont les nombres de Bernoulli. Montrer que la suite (B,,), est réelle et n’est pas bornée (en dire méme
davantage).

00 Bn
18.3) En considérant la relation z = (e — 1) (Z 'z”> , calculer By et montrer que pour tout n > 2
n!
n=0
n—1 Bk o
= kl(n — k)! ’
Calculer By, By, B3, By.
18.4) Montrer que la fonction z +— s 1+ g est paire. En déduire que Bs,+; = 0 pour tout n > 1.
e? —

N. Pouyanne, B. Elsner, UVSQ 2026, LSMA621 11/53



18.5) Montrer que

au voisinage de l'origine. Sur quels disques ouverts centrés en l'origine cette égalité est-elle valide 7 En déduire
que

(2m)*" 2
mzceotanmz = Y (—1)"———DBg,z""
nzz:o (2n)!

sur le disque unité ouvert, ou cotan = ta%n désigne la fonction cotangente.

1 z
18.6) Montrer que tan z = cotan z — 2 cotan 2z et que —— = cotan z + tan 5 En déduire les développements
sin z

en séries entieres & l'origine de la fonction tangente et de la fonction z +— — en fonction des nombres de
sin z

Bernoulli.

[Réponses : tanz = Z(—l)"i1

92n (921 _ 4 ’ 92n _ o
( )anZZrL—l ot 2 — Z(_l)nfl ( )anz2n‘]
n>1 >0

(2n)! sinz - (2n)!
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UVSQ 2024/2025
Licence de sciences et technologie, santé
LSMAG621 (analyse complexe)

Feuille d’exercices numéro 2 : premiers pas holomorphes

19 Quelques gammes

19.1) Dessiner la couronne C' = {z € C, 1 < [z + 1| < 3}. Est-il vrai que si une fonction f, holomorphe
sur C, vérifie que Vz € C, f'(z) = 0, alors [ est constante sur C' ? Méme question sur le complémentaire de
I’adhérence de la couronne.

19.2) Montrer que la fonction f : z + sin ;7 est analytique sur le disque ouvert de centre 0 et de rayon 1.

En quels nombres complexes la fonction f s’annule-t-elle 7 Comparer le résultat au principe des zéros isolés.
19.3) Soit f une fonction holomorphe sur un ouvert connexe U de C. Montrer que s’il existe a € U tel que
f@(a) =0 pour tout ¢ € N, alors f est identiquement nulle sur U.

19.4) Pour tout z € C\ (7 + 27Z), on note t = ¢(z) = tan 5. Lorsque les nombres écrits sont bien définis, les

formules

1—-t 2t - 2t
——, sinz=-—— et tanz=—,
1+ ¢t2 1+ ¢2 1—1¢2

valides lorsque z est réel, sont-elles aussi valides lorsque z est complexe ?

COSz =

20 Equation fonctionnelle de ’exponentielle

Soit f une fonction analytique non nulle sur un ouvert connexe U de C contenant 0. On suppose que f(a+0b) =
f(a)f(b) pour tous a et b de U tels que a + b € U. Montrer que f est de la forme f(z) = €“* ot w € C.

21 Autour des équations de Cauchy-Riemann

21.1) Montrer que z — Z n’est holomorphe en aucun point de C.

21.2) Parmi les applications R? — C suivantes, lesquelles sont dérivables au sens complexe ?
() zty® +izy? (i) y?sinz + iy (iii) sin®(z + y) + 4 cos?(z + y)
(iv) e”cosy — 2zy + i (e siny + x? — y?) (v) =6 (cosx +isiny) 4 (2 — 2i)y® + 15 (y* + 2y)

21.3) Trouver toutes les fonctions holomorphes sur C dont la partie réelle est la fonction suivante (notation
évidente, x = Rz et y = Jz) :
z =x+ 1y — 2xy.

21.4) Montrer que si f est une fonction holomorphe, alors 'application z — f (Z) est également holomorphe.

21.5) Soient U un ouvert connexe de C et f : U — C une fonction. Montrer que si f et z — f(z) sont
holomorphes, alors f est constante.

21.6) Vocabulaire : le d et le d-barre

On note 0 et O les opérateurs différentiels

o—1 (342) et é—l(gﬂ'Q)
2\0z Oy C2\0z  oy/’
qui agissent sur les fonctions définies sur un ouvert de R? et admettant des dérivées partielles. Soient U un

ouvert de R? et f: U — C une application de classe C'. En identifiant R? et C selon 'usage standard, montrer
que f est holomorphe si, et seulement si df = 0. Dans ces conditions, calculer Jf.
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22 Fonctions harmoniques

22.1) Montrer que si une fonction u de classe C? est la partie réelle d'une fonction holomorphe, alors elle vérifie
(on dit alors que u est harmonique)

0%u N 0%u 0
ox2  oy2
22.2) Montrer quune application C — R de classe C? est la partie réelle d'une fonction holomorphe si, et
seulement si elle est harmonique.
[Pour aller plus loin : sur un ouvert simplement connexe de C, toute fonction harmonique est la partie réelle d’une fonction holomorphe.]

22.3) Montrer que la fonction z — In|z| est harmonique sur C \ {0}, mais n’est pas la partie réelle d’une
fonction holomorphe sur C \ {0}.

23 Zéros des fonctions analytiques : premier apercu

23.1) Peut-on trouver une fonction entiere qui s’annule en tous les nombres entiers ?

23.2) Trouver une fonction entiere qui prenne la valeur 2" en n’importe quel entier naturel n. Y en a-t-il
plusieurs ?
23.3) Soit U un ouvert non vide de C et f : U — C une fonction holomorphe.

(i) On note U* le symétrique de U par rapport a l’axe réel — se convaincre rapidement, mais avec une argu-
mentation solide, que U* est encore ouvert. Montrer que la fonction

g: U — C
z — f(Z)
est holomorphe sur U*.

(ii) Montrer que RN U est un ouvert de R.
[En particulier, ’il est non vide, il contient un intervalle ouvert non vide.]

(iii) On suppose que U est connexe, rencontre ’axe réel, est symétrique par rapport a l’axe réel, et que f(z) est
réel pour tout z € RN U. Montrer que pour tout z € U,

fz) = f (). (1)

[On pourra aussi montrer que I’hypothése est redondante : tout ouvert non vide connexe symétrique par rapport a ’axe réel rencontre
nécessairement ’axe réel.]

(iv) Dans la méme veine, vu autrement : montrer que si une fonction holomorphe U — C est réelle sur RN U,
alors tout développement en série de f en un point de RN U a des coefficients réels. [Par conséquent, la
formule (1) est vraie sur tout disque de convergence ouvert du DSE de f en un point de RN U. Vérifier cela.
23.4) Parmi les anneaux suivants, lesquels sont integres ?

i) L’anneau des fonctions continues sur R

ii) L’anneau des fonctions continues sur le disque unité ouvert

iii) L’anneau des fonctions de classe C*° sur R

iv) L’anneau des fonctions de classe C*° sur le disque unité ouvert (plus technique)

v) L’anneau des fonctions holomorphes sur le disque unité ouvert

~ o~ o~ o~ o~ o~

vi) L’anneau des fonctions holomorphes sur I'union du disque unité ouvert de centre 2i et de son symétrique
par rapport a ’axe réel.

23.5) Existe-t-il une fonction f analytique sur le disque unité ouvert telle que
1 ) B ( 1 ) 1
f(Qn =/ 2n+1/  2n
pour tout n € N* ?

Méme question avec f(1/n) = f(—1/n) =1/n?.
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24 Zéros des dérivées supérieures

Soient U un ouvert connexe de C et f une fonction holomorphe sur U. Pour tout a € U, on note

f(2) = eala)(z —a)"

n>0

le développement en série entiere de f au voisinage de a.

24.1) Montrer la propriété de topologie élémentaire suivante : dans un compact, toute partie infinie admet un
point d’accumulation.

24.2) Sia €U et sin est un entier naturel, écrire ¢, (a) en fonction de la dérivée n® de f.

24.3) On suppose, jusqu’a la fin du probléme, que f vérifie la propriété suivante :

VaeU,3dIneN, ¢,(a) =0

Pour chaque n € N, on désigne par &, la partie de U définie par
En={aeU, cy(a)=0}.
Montrer que si D est un disque fermé de U de rayon non nul, alors

D= UDmé‘n.
neN

En déduire que I'un au moins des D N &, est une partie infinie de D.

24.4) Montrer qu’il existe n € N tel que la dérivée ni®™¢ de f soit la fonction nulle sur U.

24.5) Montrer que | f est nécessairement polynomiale.

25 Quelques applications du théoreme de Liouville
25.1) Trouver toutes les fonctions entieres vérifiant
vz eC, |f(2)| = |2*.

25.2) Montrer que I"image d’une fonction entiére non constante est dense dans C.

[Indications. Si f est entiére et si son image ne rencontre pas un disque ouvert de centre w, considérer la fonction z ﬁ]

25.3) Soit f une fonction entieére vérifiant

lim |f(z)| = +oo
|z| =400
(on dit que f(z) tend vers Uinfini quand z tend vers linfini). Montrer que f ne s’annule qu’en un nombre fini
de points. En déduire que f est polynomiale.

[Indications. Comme |f| > 1 hors d’un disque, ses zéros sont dans ce disque fermé qui est compact. Si P est le produit des zéros de f
comptés avec leur multiplicité, la fonction P/f est entiere et majorée par C\z\d si d est le degré de P. Donc g := P/f est polynomiale
puisque, si T" est le polynéme de Taylor de degré d de g en 0, alors (g — T)/zd+1 est une fonction entieére et bornée, donc constante). Ainsi,

f est une fraction rationnelle entiere : c’est un polynéme.]

25.4) Soit f une fonction entiere. On suppose quil existe ¢ > 0 et n € N tels que |f(2)] < ¢(1 + |z|™) pour
tout z € C. Montrer que f est une fonction polynomiale de degré inférieur ou égal a n.

25.5) Montrer que si f est une fonction entiere qui admet 1 et i pour périodes, elle est constante. Par quoi
peut-on remplacer le couple (1,4) en conservant le résultat ?
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26 Un développement de ( - )2

sinmz

Les questions de cet exercice se suivent pour aboutir & la formule (3).

1
26.1) Montrer que si z € C\ Z, la série Z (7 converge. Pour tout z € C\ Z, on note
.

2
nez n)

fe) =3 % (2)

neZ z 771)

Est-il vrai que f est une fonction paire et 1-périodique ?
26.2) Montrer que la série de fonctions (2) converge uniformément sur tout compact de C\ Z.
26.3) Déduire de la question précédente que :
(i) f est holomorphe sur C\ Z ;
1
(i) la fonction z +— f(z) — — est holomorphe sur (C\ Z) U {0}.
z
26.4) Soit B={z € C, |R(z)| < 1}, olt le symbole R désigne la partie réelle. Dessiner B et montrer que pour
tout € [—3, 3] et pour tout n € Z\ {0}, on a linégalité (z —n)* > (|n| — %)2
1
En déduire que la fonction z +— f(2) — — est bornée sur B.
z

26.5) Soit g la fonction sur C définie par la formule

9(z) = (sinﬂwz)g'

1
Montrer que g est holomorphe et 1-périodique sur C\ Z et que z — g(z) — — est holomorphe au voisinage de 0.
z

26.6) Soient z un nombre complexe. On note = sa partie réelle et y sa partie imaginaire. Montrer que
lsin z|> = (sinz)? 4 (sinhy)® et |cosz|® = (cosz)® + (sinhy)>.
1
En déduire que la fonction z — g(z) — — est bornée sur B.
z

26.7) Démontrer que pour tout z € C\ Z,
() =2 (3)
sinmz/ (z —n)?
nez

[Indication : on pourra considérer la fonction f — g et montrer qu’elle se prolonge en une fonction définie, holomorphe et bornée sur C.]

27 Applications directes du principe du module maximum

27.1) Soit f une fonction continue sur le disque unité fermé, holomorphe dans le disque unité ouvert. On
suppose que f est nulle sur le demi-cercle {z, |z| =1, $(z) > 0}. Montrer que f est nulle partout.

[On pourra s’aider de la fonction f(z)f(—z).]

27.2) Principe du module minimum
Montrer que si f est holomorphe sur un ouvert connexe U et si & € U est un minimum local de |f|, alors
f(z) =0 ou f est constante sur U.

En déduire que le paysage d’'une fonction holomorphe a tous ses minimums a 'altitude zéro.

[Le paysage d’une fonction holomorphe f est le graphe dans C x R4 de la fonction |f|, c’est écrit dans le cours.]

27.3) Soient U un ouvert contenant le disque unité fermé et f une fonction holomorphe sur U. On suppose
que f(0) =1 et que |f(z)| > 1 pour tout z sur le cercle unité. Montrer que f s’annule en au moins un point du
disque unité ouvert.
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27.4) On note D le disque unité ouvert du plan complexe, D son adhérence et D son bord. Soient U =
C\ {2,2i,—2,—2i} et f une fonction holomorphe sur U. On suppose que

f(OD)CD et f(%) =i

En combinant le principe du module maximum et le principe du prolongement analytique, montrer que

VzeU, f(z)=1.

28 Elle croit

Soient R > 0 et f une fonction holomorphe sur le disque ouvert de centre 0 et de rayon R. Pour tout r € [0, R],
on note
M(r) = max |f(z)].
|z|=r
28.1) Montrer que M est une fonction croissante.

28.2) Est-il vrai que si f n’est pas constante, alors M est une fonction strictement croissante ?

28.3) Calculer M(r) pour tout r € [0, 1[ lorsque f est la fonction f(z) = 1.

29 Enestrom-Kakeya

On note D le disque unité fermé D = {z € C, |z| < 1} et D = {z € C, |z| = 1} son bord.
d

Soit P(z) = Z apz" un polynoéme de degré d > 1 et a coefficients réels. On suppose que
k=0
0<ap<a; <---<ag.

L’objet de cet exercice est de démontrer I'assertion suivante :

dans ces conditions, tous les zéros complexes de P sont dans D.
29.1) Soit f le polynéme défini par la formule
f(2) = agz®™ + (1 — 2)P(2).

Calculer les coefficients de f et en déduire que |f(z)| < aq4, pour tout z € 9D.
29.2) On note g(z) = 2%f (%) le polyndéme auz inverses de f. Montrer que

max |f(2)] = max lg(2)]

29.3) Déduire soigneusement des questions précédentes que mea%( lg(2)] < aq.
2
29.4) En déduire que, pour tout z € C,
2l >1 = |f(2)] < aalz|®.
29.5) Montrer que, pour tout z € C,
2 > 1 = [(1-2)P(2)] > aal2|’ (2| - 1).

et en conclure que les zéros de P sont tous dans D.

N. Pouyanne, B. Elsner, UVSQ 2026, LSMA621 17/53



30 Deux séries de Lambert
30.1) Soit f une fonction holomorphe sur le disque unité ouvert D, telle que f(0) = 0. Montrer que pour tout
r €]0, 1], il existe A, > 0 tel que
VzeD,Vn>1, |z| <r=|f(")| <A™
En déduire que la série de fonctions ), f(2") converge normalement sur tout compact de D.
30.2) Soient f et g deux fonctions holomorphes sur le disque unité ouvert vérifiant f(0) = g(0) = 0. On note
f(z) = Z fn2" et g(z) = Zgnzn
n>0 n>0
leurs développements respectifs en 0. Montrer que les séries de fonctions
FE) =Y fagle") et G =3 guf(")
n>0 n>0
définissent des fonctions analytiques sur le disque unité ouvert et montrer que F = G.

30.3) Montrer que pour tout z dans le disque unité ouvert, on a les deux formules

n

> tog(1 42 =y EUE
n 1—2m

n>1 n>1

et Z(_l)n—kli _ " .
a1 1— 27 n211—|—z”

31 Intégrales a parametres : premiers pas

+o0 400 : 1.

costz sintz sintz

31.1) Les fonctions z — / 2 dt, z — / " dt et z — / " dt sont-elles entieres 7
1 1 0

+oo
31.2) Soit T la fonction d’Euler, définie sur le demi-plan P = {z € C, Rz > 0} par I'(z) = / t*~te~tdt.
0

Montrer que pour tout z € P, on a
I(z+1) = 2T'(2).

Montrer comment cette derniere formule permet de prolonger analytiquement I' & C\ Z_.

n
31.3) Montrer que pour tout z € C, e* = lim (1 + E) (on pourra développer la puissance par la formule
n—oo n

du binéme).

32 Fonction définie par une intégrale a la Cauchy

32.1) Soient v : [0,1] — C un chemin de classe C! par morceaux. Soit f : Supp(y) — C une fonction continue.
Montrer que la fonction F' définie par
¥

(—z

est holomorphe sur C\ Supp(y) et tend vers 0 lorsque |z| tend vers +oo.

32.2) Soient U un ouvert de C contenant le disque unité fermé, f une fonction holomorphe sur U et 7 l'arc

1 d
paramétré v : [0,27] — C, t — exp(it). Calculer / (; +2+ z) f(z); En déduire que
v

2m ) 0
g/o f (") cos? §d0 =2£(0) + £(0).

™

2
- 0
Trouver une formule analogue pour — / f (619) sin? §d0.
T Jo
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33 Liouville via Cauchy

Soient f une fonction holomorphe dans tout le plan complexe, a et b deux nombres complexes et R un réel
strictement positif. On note yr “le” chemin constitué du cercle de centre 0 et de rayon R, parcouru une fois
dans le sens direct.

z
fz) .

Z—a

33.1) Lorsque |a| < R, calculer /

YR
33.2) On suppose que a et b sont deux complexes distincts du disque ouvert de centre 0 et de rayon R. En
décomposant la fraction rationnelle m en éléments simples, calculer

e,
LR (z—a)(z—b)d '

33.3) On suppose que f est bornée sur C, c’est-a-dire qu’il existe M > 0 tel que | f(2)| < M, pour tout z € C.
Montrer que dans ces conditions,
f(z)

z—a)(z—0)

dz = 0.
’YR(

lim
R—4o00

33.4) En rassemblant les questions précédentes, donner une (autre) preuve du théoréme de Liouville : si f est
a la fois entiére et bornée, alors f est constante.

34 Un calcul d’intégrale

On note V = {z eC, (22) > 0}.
34.1) Dessiner V et donner le nombre de ses composantes connexes.

34.2) Pour tout @ > 0, on note V, = {z eC, R (22) > a}. Montrer que

— 222 —at?
Va > 0,Vt > 0,Vz € V,, ‘e <e .

—+oo
34.3) Montrer que la fonction f: z — / e~ dt est holomorphe sur V.
0

34.4) Montrer” que f(z) = g, pour tout = > 0.
x

YIS

—+o0
34.5) Trouver ensemble des nombres complexes z € V' pour lesquels / e Pt =
0

35 Formule de Stirling d’un coup de Cauchy
L’objectif est de montrer le célebre équivalent : lorsque n tend vers l'infini,

nl ~n"e”"V2mn. (4)
35.1) Montrer que pour tout r > 0 et pour tout entier naturel n,

1 1 e?

- dz.
n! 2im C(0,r) ZnJrl *

35.2) En déduire que pour tout entier naturel n,

+oo
“0On se rappelera que / e " du=-"—.
0
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2
-2 n

35.3) Pour tout entier naturel non nul n, on note 8, =n~5 et I, et J, les deux intégrales

On 0 . 27 —6, 0 )
In — / en(e —1—29)d9 et Jn — / en(e —1—19)d9.
—0On On

Vérifier que %n"e‘" =1, + Ju.
35.4) Démontrer que
\/ﬁ « sup ‘en(emflf’ia)‘ — 50
0€]0,,2m—0,,] oo

et en déduire que J,, est négligeable devant ﬁ lorsque n tend vers Uinfini.

35.5) Dans cette question, on montre que, lorsque n tend vers l'infini®,

2w 1
I, =1\/— (—) . 5
o -n% dp \/ 2m (1 + (1)) lorsque
e =4/ — 0 rsque n
n q

22
tend vers 'infini — on pourra se rappeler ’égalité / e~z dx = v/27, qui se prouve d’'un coup de jacobien.
R

(i) Montrer, par un changement de variables sous l'intégrale, que /
—0,

(i) Montrer successivement :
(@ il existe 1 > 0 tel que Vz € C, |z] < = |e* — 1| < 2]7|

@ il existe 2 > 0 tel que V0 € R, |0] < 1y = ei9717i9+§‘ < |6

1

en(ew_1—z‘9+%) —1|<ont

(3) il existe N € N tel que Yn € N, n > N = V0 € [—0,,6,],

fn n(ef‘ef17w+ﬁ) 02 1
® / (e 2/ - 1) e "zdhco (—) lorsque n tend vers l'infini.
o, vn

(iii) Prouver (5)
35.6) Prouver la formule de Stirling (4).

36 Un peu de simple connexité

Soient a € C, r > 0 et U un ouvert simplement connexe de C contenant le cercle de centre a et de rayon 7.
Montrer que U contient le disque fermé de centre a et de rayon r.

“Noter que le choix de ce judicieux 6, est dicté par la méthode du col dont les fondements sont dus & Pierre-Simon Laplace.
Le petit o est celui des notations de Landau.
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Feuille d’exercices numéro 3 : relevements, logarithmes, etc

37 Gammes logarithmiques

On note Log le logarithme principal.

37.1) Dans cet exercice, les puissances sont leurs déterminations principales.

(i) Calculer Log [(—1 + i\/g)"], pour tout n € Z.

(ii) Calculer toutes les racines cubiques de —1 — i et, parmi elles, /—1 — . Idem pour les racines cinquiemes.

37.2) Méme exercice que le précédent en remplagant le logarithme principal par la détermination continue
définie sur C\ R, par la formule ‘
logre®® = Inr + 46 pour 6 €]0, 2x|.

37.3) Pour quels nombres complexes z a-t-on Log% = —Log z ? Trouver toutes les déterminations continues
du logarithme sur le plan privé d’une demi-droite fermée partant de I'origine pour lesquelles la formule est vraie.

37.4) Sur quelle partie du plan la fonction Log(1 — 22) est-elle définie ?

37.5) Soit V un ouvert connexe de C ne contenant pas 0. On suppose que f est une fonction analytique sur
V' qui vérifie
1
YoeV, fllv)=- et JacV, expf(a) =a.
v

Montrer que f est une détermination continue du logarithme sur V. Que se passe-t-il si V. =C* 7

37.6) Soient n un entier relatif et log une détermination continue du logarithme sur un ouvert U de C. Est-il
vrai que 2" = exp (nlog z) pour tout z € U ?
37.7) Pour tout entier naturel non nul m, on note 3/~ la détermination principale de la racine me.

(i) Si z est un nombre complexe, calculer v 22 chaque fois que ce nombre a du sens.
z

(ii) Plus généralement, montrer que est une racine m® de I'unité, que 'on déterminera en fonction de

Pargument (principal) de z. Faire un dessin des régions du plan sur lesquelles la fonction z — 3/2™/z est
constante.

37.8) Dessiner I'image par le logarithme principal d’une droite horizontale du plan de la forme R + i ou
a € R\ {0}.

38 Variations sur un theme primitif

38.1) Montrer que la fonction z — —'— n’a pas de primitive sur {z € C, 0 < [z — 1| < 1}.

38.2) Soient U et V' deux ouverts connexes et simplement connexes de C. On suppose que U NV est connexe
et non vide. Sans utiliser la simple connexité de U UV — qui est pourtant garantie par un théoreme du cours
—, montrer que toute fonction holomorphe sur U UV admet une primitive sur U U V.

Peut-on enlever ’hypothese de connexité de U et de V' 7

1
38.3) On note f(z) = e pour tout z € C\ {0,1}.
1
(i) Soit U = C\ [0, 1]. Montrer que si v est n’importe quel lacet de U, alors / ﬁdz =0.
5 2z =
(ii) Méme question en remplagant U par V = C\ (] — 00,0] U [1, 400]).
(iii) Méme question en remplagant U par W = C\I" ot I est le demi-cercle I' = {z eC, |z — %} = % et (z) > 0}.

=1

[On pourra paramétrer ce demi-cercle et chercher 'image de son complémentaire par I’homographie z +—
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39 Un logarithme

39.1) On note v “le” chemin de C qui part de 1, suit simplement
le demi-cercle unité du demi-plan des parties imaginaires positives
jusqu’au point —1, puis le segment [—1, —2], et enfin le demi-cercle
de rayon 2 centré en l'origine du demi-plan des parties imaginaires
négatives jusqu’au point 2. On en représente le support ci-contre.

Calculer / %
y 2

39.2) Soit U, ouvert simplement connexe et connexe de C,
dont on dessine une représentation grisée ci-contre. On note
log 'unique logarithme sur U qui prend la valeur 0 en 1.

Calculer log(2).

On expliquera pourquoi il est inutile de mieux définir U pour
que la question ait un sens.

40 Développements logarithmiques

On considere les deux séries
zZ" . 1) (z —2)™
fi(z) = g . et fo(z) =im + g M

n
n>1 n>1
Démontrer qu’il existe une fonction analytique f sur un ouvert connexe du plan contenant les disques ouverts
Dy ={z€C, |z <1} et Dy={z€C, |z—2| <1},

telle que f = f; sur Dy et f = fy sur Ds.

41 Relever

41.1) Soient f une fonction holomorphe sur un ouvert U de C et zg € U tel que f(z9) # 0. Montrer que pour
tout entier naturel non nul m, il existe un voisinage V' de 2 et une fonction holomorphe g sur V telle que pour
tout z € V, on ait

f(z) =g()™.

Combien de choix a-t-on pour une telle fonction g ? Si g est I'une d’entre elles, trouver toutes les autres.

41.2) Soit U =C\ {z € R, |z] > 1}. Dessiner U. Montrer qu’il existe une fonction f analytique sur U telle
que

f(2)2=22—1 et f(0)=1.

41.3) Soient f et g deux fonctions entieres. On suppose que

Vz e C, |f(2)] < |g(2).

(i) Montrer que la fonction f/g se prolonge en une fonction entiére.

(ii) En déduire qu'il existe C' € C telle que f = Cg.
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42 Formule d’inversion de Lagrange

42.1) Changement de variable sous ’intégrale curviligne
Soient U et V deux ouverts de C et ¢ : U — V un difféomorphisme analytique. Soient aussi v un chemin de V'
et f € O(V). Montrer que ¢! o est un chemin de U et que

/
Frea=§  foptu)x e
v e~ loy
[Comme dans le cas d’un changement de variable sous l'intégrale ordinaire, cette formule peut se retenir via le moyen mnémotechnique

consistant & poser z = p(w) et dz = ¢’ (w)dw.]

42.2) Soit ® une fonction holomorphe au voisinage de 0, telle que ®(0) # 0. En appliquant le théoreme
d’inversion locale holomorphe & la fonction z +— @, montrer qu’il existe une unique fonction développable en
série entiere en zéro, que ’on notera f, telle que

f(2) =22 (f(2))
pour tout z au voisinage de 0.

42.3) Si F est une fonction développable en série entiére au voisinage de 0, pour tout entier naturel n, on note
[2"] F(2)

le coefficient de 2™ dans le DSE de F' en 0. Montrer qu’il existe R > 0 tel que, pour tout entier naturel non

nul n et pour tout r €]0, R|,
n 1 Iz
O L
1mn c(0,r) z

ou C(0,7) est le cercle de centre 0 et de rayon r, parcouru une fois dans le sens direct.
42.4) Apres Pavoir diiment justifié, effectuer le changement de variable “w = f(z)” dans l'intégrale de la
question précédente et en déduire la formule d’inversion de Lagrange :
1 — n
vneN\ {0}, [ /() = - [" ] 97 (2).
42.5) Application : DSE(0) de la fonction W de Lambert

(i) Tracer le graphe de la fonction € R — ze® et montrer qu’elle définit une bijection strictement croissante
de ] —1,400[—] —1/e,+o0|. La réciproque de cette bijection est la fonction W de Lambert. Tracer son graphe.

(ii) Montrer que W se prolonge au voisinage de 0 dans C en 'unique fonction holomorphe au voisinage de 0 qui
vérifie W (z) = ze~" () au voisinage de 0.

(iii) Montrer que le développement en série entiere de W en 0 est

e n—1
(—n
W(z) = g — 2"
n!
n=1
et calculer son rayon.
14 Yy = re®
124
10
N
ol
o
y=W(x)
N
2 4 6 8 l‘U 12 14
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43 Composer-relever

Soient U et V deux ouverts de C, f,h: U — C et g: V — C trois applications. On suppose que h(U) C V, si
bien que la composée g o h a un sens. On suppose aussi que

f=goh.
43.1) Est-il vrai que (f cOU) et ge O(V)) — (h € O(U)) ?

43.2) Est-il vrai que (f eOWU)ethe (’)(U)) = (g € (’)(V)) ?

[Indications. On pourra traiter pour commencer le cas défavorable ott h(U) # V, puis supposer que h(U) = V. Soient v € V et u € U tel
que h(u) = v. Quitte & remplacer h(z) par h(z + u) — h(u), U par U — {u} et V par V — {v}, on peut supposer que u = v = 0. En notant
m l'ordre de h en 0, écrire h sous la forme k™ ot k est un difféomorphisme analytique local au voisinage de 0 en appliquant le lemme de
revétement sous sa seconde version. Montrer que dans ces conditions, application fo k™ : z +— g (2™) est DSE(0). En déduire que seuls

d

les coefficients des puissances de 2" sont non nulles dans ces DSE et conclure que g est holomorphe.]

43.3) Dans le cadre de la variable réelle, lorsque f = g o h, est-il vrai que g est dérivable dés que f et h le
sont 7

44 Questions de conformité
44.1) Montrer que le disque unité ouvert est homéomorphe & C. En utilisant le théoréme de Liouville, montrer
qu’en revanche, un disque ouvert n’est jamais conformément équivalent a C. Généraliser.

44.2) Soient ¢ € C et r > 0. Trouver une similitude directe qui envoie le disque ouvert de centre ¢ et de rayon r,
que 'on notera D(c,r), sur le disque unité ouvert. En déduire une description de tous les automorphismes
analytiques de D(c, 7).

44.3) On note D le disque unité ouvert et
D'=D\ {0} ={z€C,0< |z < 1}.

On cherche a montrer que :

le groupe des automorphismes analytiques de D’ est le groupe des rotations vectorielles,
formé des z — Az, |A| = 1.

(i) Soit f € Aut (D’). Montrer que f se prolonge est une application holomorphe sur D, que I’on notera encore f.
(ii) Montrer que f(0) = 0.
(iii) Conclure.
44.4) On note
C={z€C, |z| >1}.

Trouver un diffomorphisme analytique entre D’ = {z € C, 0 < |z| < 1} et C. En utilisant ’exercice précédent,
en déduire tous les automorphismes analytiques de C.

44.5) Soient ¢ € C et r > 0. Utiliser 'exercice précédent pour trouver tous les automorphismes analytiques
des ouverts
{zeC,0<|z—c|<r} et {z€C, |z—¢|>r}.
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Feuille d’exercices numéro 4 : autour des points singuliers et des séries de Laurent

45 Gammes singuliéres

45.1) Quelles sont les points singuliers (et leurs natures) de la fonction f : z —

z
1 sur C ? Calculer les
ordres des poles et leurs résidus. Méme question pour la fonction z — f (1).

45.2) Montrer que f : z — sin (%) a un point singulier essentiel en 0. Si A € C, calculer les solutions de
Péquation f(z) = A et trouver une suite (z,), de nombres complexes qui tend vers 0 et telle que f(z,) = A
pour tout n.

46 Point singulier essentiel et densité

46.1) Un espace métrique complet est un espace de Baire
—Dans cette question, on peut remplacer C par n’importe quel espace métrique complet —

(i) Si A est une partie de C, son diamétre est sup {|x —y|, z,y € A}. Soit (F),), une suite de parties fermées
non vides de C, décroissante pour I'inclusion. On suppose en outre que la suite (diam (F},)), converge vers 0.
Montrer que l'intersection des F}, est non vide.

(ii) Soit (£2y,),, une suite d’ouverts denses de C. Montrer que 'intersection des £, est encore dense.

46.2) Soit a € C. Pour tout r > 0, on note D'(a,r) = {z € C, 0 < |z — a| < r} le disque épointé ouvert de
centre a et de rayon r. Soient R > 0 et f une fonction holomorphe sur D’(a, R), présentant un point singulier

essentiel en a. Montrer que
1
N (es)
n
n>%

est dense dans C (on pourra utiliser le théoréeme de 'application ouverte). En déduire que ’ensemble des
nombres complexes atteints une infinité de fois par f est dense dans C.

47 Séries de Laurent

47.1) Calculer les développements en série de Laurent des fonctions f suivantes, sur les couronnes C indiquées.
) f(z)=1,C={z€C, |z] #0}

i) f(2) = Za,C {z€C, |z—a|>0}onacC

iii) f(z) = 71, C = {2 €C, |2| > |a|} ota e C

iv) f(z) = 2, C={2€C, |z| <|a|} ola e C
(v) f(2) =exp (1), C=C\ {0}

47.2) Soient a,b € C. On suppose que |a| < |b| et on note C' la couronne C = {z, |a| < |z| < |b|}. Calculer le
développement en série de Laurent sur C' de

(i
(
(
(

N
(z—a)(z—b)

22925241
Z+1)(z+2)

Z =

47.3) Calculer le développement en série de Laurent de sur {z, 1 <|z| < 2}.

17+ 11n n
[On trouve Z( nn" TS 2"+ Z — olt ag, = 4(—1)" et agp—1 = 3(—1)" pour tout n > 1.]

n>0 n>1
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47.4) Montrer que la série de Laurent
TSP I YT S
2" 22z 2 4 2n
définit une fonction holomorphe qui n’a pas de point singulier essentiel en 0. En quoi ce développement infini du
cOté des puissances négatives de z ne contredit-il pas les résultats du cours sur les points singuliers essentiels ?

48 Assouplissements méromorphes

48.1) Les fonctions suivantes sont-elles méromorphes sur C ? Dans tous les cas, donner leurs poles avec leurs
ordres et leurs résidus.

23 etz zsin (L 23—
O wew(r) o) w mll Bt

48.2) Calculer les poles et les résidus de la fonction z —

sin Z

48.3) Montrer que les séries ci-dessous définissent des fonctions méromorphes sur C, calculer leurs poles, leurs
ordres et leurs résidus.

: -" . 1 =
(1)ZM (11)Zm (iii zz: EEESE

neN
48.4) Soit f une fonction méromorphe sur un ouvert de C. Montrer que les poles de la fonction f'/f sont
exactement les zéros et les poles de f, et calculer leurs résidus.

[En chaque point, on trouve que ce résidu est la valuation de f].

49 Introduction aux fonctions elliptiques
On note A = Z + iZ.

1
49.1) Montrer que la famille (—3) est sommable (on pourra procéder & une comparaison série-
AP/ xeavqoy
intégrale).

49.2) Montrer que, pour tout z € C\ A, la formule
1 )
=5+ > (m %
AeA\{0}

définit une fonction méromorphe sur C dont les poles sont exactement les éléments de A.
49.3) Calculer I'ordre des poles de p.

49.4) Montrer que la dérivée de p est impaire et A-périodique, ce qui signifie que p'(z + A\) = p'(z), pour tout
z € C\ A, pour tout A € A.
49.5) Montrer que p est paire et A-périodique.

[On pourra démontrer ’égalité p( ) =p (——) et s’appuyer dessus.]

49.6) (Plus long) On note
1
g2 =60 Y 1 et gs =140 >
AeA\{0} AeA\{o}
S’assurer que les séries qui définissent les nombres go et g3 sont convergentes. En calculant le début de son
développement en série de Laurent en 0, montrer que la fonction méromorphe z — ¢/ (2)% —4p(2) + g2p(2) + g3
a un faux point singulier a l'origine ; déduire alors de sa A-périodicité que
Vz € C\ A, ¢'(2)* — 4p(2)® + g290(2) + g3 = 0.

A noter : la fonction g est célébrissime. C’est la fonction p de Weierstrass associée au réseau Z2, qui appartient
a la famille des fonctions elliptiques, qui permettent notamment de paramétrer les cubiques y? = 4x> — gox — g3.
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50 Automorphismes analytiques de C

50.1) Soit f un automorphisme analytique de C. On définit I'application g sur C \ {0} par la formule
g(z)=f (%) Montrer que g est holomorphe sur C \ {0} et que 0 n’est pas un point singulier essentiel de g.

50.2) Montrer le résultat suivant™ :

les automorphismes analytiques de C sont les applications C-affines inversibles,
a savoir les applications de la forme z +— az+boua € C\ {0} et b € C.

51 Automorphismes analytiques de C\ {0}

En adaptant les arguments de I’exercice précédent, montrer que

les automorphismes analytiques de C\ {0} sont les applications de la forme z + az*! ot1a € C\ {0}.

52 Liouville adapté

Si z est un nombre complexe, on note ¥(z) sa partie imaginaire. On note aussi H le demi-plan de Poincaré et
D le disque unité ouvert :

H={zeC, S(2) >0} et D={z€C, |z|] <1}.
52.1) Montrer que la formule _
z—1

@(z)=z+l.

définit une application holomorphe et bijective ¢ : H — D dont la réciproque est également holomorphe.

52.2) En utilisant le théoreme de Liouville et la question précédente, montrer que toute application holomorphe
C — H est nécessairement constante.

53 Automorphismes d’une couronne
Pour tous nombres réels r, R qui vérifient 0 < r < R, on note C(r, R) la couronne ouverte centrée a ’origine

C(r,R)={z€C, r<|z|] <R}.

1l s’agit de prouver que les automorphismes analytiques de C(r, R) sont :

(i) les rotations z — €2, § € R

90 o o . 6
(i) les inversions-rotations z — "B<— g € R.

53.1) Montrer que les rotations et les inversions-rotations sont des automorphismes analytiques de C(r, R).

53.2) Montrer que les couronnes C(r, R) et C (1, %) sont conformément équivalentes.
— Dans toute la suite on suppose que r > 1 et on étudie les automorphismes de la couronne C(1,r) —

53.3) On note H le demi-plan de Poincaré H = {z € C, $(z) > 0} et log la détermination principale du

Inr
logarithme. On note aussi « le réel strictement positif « = —. Montrer que la formule
0

c(1,r)

—
e—iozlogz 1Y

p:H
z =z

“ A noter : d’un point de vue de la géométrie euclidienne, ces automorphismes de C sont les similitudes affines directes.
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définit une application holomorphe et surjective.

53.4) Montrer que pour tous z,y € H,
2w
M@=p@%¢$bW%w%y€<E>Z- (6)

53.5) Soit f un automorphisme analytique de C(1,r).

(i) Montrer qu’il existe une application holomorphe G : H — C
telle que Vz € H, e“(*) = fop(z) et que 'image de G est incluse H — H
dans la bande {z € C, 0 < R(z) < Inr}.

P v

(ii) En déduire qu’il existe une application g : H — H, holomorphe N
et injective telle que po g = fop. c(1,r) 7’ C(1,r)

(iii) Montrer que g est un automorphisme analytique de H.

[Pour montrer la surjectivité de g, on pourra s’y pren- \

dre comme suit, en faisant “deux tours du diagramme”.

)

Prendre w € H, en haut a droite. On cherche z € H tel
que ¢g(z) = w. Prendre z9 € H, en haut & gauche, dans w
la fibre p~! (f71 o p(w)). Nommer wo = g (20), qui est 20 ~ f

dans la fibre de p au dessus de p(w). Prendre un chemin
v de H d’origine wg et d’extrémité w — il en existe, on
peut méme prendre un segment. L’image par p de v
est un lacet 6 de C(1,r) puisque p(w) = p(wp). On p p
prend I'image de ce lacet par f~1, qui est un lacet 8’ de
C(1,r). Puisque les intervalles de R sont simplement
connexes, on peut relever ce lacet via ’exponentielle
d’abord, puis par p en divisant par i«, de sorte qu’on ob-
tienne un chemin ~’ de H, d’origine zo, dont on nomme

Pextrémité z. En outre, pour tout w € H et pour

tout lacet de C(1,r) d’origine p(w), il existe un unique
chemin de H d’origine w dont ’'image par p soit le lacet

— cela vient de la connexité de [0, 1]. Alors, g(z) = w.]

53.6) On note p = e’ . Soient f un automorphisme analytique de C'(1,7) et g I'automorphisme™ de H tel que
pog=fop.
(i) Montrer que, pour tous z,y € H,

Yy et — 9(y) e .
x 9(z)
g(p"2)

En déduire que pour tous z € H et pour tout n € Z, le quotient e est un nombre réel.

(ii) En utilisant le fait que les automorphismes de H sont les homographies issues de matrices de SL (2, R)
(résultat du cours) et en appliquant le (i) pour z = i, montrer que les seuls automorphismes de C(1,7) sont les

. ; . . . 0 N
rotations z — €9z et les inversions-rotations z — “-oufeR.

53.7) SiceCetsi0<r< R, quels sont les automorphismes de la couronne

{zeC, r<|z—c <R} ?

“Question subsidiaire : montrer qu’il n’existe qu’un seul automorphisme g de H qui vérifie pog = f o p.
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Feuille d’exercices numéro 5 : autour de la formule des résidus

54 Un calcul d’intégrale par la méthode des résidus

Soient a et b deux réels strictement positifs et soit

= g 1))

54.1) Montrer que f est méromorphe sur C\ {0}. Quels sont les poles de f ? Calculer les résidus en tous les
poles de f.

54.2) Pour 6 € [0,7] et » > 0,7 # 1, soit z = re? un point du demi-cercle du demi-plan supérieur, de centre 0

et de rayon r. Calculer
b
exp (2 (az — ))'
z

< — .
S

en fonction de a,b,r, 0 et en déduire que |f(2)

54.3) Soit € €]0,1[, R > 1. Soit I'g le demi-cercle du demi-plan supérieur, de centre 0 et de rayon R parcouru
une fois dans le sens trigonométrique. Soit 7. le demi-cercle du demi-plan supérieur, de centre 0 et de rayon &
parcouru une fois dans le sens inverse du sens trigonométrique.

(i) Montrer que f(#z)dz tend vers 0 quand R tend vers +oo.
T'r

(ii) Montrer que (z)dz tend vers 0 quand ¢ tend vers 0.
Ve

54.4) Montrer que f est intégrable sur R et que

+oo +oo 1 ( b)
=2 s(ax— 2 ) da.
[m f(x)dx /0 pear el G e dx

54.5) Soit v, g le lacet simple dessiné ci-dessous.

N

0 ¢ R

+oo
1 b
Utiliser le théoreme des résidus pour calculer I'intégrale I = / R cos (ax — 7) dx.
0o x

55 Vrac de calculs d’intégrales par résidus

+oo
55.1) Calculer / T P la méthode des résidus (choisir un contour ad hoc). [On trouve /3.]
0
oo dx
55.2) Soit a > 0. Calculer 'intégrale réelle e E——— [On trouve -L 3732 ]
—oo (2t + a4)2 of F
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iz

55.3) Calculer les résidus de —— .
1+2z+22

En déduire que

/+Oo o du 2m e V3 =3
_C du=T e 22
oo L4+ u+u? V3 P

et la valeur des intégrales réelles qui en découlent naturellement.

+oo itx

55.4) Montrer I’égalité / ﬁdt = we~*I, pour tout z € R.

— 00

55.5) Calculer les intégrales suivantes.

) /O " cos (a?) do

+oo .2
(ii) / e e~z dt, v € R.
— 00
1.2
[Indication : intégrer e~ 2% sur le rectangle (—R, R, R — iz, —R — iz).]

+o0 72
(iii) /0 12 @ D) dx.

in2 or
[ Calculer l'intégrale de e*®  en intégrant le long de IA_» La réponse : Y27,

]

2
[ On trouve v2mwe™ 2" /2, ]

[ On trouve Z(—1+ v2). ]

55.6) Soit f une fonction méromorphe au voisinage de 0, présentant un pdle simple en 0. Pour tout € > 0, on
note 7. le demi-cercle {z € C, |z| = ¢, $(z) > 0}, parcouru une fois dans le sens direct — < désigne la partie

imaginaire. Montrer que

lim [ f(z)dz =imRes(f,0).

. +oo
Application : en intégrant <~ le long du lacet simple ci-dessous, montrer que /0

A

N

sint
t

0 ¢

2
Inx

1
——, en intégrant

+oo
55.7) Etablir l’égalité/ (
0

a la détermination du logarithme que 1’on utilise).

M

R
~

“+ o0
55.8) Soient m et n des entiers vérifiant m > 1 et n > m + 2. Montrer que /
0

log” 2z
" e = 5~
1+ )3 2 (14 2)3

MPg =T
2

sur un contour du type suivant (attention

xm

dx

1+ zn

On pourra utiliser un contour voisin de celui utilisé au (i) du 5) ci-dessus.
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55.9) Soit z €]0,1].

Tz

1+e?

(i) Quelle est la partie du plan complexe formée des points en lesquels la fonction z + n’est pas

holomorphe ?

ewz
1+4e*’

(iii) Pour tout R > 0, on note Sg “le” chemin du plan complexe consistant & parcourir une fois le segment
[2im + R, 2im — R]. Donner une paramétrisation de Sy et montrer que

R
% e’ dy — _e2i7rw/ eiwtdt
SR1+62 _Rl—|—et '

(iv) Pour tout R > 0, on note yg “le” chemin du plan complexe consistant & parcourir une fois le rectangle de
Tz

1+ e?

(ii) Calculer le résidu en im de la fonction z —

sommets (R, R + 2im, —R + 2iw, —R) dans le sens direct. Utiliser la formule des résidus en intégrant z —

le long de yr pour démontrer la formule

+o0 xt
e 0
dt = . 7
/_OO 1+ et sin 7z (™

est-elle encore vraie lorsque = est un nombre complexe dont la partie réelle est dans

(v) La formule (7)
? Pourquoi limiter la question a cette bande ouverte 7

I'intervalle ]0, 1]

56 Et encore un calcul d’intégrale

L’objet de cette partie consiste a calculer I'intégrale

Jn(a) = /O’T cos(nt)

1 —2acost+ a2

lorsque a est un nombre complexe non nul de module différent de 1 et n un entier naturel.
56.1) Sit est un nombre réel, factoriser sur C le polynome X2 — 2X cost + 1.

56.2) Soient a un nombre complexe non nul de module différent de 1 et n un entier naturel. Calculer les
résidus en les poles de la fonction méromorphe

Zn

(z-a)(z-3)

Z

56.3) Soient a un nombre complexe non nul de module strictement inférieur & 1 et n un entier naturel. En
appliquant la formule des résidus, calculer I'intégrale

|.m=aEn®

a
ou C désigne le cercle unité parcouru une fois dans le sens direct.
56.4) En paramétrant convenablement le lacet C, déduire de la question précédente que si 0 < |a| < 1,

Ta™

T1 a2

Jn(a)

56.5) On suppose que n € N et que a € C a un module strictement supérieur & 1. Calculer J,(a).

56.6) Que se passe-t-il pour J,(a) lorsque le module de a égale 1 ?
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57 Un calcul d’intégrale et son domaine de validité

57.1 Sur l’intervalle

Soit « €]0, 1[. L’objet de cette partie consiste & montrer la formule

oo o 0
dt = . 8
/0 1+¢2 2cos (%) ®)

On note log 'unique détermination du logarithme sur C \ [0, +00[ qui prend la valeur i en —1. En outre, pour
tout z € C\ [0, +o0[, on note z* = e*1°8(2),

57.1) Justifier que l'intégrale de la formule (8) a du sens.
57.2) Calculer log(i) et log(—i).

(03

57.3) Calculer les résidus de la fonction z — ——
1422

en ses poles.

57.4) Montrer que pour tous > 0 et y > 0,
(.13 + Z-y)a _ ‘33 + Zyla eiaarctan(%) ot (x _ Zy)a — |I _ iy|a ez‘a(%r—arctan(%))

57.5) Lorsque r et R sont des nombres réels vérifiant
0 <r <1< R, on note

Yr,.R
& )
I g = / —dz 9 , '_/
Yr,R 1 + 22 K _
ol v, r est “le” lacet ci-contre, parcouru une fois dans R _T{ L
le sens direct — les lignes droites du support dessiné \

représentent des segments paralléles aux axes de coor-
données, la partie courbe représente un demi-cercle.
Expliquer pourquoi I’énoncé place des guillemets autour
du “le” ci-dessus, et pourquoi Uintégrale curviligne (9)
est définie sans ambiguité.

@

57.6) Soit R > 1. Montrer que l'intégrale curviligne de % le long du segment [ir, R + ir] tend vers
z

R «
/ e dt lorsque r tend vers 0 en restant strictement positif.
0

[e3

R

4 o
57.7) Montrer que l'intégrale curviligne de % le long du segment [R—ir, —ir] tend vers —etima /
z 0

Tre®

lorsque r tend vers 0 en restant strictement positif.

ZOL
57.8) Montrer que I'intégrale curviligne de T+ 2 le long du demi-cercle de centre 0 et de rayon r qui intervient
z

dans 7, r tend vers 0 lorsque r tend vers 0.

(e

57.9) Montrer que l'intégrale de % le long de la réunion des cing segments [R + ir, R+ iR], [R + iR, —R + iR),
2

[-R+iR,—R —iR],[-R—iR,R —iR] et [R — iR, R — ir] qui intervient dans le chemin =, r tend vers 0 lorsque
R tend vers 4o0.

57.10) Démontrer la formule (8).

57.2 Domaine de validité

57.11) Donner le plus grand ouvert de C sur lequel la fonction z — est holomorphe.

2cos (%)
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57.12) On note V l'ensemble des nombres complexes z pour lesquels la fonction

tZ

t— ——
1+12

est intégrable sur [0, +oo[. Montrer que V ={z€ C, —1< R(z) < 1}.

57.13) La fonction
“+oo tz
o [P
o 1+

57.14) La formule (8) est-elle valide pour tout nombre complexe o € V' ?

est-elle holomorphe sur V' 7
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Licence de sciences et technologie, santé
LSMAG621 (analyse complexe)

Feuille d’exercices numéro 6 : mélanges

58 Formule de Cauchy et primitivation

Soit f:z+— , définie sur C\ {0,1}.

1
z(1 = 2)
58.1) Montrer que f n’a pas de primitive sur 'ouvert {z € C, 0 < |z — 1| < 1}.
58.2) Montrer que si 7y est un lacet de C \ [0, 1], alors /f(z)dz =0.

v

58.3) La fonction f a-t-elle des primitives sur C\ [0,1] ?

59 Une intégrale a la Jensen

L’objet de cet exercice consiste a démontrer 1’égalité

2m ]
/ log‘l —e'f
0
%

Si z est un nombre complexe, on note respectivement R(z) et I(z) ses parties réelle et imaginaire. On note
aussi P le demi-plan

o = 0. (10)

P={z€eC, R(z) <1}.
59.1) Justifier rapidement que la fonction 6 — log |1 — ew’ est intégrable sur I'intervalle [0, 27].

59.2) Montrer qu’il existe une unique fonction r holomorphe sur P telle que

{Vze”l?7 er®) =1—2

r(0) = 0.
59.3) Justifier rapidement que la fonction z +— @ est holomorphe sur P.
59.4) Pour tout z € P, calculer R (r(z)) en fonction de z et montrer que S (r(z)) € | -5, 5[
59.5) Pour tout € € ]0,7[, on note I'. et 7. les deux chemins
I'.: [g,2n—¢] — C Ye: [-%55,%f] — C
t — et ot t — 1—2¢"sins.

(i) Montrer que T'e(e) = 7. (%32) et que I (21 —€) = 7 (—%52).

(ii) On note £(g) le concaténé de I'. et de ., dans cet ordre. La question précédente assure que £(g) est un
lacet. Dessiner le support de £(¢).

59.6) Soit € €]0, 1[. Montrer soigneusement les deux égalités

/62”1og'1—e“’ dﬂz%(iy{r @dz) :%(i]( T(;)dz) (11)

59.7) En appliquant une majoration standard au dernier membre de (11), montrer que

2m—e )
lim log ‘1 — ¢
e—=0
e>0 V€

df = 0.

59.8) Rassembler les résultats des questions précédentes pour démontrer (10).
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60 Une application du théoreme de Rouché

Combien le polynome 28 — 42° + 22 — 1 a-t-il de racines dans le disque unité ?

[On pourra appliquer le théoréme de Rouché en comparant ce polynéme au polynoéme —4z5.]

61 Théoréeme de Phragmen-Lindelof

Soit B ={z € C, |3(z)| < §}. On note B 'adhérence de B et B la frontiere de B.
61.1) Dessiner B.
61.2) On note o(z) = e . Montrer que |¢(z)| = 1 pour tout z € B, et que ¢ n’est pas bornée sur B.

61.3) Soit f une fonction continue sur B et holomorphe sur B. On suppose que f vérifie les deux propriétés
suivantes :

Ve 0B, [f(:) <1
eVze B, |f(2:)| < exp (Aecm(z)\)’

oll A est un réel strictement positif et ¢ est un réel de 'intervalle ]0, 1].
L’objectif de la suite est de montrer que |f(z)| <1 pour tout z € B (Phragmen-Lindeldf).
(i) Pour € €]0,1] et b €]c, 1], on pose
he(z) = exp (—¢ (ebz + e_bz)) .

La fonction h,. est-elle holomorphe sur un ouvert contenant B ?

(ii) Montrer que pour tout z € B, si on note z = R(z),

- " b
|f(2)he(2)] < exp {Aecm —ee®l cos (g)} .
(iii) En déduire qu’il existe p > 0 tel que |f(2)he(2)| < 1, pour tout z € B tel que |R(2)| > p.

(iv) En appliquant le principe du module maximum sur un compact bien choisi, montrer que |f(z)he(2)] <1
sur B. En déduire que o
Vz € B, |f(2)] < 1.

61.4) Le résultat subsiste-t-il quand ¢ =17

62 Théoréme de Pringsheim

62.1) Pour se rafraichir la mémoire
o0

Soit f(z) = Z anz" une série entiere de rayon R > 0 et soit v dans son disque ouvert de convergence. Quel

n=0
théoréme du cours permet de dire que le DSE(u) de f a un rayon supérieur ou égal & R — |u| ?

62.2) Théoréme de Pringsheim
Soit (an),,cy une suite de nombres réels positifs ou nuls. On suppose que la série entiere

flz)= Z anz"
n>0

a un rayon R fini et strictement positif. Montrer que R est un point singulier de f, c’est-a-dire que f ne se
prolonge en une fonction analytique sur aucun voisinage de R.

[Indication. Par I’absurde, supposer que f admet un DSE en R dont le rayon est © > 0, prendre p = %, développer f au point R — p et

montrer, en calculant f(R+ p) via ce développement et en utilisant la positivité des séries en jeu, que le DSE de f en 0 converge en R+ p.]
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63 Fonction arctangente

63.1) Sur quel ouvert maximal de C la fonction tangente, définie par la formule

tan(z) = sin(z)

cos(z)
est-elle holomorphe 7 Calculer son image.
63.2) Soit S = {iy, y € R, |y| > 1}, soit D = C\ R_ et soit g I'homographie définie par la formule

_ 1+1iz
T 1—idz’

9(2)

Dessiner S. Montrer que g définit une bijection biholomorphe de C\ S dans D.
63.3) En déduire que

- den(15)

définit une fonction holomorphe sur C\ S. Quelle est I'image par f de C\ S ?

63.4) Montrer que pour tout z € R, tan(f(x)) = . En déduire que f est 'unique fonction holomorphe sur
C\ S vérifiant
Vz e C\ S, tan(f(z)) = =.

Pour cette raison, puisque f prolonge la fonction arctangente réelle, on lui attribue le méme nom et on note
Vze C\ S, f(z) = arctan z.
1
63.5) Montrer que arctan’(z) = 1552 Pow tout z € C\ S. En déduire que
z

22n+1

2n+1°

VzeC, 2] <1= f(z) = Z(—l)"

n>0

63.6) Quel est 'ensemble des nombres complexes z pour lesquels la relation tan(arctanz) = z est valide ?
Quel est 'ensemble des nombres complexes z pour lesquels la relation arctan(tan z) = z est valide ? Calculer
arctan(tan z) en fonction de z chaque fois que cela a du sens.

63.7) Montrer que si ®(z) > 0, alors

1 T
arctanz + arctan | — | = —.
z 2

Quelle est la valeur de cette somme si R(z) <0 7

64 Principe de réflexion de Schwarz

Ce résultat, ainsi que ’exercice 77 sur les produits de Blaschke, est un des outils
d’une preuve constructive du théoréme de représentation conforme de Riemann.

64.1) Soit U un ouvert de C. Soit f une fonction holomorphe sur U \ R et continue sur U. Montrer que f est
holomorphe sur U.

[On pourra penser a utiliser la formule de Cauchy.]

64.2) On note D un disque ouvert du plan complexe, centré en un nombre réel. On note également Dt =
Dn{z, Sz>0} et DT = DnN{z, Sz > 0}. Soit f une fonction holomorphe sur D, continue sur D+, prenant
des valeurs réelles sur D N R. Montrer que la formule

Vze D, f(z) = f(z)

définit un prolongement holomorphe de f & D.
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65 Cylindrique de Bessel

Pour tous z € C et w € C\ {0}, on note

B(z,w) = exp (g <w - %)) .

Pour tous n € Z et z € C, on note aussi J,(z) le n® coeflicient du développement en série de Laurent & lorigine
de w — B(z,w), si bien que

+o0
e3(v=) = Z In(z)w". (12)

n—=-—oo

65.1) Siz € C, sur quelle couronne ouverte maximale le développement en série de Laurent (12) est-il valide ?

65.2) Montrer que, pour tout n € Z et pour tout z € C,

)= L 7{ eilomw) (13)
" o 2'671— C(O,l) wn+1

ou C(0,1) désigne le cercle unité parcouru une fois dans le sens direct.

65.3) Montrer que pour tous w, z € C,

65.4) En déduire que J,, est une fonction entiere, pour tout n € Z.

65.5) Soit n € Z. En appliquant la formule des résidus a l'intégrale (13), montrer que J,(2) est le coefficient
de w™! dans la série de Laurent (en w)

2 k!((nzl—)kk)! (5)" wre

m,k>0
k<m

et en déduire que le développement en série entiere de J, a 'origine est

+oo
_ (_1)k 2N\ 2k+n
Tn(2) = kzzo kl(n + k)! (5)

66 Théoréeme de Morera

66.1) Le théoréme (triangulaire) de Morera

Siu,v,w € C, on note T(u,v,w) le lacet formé de la concaténation des segments standards [u, v], [v, w] et [w, ],
et [u,v,w] 'enveloppe convexe du triplet {u,v,w} (le triangle, quoi). Démontrer le théoréme de Morera dont
I’énoncé est le suivant.

Soient U un ouvert de C et f : U — C une application continue. Alors, f est holomorphe si, et seulement si

$ sEz=o,
T(uw,v,w)

pour tous u,v,w € U tels que [u,v,w] CU.

[On pourra adapter la partie preuve du théoréme d’équivalence pour les fonctions holomorphes qui permet de montrer, une fois la nullité

de l’intégrale sur les triangles acquises, que la fonction admet des primitives.]
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66.2) Variante rectangulaire du théoréme de Morera

Si a,b € C, on note R(a,b) le lacet (standard) formé de la concaténation des 0
cOtés du rectangle dont les sommets sont a et b et dont les cotés sont paralleles
aux axes de coordonnées, parcouru une fois dans le sens direct en partant de a.
On note aussi Rect(a, b) 'enveloppe convexe du support de R(a,b). Montrer
la variante suivante du théoreme de Morera. b

Soient U un ouvert de C et f : U — C une application continue. Alors, f est holomorphe

si, et seulement si f f(z)dz =0, pour tous a,b € U tels que Rect(a,b) CU.
R(a,b)

[On pourra chercher des primitives locales en intégrant la fonction le long de chemins qui suivent les directions des axes de coordonnées.

66.3) Reprendre la preuve du principe de réflexion de Schwarz & la lumiére de cette variante du théoréme de
Morera ; elle s’en trouve simplifiée — cf exercice 64.

67 Série de Fourier d’une fonction holomorphe périodique

Soit f : C — C une fonction entiere. On suppose que f est 1-périodique, c’est-a-dire que

VzeC, f(z+1) = f(2).

67.1 Développer une fonction entiére périodique en série de Fourier
On admet pour l'instant qu’il existe une fonction A : C* — C, holomorphe, telle que
Vz €C, f(z)=h (™) ;

la preuve de son existence fait I’objet de la seconde partie.
67.1) Pour tout n € Z, soit a, € C tel que

“+ o0
Yw € C*, h(w) = Z anw™.

n=—oo

Quel énoncé du cours garantit-il 'existence d’une telle suite (ap)nez ?

67.2) Montrer que, pour tout n € Z,
1
S
0

67.3) Montrer que pour tout b € R, on a aussi

1
an = / F(t + ib)e=2imnt+ib) gy
0

1
67.4) Est-il vrai que a,, = / f(t + ib)e= 2™+ gt pour tout b e C ?
0
67.5) Donner des éléments d’explication du titre de 1’exercice.

67.2 Une fonction entiere périodique est une fonction holomorphe sur le tore

Cette partie est consacrée a une preuve de la propriété des fonctions entieres périodiques énoncée dans le
préambule de la partie 1 (existence de la fonction h).

67.6) Sia et bsont deux nombres réels tels que a < b, on note

Bopy={z€C, a<R(z) <b}
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ou le symbole i désigne la partie réelle. Montrer que B, est un ouvert de C. Dessiner By et B_
méme dessin.

67.7) Onnotel;y ={2€C, 2z¢ R} etUs ={z € C, z¢ R_}. Montrer que I'application z — exp(2inz)
définit d’une part un diffomorphisme analytique entre By ; et U; dont on note i : Uy — Bp,1 la réciproque, et

d’autre part un difféfomorphisme analytique entre B_ 1et U dont on note 1y : Us — B_ 11 la réciproque.

1
3
67.8) Quelle est I'image de By, 1 par z — exp(2inz) ?
67.9) Soit f: C — C un fonction entiére et 1-périodique. Montrer qu’il existe h; : Uy — C, holomorphe, telle

que '
Vz € 60,1, f(Z) = hl (6227TZ) .

De méme, montrer qu’il existe ho : Us — C, holomorphe, telle que Vz € B_

N

1
2
67.10) Pour tout w € C*, on note
hi(w) siw el ;
h(w) =
ho(w) siw € Us.

Montrer que ces relations définissent une application h : C* — C, holomorphe, telle que

Vz €C, f(z) =h ().

67.3 Entiere périodique équivaut a holomorphe sur le tore — bis

01 l'on démontre d’une autre fagon existence de la fonction h.
67.11) Soit ¢ : C — C définie par la formule ¢(z) = ¢?™*. Montrer que ¢ est un difféomorphisme analytique
local.

[Cela signifie, c’est dans le cours, que pour tout z € C, il existe un voisinage ouvert V de z tel que la restriction de ¢ & V soit un

difféomorphisme analytique de V' sur ¢(V).]

67.12) Soit f une fonction entiére et 1-périodique. Montrer qu’il existe une unique application h : C* — C
telle que f = h o . Montrer que h est nécessairement holomorphe sur C*.

[On pourra s’inspirer de la propriété universelle du quotient pour les applications générales.]

68 Constance et intégrité

Soit k£ : R — R la fonction continue et affine par morceaux dont le graphe est représenté ci-dessous.

Soit f : C — C la fonction définie par
VieC, f(z) = k(l2]).

Soit enfin
V={z¢eC, Rz<0},

ou RNz désigne la partie réelle du nombre complexe z.

68.1) Démontrer le résultat de topologie suivant : toute partie non vide, connexe et discréte (de C) est réduite
a un point.

68.2) Montrer que I'image de la fonction h : V' — C, z — h(z) = exp(z) est contenue dans le disque unité
ouvert.
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68.3) Soient V un ouvert connexe de C et H : V — C une fonction holomorphe. Soit & un ouvert connexe
de C et F': U — C une application. On suppose que U contient I'image de H (pour pouvoir définir F o H).
Montrer que 'implication

F' continue
H holomorphe = (F constante ou H constante)
F o H constante

est fausse.

68.4) Soient F' une fonction holomorphe et non constante sur un ouvert connexe U et a un nombre complexe.
Justifier brievement que 'ensemble F~1(a) = {z € U, F(z) = a} est une partie discrete de U.

68.5) Soient V un ouvert connexe de C et H : V — C une fonction holomorphe. Soit & un ouvert connexe
de C et F : U — C une application. On suppose que U contient I'image de H (pour pouvoir définir F o H).
L’implication

F holomorphe

H holomorphe = (F constante ou H constante)

F o H constante

est-elle vraie ?

69 Théoreme de ’application ouverte — une preuve alternative

L’objet de cet exercice consiste a donner une preuve — alternative a celle du cours — du théoreme de l’application
ouverte : si [ est holomorphe et non constante sur un ouvert connexe U alors l'image de U par f est un ouvert.

Soient, donc, U un ouvert connexe de C et f € O(U), non constante.
On raisonne par l'absurde en supposant que f(U) n'est pas ouvert.

69.1) Montrer qu'il existe x € U et une suite (a, ), de nombres complexes qui converge vers f(x) et qui vérifie :

Vn, an ¢ f(U)
69.2) Montrer que pour tout n, la fonction

1
gn(z) = W

— Qp

est définie et holomorphe sur U.

69.3) Montrer qu'il existe D(z,r) un disque fermé de centre x et de rayon r > 0 contenu dans U pour lequel

Vz € D(z,7r), (2 #2) = (f(2) # f(2)).
[Indication : penser au principe des zéros isolés. |
69.4) Montrer qu'il existe une suite (z,), de points du cercle C(z,r) tels que pour tout n,

1 < 1
|f($) _anl - ‘f(zn) - CLn|.

69.5) Montrer qu'il existe un € > 0 tel que pour tout z sur le cercle C(z,7), | f(2) — f(x)] > €.

69.6) En déduire que |f(zn) — an| > |f(2,) — f(2)| = |f(x) — an| > § pour n assez grand et trouver une
contradiction avec les questions précédentes.
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70 Un calcul d’intégrale par la méthode des résidus

f(z)

70.1) Soit a € C. Montrer que si f est holomorphe au voisinage de a, le résidu en a de la fonction z — G
est f'(a).

70.2) Soient a et b deux nombres complexes distincts. Calculer le résidu en a de la fonction

z

T oG-

z

m en ses poles sont
xT

70.3) Soit x €]0,1[. Montrer que les résidus de la fonction méromorphe z
+a?
4(1 - 1‘2)3/ 2

70.4) Soit x €]0,1[. On note v le cercle trigonométrique parcouru une fois dans le sens positif. Montrer que

les réels

4 z am dt
el e e L il A T ar——" L
i? Jy (224 22 41) o (l+xcost)

70.5) En utilisant (soigneusement) la formule des résidus, en déduire la formule

2
dt 2m
v 0,1 = .
X e] 9 [7 /0 (1 + mCOSt)z (1 _ m2)3/2

70.6) On note /- la détermination principale de la racine carrée. Sur quel ouvert maximal de C la fonction
z2 /1 — 22

est-elle holomorphe ? On note O cet ouvert. Dessiner O.

70.7) Soit z € O. Montrer que le segment K, = {1 4+uz, —1 <wu <1} est un compact ne contenant pas
Porigine. En déduire qu’il existe 1, > 0 tel que

Vt € R, |1+ zcost| > n,.

70.8) Montrer que 'application

/271’ dt
s v
o (14 zcost)?

est holomorphe sur O.

70.9) Expliquer pourquoi la formule suivante est exacte :

2m
dt 2
vzeo,/ L —
o (14 zcost) (1—,22)

71 Une ébauche du théoréme de transfert

Soient r et R des nombres réels tels que 1 < r < R, et a € R. Dans le plan complexe, on note D(0, R) le disque
ouvert de centre 0 et de rayon R, et U l'ouvert

U=D(,R)\ [1,+o0].
Soit f : U — C une fonction holomorphe. Pour tout n € N, on note

[2"] (=)

le n® coeflicient du développement en série entiere de f a l’origine.
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71.1) Dessiner U.
71.2) On note Log le logarithme complexe principal et

(1 —2)* =explaLog(l —2)].

Sur quel ouvert maximal de C la fonction z + (1 — 2)® est-elle analytique ?

71.3) Soit  €]0,7/2[. On note C(z,p) le cercle de centre z et de rayon p. Pour tout n € N*, soit ~, l'arc
dessiné sur la figure, composé des quatre arcs a, by, ¢, et d, suivants :

(i) larc a part du point A, intersection de C(0,r) avec la demi-droite issue de
a 1 faisant avec l’axe des abscisses un angle 8. Il parcourt C(0,r) dans le sens
positif jusqu’au point B, symétrique de A par rapport a ’axe des abscisses.

c

0 A \ P (ii) L’arc b, part de B et rejoint C (1, 1) le long du segment [B, 1].

J 1

L B (iii) L arc ¢, parcourt C (1, %) dans le sens négatif jusqu’au point d’intersection

de C (1,1) et du segment [1, A], dont l'affixe est 1+ Le?,

(iv) L’arc d,, part de I'extrémité de ¢, et rejoint A le long du segment [1, A].

1
Montrer que Vn € N*, [2"]|f(z) = % 4 usqﬁ du.
A
71.4) Montrer qu’il existe A > 0 tel que Vn € N*| ‘j{ Z;Eﬂ du‘ < B

71.5) On suppose que
f(z) =01 (1-2)",

c’est-a-dire qu’il existe un voisinage V de 1 dans C et un nombre réel strictement positif M tels que

Vze VU, |f(2)] < MI(1-2)°.

Montrer qu’il existe N € N* et B > 0 tels que Vn > N,

f(u B
ji, untl du| < ol on pourra se rappeler que la

. , ’, n
suite de terme général (1 — %) converge.

71.6) Montrer que
400 ¢ —(n+1) 400
lim t* (1 + — cos ,6’) dt = / t@eteos Bt
1 n 1

n—-+o0o

en utilisant par exemple le théoréeme de convergence dominée de Lebesgue.

t t

71.7) Montrer que ‘1 + elB’ > 14+ —cosf, pour tout t > 0 et pour tout n € N*. En déduire que, si r est
n n

choisi de sorte que Supp(d,,) C V, il existe C > 0 tel que

Vn > N, ’?{ f(u)du‘g ¢
dp,

un+1 na+1 :

71.8) Rassembler les résultats des questions précédentes pour démontrer le théoréme de transfert suivant :

si f(z) =01 (1 —2)", alors [2"]f(2) = O <ﬁ) lorsque n — +o00.

Pour aller plus loin : il suffit, on le voit dans ’exercice, de supposer que f est holomorphe sur un
ouvert “camembert”, de la forme

U={z€C, |2|<1+mn, z#1, |Arg(z—1)| > B}

oun>0et e ]07 5 [, pour que le résultat encadré soit valide.
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72 Théoreme de Liouville — une preuve alternative

L’objet de cet exercice consiste a donner une preuve — alternative a celle du cours — du théoréme de Liouwville :
si f est une fonction a la fois entiére et bornée, elle est constante.

Soient f une fonction holomorphe dans tout le plan complexe, a et b deux nombres complexes et R un réel
strictement positif. On note yg un arc paramétré constitué du cercle de centre 0 et de rayon R, parcouru une
fois dans le sens direct.

z

(2) dz.

yr %@

72.1) Lorsque a est hors du support de g, calculer

72.2) On suppose que a et b sont deux complexes distincts du disque ouvert de centre 0 et de rayon R. Calculer

f(z)
/WR CoaG—b"

72.3) On suppose que f est bornée sur C, c’est-a-dire qu'il existe M > 0 tel que |f(z)| < M, pour tout z € C.
Montrer que dans ces conditions,

lim 1) dz

R+ ), (2 —a)(z — b) =0

72.4) En rassemblant les deux questions précédentes, démontrer le théoreme de Liouville : si f est a la fois
holomorphe sur C et bornée, alors f est constante.

73 Un apercu de Schwarz-Christoffel

On note
i) D= {z € C, |z| < 1} le disque unité ouvert et D son adhérence topologique

ii) v le lacet du plan complexe défini par Vt € [0, 27, v(t) = exp(it)

(

(

(iii) pour tout r > 0, C,. = {z € C, |R(2)|+ |S(2)| < r} et C, Iadhérence topologique de C,

(iv) U = C\ F ol F est la réunion des quatre demi-droites {¢, ¢ > 1}, {it, t > 1}, {—t, t > 1} et {—it, t > 1}
(

v) v/z la racine carrée principale du nombre complexe z € C\] — oo, 0].

1 r 1

N “
N

73.1) Montrer que U est 'image réciproque du plan coupé C\] — oo, 0] par I'application z +— 1 — z%.

73.2) Pour tout z € U, on note

d
o=
0~z /1= ¢*
ou la notation [0 ~ z] désigne n’importe quel chemin de U dont origine est 0 et 'extrémité z. Expliquer
pourquoi la fonction F' est bien définie dans le sens ou l'intégrale ne dépend pas du chemin choisi.

73.3) Montrer que
Vzel F(z)—z/ldt
’ 0o V1—tizt

et en déduire que F(iz) = iF(z), pour tout z € U.
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73.4) Montrer que t — est intégrable sur [0,1]. On note 8 = /

1
v1-— t4 V1— t4
73.5) Montrer que 1irn1 F(z) = 8. On notera encore F' le prolongement par continuité de F & &/ U {1}. En
z—r

z€D
particulier,

F(1)=p>0.
73.6) Soit z=¢" ou 6 €]0,%].
(i) Montrer que I'argument principal de v/1 — 2% est § — %.
(ii) En déduire que

F(z)— F(1 —eszﬂ/
(2) \/251112

— on s’assurera de 'intégrabilité de 'intégrand de cette derniére intégrale.

(iii) On note O Vorigine du plan, B le point d’affixe F'(1) et M, le point d’affixe F'(z). Démontrer que ’angle
e —

orienté de vecteurs (B?, BMZ> a pour mesure principale —7.

73.7) En utilisant le résultat de la question 2.3, montrer que F se prolonge par continuité sur YU {1,4, -1, —i}
et que la restriction de F' au cercle unité induit un homéomorphisme entre 0D et 9Cg. Le dessin ci-dessous
résume la situation.

wa
\S

73.8) Soit w € C\ 0D. Montrer que

1 7F/(Z) z=1In w
= | iy e = s (),

ou la notation Indr(w) désigne I'indice du point w par rapport au lacet T

73.9) Montrer que la restriction de F' & D induit un difféomorphisme analytique entre le disque ouvert D et
le carré ouvert Clg.

On pourra si on veut s’appuyer sur 'assertion suivante, contenue dans les énoncés du cours et corollaire de la formule des résidus : soit f
une fonction continue sur D, holomorphe sur D et non constante. Soit aussi w € C. Alors, le nombre de z € D solutions de l’équation
f(z) = w, comptées avec leurs multiplicités, égale
1 1'(©)
2w ol f(C) —w

dc.

74 Petit théoréme de Picard

74.1) Montrer que |z —i|? = |z + i|? — 43z, pour tout nombre complexe z.

74.2) Soient H= {z € C, $z > 0} le demi-plan de Poincaré et h 'application

h:H — C
z4+1

Montrer que |h(z)| < 1, pour tout z € H.
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74.3) Soient E, F et G trois ensembles et u: E — F et v : F — G deux applications. Montrer que

(v injective et v ou constante) == (u constante).

74.4) Montrer qu'une fonction analytique C — H est nécessairement constante.

74.5) On admet lexistence d’une fonction holomorphe et injective
p:C\{0,1} - H

(I'existence d’une telle fonction n’est pas élémentaire™). Montrer que toute fonction entiere dont 1'image est
contenue dans C \ {0, 1} est nécessairement constante.

74.6) Soient a et b deux nombres complexes distincts. Expliciter une bijection holomorphe
A:C\{0,1} = C\ {a,b}

dont la réciproque soit holomorphe (on pourra chercher parmi les applications polynomiales de degré 1).

74.7) Rassembler les résultats précédents pour démontrer le petit théoréme de Picard qui s’énonce comme
suit.

L’image d’une fonction entiére non constante est le plan complexe tout entier
ou le plan complexe privé d’un point.

75 Une équation fonctionnelle

On note S! le cercle unité du plan complexe, et
1
C=412z€C, §<\z|<2 .

Dans tout le probleme, a € S*\ {1} et f: C — C est une fonction holomorphe telle que
Vz e C, flaz) = f(2).

75.1) Montrer que {a"™, n € N} est fini si, et seulement si a est une racine de l'unité, autrement dit si, et
seulement s’il existe N € N* tel que o™V = 1.

75.2) Montrer que la suite (f (a™)), oy est constante.
75.3) Montrer que si a n’est pas une racine de I'unité, alors f est constante sur C.
75.4) Le résultat subsiste-t-il si a est une racine de 'unité différente de 1 ?

75.5) Par quelle couronne centrée en 0 peut-on remplacer C' pour obtenir le méme résultat ?

76 Cotangente et Zeta des entiers pairs

OS 2

c
Si z est un nombre complexe, on note cotan(z) = la cotangente de z.

76.1) Dire pourquoi la fonction f définie par la formule
f(z) = 7 cotan(nz)

est méromorphe et 1-périodique sur C. Donner I’ensemble de ses poles avec leurs multiplicités.

76.2) Calculer le résidu de f en 0.

“L’inverse d’une fonction célebre, appelée modulaire, fournit un tel exemple et fut utilisée par Emile Picard lui-méme pour
démontrer ce théoréme en 1879.
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1
76.3) Montrer que la fonction z — f(z) — — est holomorphe en 0.
z

76.4) Montrer que la série

+oo
1 1 1
g(z) ;+Z<zfn+ z+n>
n=1
définit une fonction holomorphe sur C\ Z.
76.5) En considérant les sommes partielles de la série de définition de g, montrer que g est 1-périodique.

76.6) En utilisant la périodicité de f et de g, montrer que f — g est une fonction entiére.

76.7) Soient B = {2 €C, |S(z)| <1} et R = BN {z€C, |R(2)| < 3}. Dessiner B et R. Montrer que la
fonction f — g est bornée sur R. En déduire que f — g est bornée sur B5.

76.8) Montrer que
Vz e C\Z, f(z)=1im (1+L>.

621'71'2 -1
En déduire que f est bornée sur C\ B.

76.9) Montrer que g est bornée sur i[1,4+o00[ — on pourra procéder & une comparaison série-intégrale. En
déduire que g est bornée sur C\ B.

76.10) Montrer que la fonction f — g est constante et en déduire la formule d’Euler

1 1 1
Vz e C\Z, ﬁcotan(wz):fﬁ—Z( + >
Zo i NETn z+n

76.11) Pour tout entier m > 2, on note

Pour tout entier non nul n, développer en série entiére au voisinage de l'origine. En déduire que

22 _n2

Vz €C, |z| < 1= mzcotan(nz) =1 —2 Z ¢(2m)2>™.
m>1

76.12) Indiquer une méthode de calcul qui permet de montrer que le début du développement de Taylor de

mzeos(mz) (o, ..
mzcotan(mwz) = “sm(r) a lorigine est
sin(mz

2 4 9 6 3
mzcotan(mz) =1 — %22 _ %24 _ %26 B 47;252

84 ...

1 1 1 1
76.13) Calculer les b‘E— E— E—tg— 5 la fi d’ b ti 1 multiplié
) alculer les nombres 2 L g € 8 sous la 1orme d un nombre rationnel multiplie
n>1 n>1 n>1 n>1
par une puissance de 7.
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77 Produits de Blaschke

77.1) Petit aparté général sur les produits infinis

(i) Montrer que si n est un entier naturel non nul et si 21, ... z, sont des nombres complexes, alors

H 1+|Zk| < exp <Z|Zk|>
k=1 k=1

et

n n

H(lJer)—l H (1+ |zx]) —

k=1 k=1

(ii) Soit A une partie non vide de C et (f,,),cy une suite de fonctions A — C. Montrer que si la série de

fonctions
Z (1 - fn('z))

n

converge normalement sur A, alors la suite de fonctions

i)
k=0 neN

converge uniformément sur A vers une fonction P, que I'on note aussi H fx(2) — on dit alors que le produit
k=0
infini H fn(z) converge uniformément sur A. Montrer aussi que l'ensemble des zéros de P est la réunion des

n
zéros des f,

77.2) Produits de Blaschke
1l s’agit de construire une fonction holomorphe dont les zéros sont prescrits.
On note D le disque unité ouvert. Soit (a,),>0 une suite de nombres complexes non nuls de D. On suppose

que la série
Z (1 —lan|)

n

converge.
(i) Montrer que la série de fonctions de z

Z( |an] an—z>
_7X7
an 1—a,z

n

converge normalement sur tout compact de D.

(ii) Montrer que pour tout m € N, le produit infini
|an| —Z )
. m
o H ( 1 — Qn 2
n>0

définit une fonction holomorphe sur D, a valeurs dans D, dont les zéros sont exactement 0 avec multiplicité m,
et les ay, avec pour multiplicité le nombre de fois que le nombre ay, apparait dans la suite (a,)n>0-

A noter : a vrai dire, on peut montrer que les zéros (ay),>0 d’une fonction holomorphe sur D, bornée et non
constante vérifient nécessairement la condition ), (1 — |a,|) < +o00. Voir par exemple le livre Analyse réelle
et complexe de W. Rudin.
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78 Les fonctions unitaires sont les produits (finis) de Blaschke

Onnote D = {z € C, |z] < 1} le disque unité ouvert, D son adhérence topologique dans C et 9D le cercle unité,
qui est la frontiere de D.

78.1 Homographies de Blaschke

Pour tout a € C, on note h, la fonction méromorphe
z—a

ha(2)

1—-az
78.1) Montrer que si a # 0, la décomposition de la fraction rationnelle h, s’écrit
2
ha(z) = % (71 + %) .

En déduire les poles de h, et calculer leurs modules.
78.2) Montrer que pour tout a € D et pour tout z € C,

2| =1 = |ha(2)] = 1.
78.3) Est-il vrai que ho(9D) = 0D, pour tout a € D ?

78.2 Fonctions unitaires

Une appelle fonction unitaire toute fonction f continue sur D, holomorphe sur D et qui vérifie f(0D) C dD.
La section qui précede montre que les homographies h, sont des fonctions unitaires lorsque a € D.

78.4) Montrer que toute fonction unitaire f vérifie f (D) C D.

78.5) Montrer que toute fonction unitaire et non constante a au moins un zéro dans D.

[Dans le cas ol une fonction unitaire f ne s’annule pas, on pourra raisonner sur 1/f.]

78.6) On suppose que f est une fonction unitaire qui admet un unique zéro dans D, que 1'on note a. On note
m la multiplicité de a en tant que zéro de f. Montrer qu’il existe un nombre complexe u, de module 1, tel que

Vz € D, f(z)zu(zja)m.

1—az

78.7) Montrer que ’ensemble des zéros dans D d’une fonction unitaire est fini.

78.8) En s’inspirant par exemple de la question 2.6), montrer que les fonctions unitaires non constantes sont
exactement les produits de la forme
n mp
zZ — ag
U LTk
H < 1-— @z)
k=1

ou n,mq,...m, sont des entiers naturels non nuls, a1, ...a, sont des éléments distincts de D et u € 9D.

79 Une inégalité de Jensen

Soient R > 0, f une fonction définie et continue sur le disque fermé D = {z € C, |z| < R}, holomorphe sur le
disque ouvert D = {z € C, |z| < R} et qui vérifie f(0) # 0. On note z1, 29, ..., 2, les zéros de f dans D, en
prenant en compte leur multiplicités dans le sens ou si un zéro de f est de multiplicité m, il apparait m fois
dans la liste 21, 29, ..., 2zp.

L’objet de cet exercice consiste a montrer que, sous ces hypothéses, l'inégalité
I/ lon
FO)] < 12828 oy x [zl x - x [zl (14)

est valide, ot l'on a noté ||f|lop = sup{|f(2)|, |z| = R}. Dans l’hypothése ot f ne s’annulerait pas dans D,
Uassertion est vraie en convenant que n =0 et que le produit |z1| |22 . .. |zn| égale 1.
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79.1) Justifier rapidement que || f|lap # +o0.
79.2) Quel théoréme du cours permet de conclure immédiatement lorsque n =0 ?

79.3) On note g la fonction définie sur D par
= “ R(z — 2)

Montrer que g est continue sur D et holomorphe sur D.

79.4) On note h = 5. Montrer que h est continue sur D et holomorphe sur D.

79.5) Montrer que 1;(2“:;2

maximum, en déduire que |h(z)| < ||f|5p, pour tout z € D.
79.6) Calculer g(0) et en déduire I'inégalité (14).

est de module 1 lorsque |z| = R et |w| < R. En appliquant le principe du module

79.7) Pour tout z > 0, on note v(z) le nombre de zéros de f dans le disque fermé {z € C, |z| < z}. Démontrer
que

oo
| @5 <1081l ~ log 1 0)]
0

80 Un invariant a la Tutte

Si f et g sont deux fonctions complexes de la variable complexe, on dit que f et g sont équivalentes au
voisinage de l'infini et on note f ~ g lorsque f(z)/g(z) tend vers 1 quand |z| tend vers 4+o00. Ainsi,
par définition,

f(2)

from g lim 1 _q,

80.1) Soit f une fonction entiere. On suppose qu'il existe N € N tel que f(z) ~oo 2.

(i) On note T le polynéme de Taylor a ordre N de f & lorigine. Ecrire T'(z) en fonction de z et des dérivées
successives de f en 0.

f(z) =T(z)

N est entiere et bornée.

(ii) Montrer que la fonction z —
(iii) En déduire que f est polynomiale.

80.2) Soit F' une fonction méromorphe sur C. On suppose que F n’a qu’un nombre fini de poles et qu'il existe
C € C\ {0} et N € Z tels que F(z) ~o C2V.

(i) Montrer qu’il existe un polynoéme P tel que z — P(z)F(z) soit une fonction entiere.

(ii) En déduire que F est une fraction rationnelle.

80.3) Soient D ={z€C, 0< |z| <1} et I:C\ {0} — C lapplication définie par la formule
1
I(z) =2+~
(=22
(i) Soient z € C\ {0} et w € C tels que I(z) = w. Montrer que, pour tout x € C,
1
Iz)=w<x € {z,;}

(ii) En déduire que I est injective sur D.

80.4) On note S* le cercle unité de C. Montrer que I (S*) = [-2,2] et que I(D) = C\ [-2,2].
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80.5) Montrer que la restriction de I & D est un isomorphisme analytique entre D et C\ [—2,2]. On note
J:C\[-2,2] = D
la réciproque de cet isomorphisme analytique — autrement dit, J = (I | D)_l.

80.6) Soit M € [2,+oo[. Montrer que pour tout z € C,

(zGDet |1(2)] ZM) = <|z| < M1—1>

1
En déduire que lim J(z) = 0, puis que J(2) ~oo —.
z

|z] =00

80.7) Soit F' une fraction rationnelle & coefficients complexes telle que F(X) = F(1/X).

On admet que F o J est alors une fonction méromorphe qui n’a qu’un nombre fini de poles™.

(i) Montrer qu’il existe une fraction rationnelle G telle que
1
Vz e D, F(z)zG(z—&—;). (15)

(ii) L’égalité (15) est-elle vraie pour tous les nombres complexes z qui ne sont pas des poles de F' ?

81 Fonction Gamma : formule des compléments

La fonction Gamma d’Euler, notée IT', est une fonction holomorphe sur Pouvert C\Z<_; qui est le complémentaire
dans C de 'ensemble des entiers strictement négatifs. Elle vérifie les trois propriétés suivantes :

+oo

(FI) VzeC, (R(z) >0) = <F(z) :/ tz_le_tdt)
0

(EF) Vz€ C\Z<_1,T(2+1) =2I(2)

(VP) T'(3) =/x.

L’objet de cet exercice est de démontrer la formule des compléments d’Euler :

s

Vz e C\Z, T(2)[(1 - z) =

sin 7z

81.1) Donner un argumentaire qui justifie qu’il ne peut pas y avoir deux fonctions holomorphes sur C\ Z<_;
distinctes qui vérifient simultanément (FI), (EF) et (VP).

81.2) Montrer que la fonction
fiz2— T -2)

est holomorphe sur C \ Z et vérifie

Vz e C\Z, f(z+1) =—f(2).
En déduire que f est 2-périodique.

1
81.3) En utilisant I’équation fonctionnelle (EF), montrer que la fonction z — T'(z) — = se prolonge en 0 en
z

une fonction holomorphe sur 'ouvert {z € C, |R(z)| < 1}.

est entiere.

81.4) En déduire soigneusement que la fonction d : z — T'(2)I'(1 — 2) —

STz

81.5) On note B={z € C, |3(2)| < 1}. Montrer que d est bornée sur {z € C, |R(z)] <1et |S(z)| <1}. En
déduire que d est bornée sur B.

2 (’est une conséquence du théoreme de Morera, par exemple.
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81.6) On note A= {z € C, |S(z)| > 1} et g 'application

s

gz — .
sinmz

(i) Montrer que pour tout z € C,
|sin z|* = sin? R(z) + sinh? 3(z)

ou R(z) et I(z) désignent respectivement la partie réelle et la partie imaginaire de z.
(ii) En déduire que g est bornée sur A.

81.7) En utilisant I’équation fonctionnelle (EF), montrer que I" est bornée sur {z € C, 0 < R(z) < 1 et |I(z)| > 1}.
En déduire que f est bornée sur A.

81.8) Déduire des trois questions précédentes que d = f — g est bornée sur C.

81.9) Réunir les arguments des questions précédentes pour démontrer soigneusement la formule des compléments.

82 Lien entre Zeta et Gamma.

La fonction ¢ de Riemann, c’est dans le cours, est la fonction holomorphe définie sur le demi-plan ouvert
P ={zeC, R(z) > 1} par la somme de la série

+oo
()=

n=1

La fonction I" d’Euler, c’est aussi dans le cours, est la fonction holomorphe définie sur le demi-plan ouvert
Q ={z € C, R(z) > 0} par l'intégrale

“+o0
L(z) = / t*~tetat.
0

82.1) Montrer que si z € Q et si k est un entier naturel non nul,
+oo
I(z) = kz/ t*~le=ktat
0

82.2) En déduire que pour tout z € P,

82.3) Pour tout z € Q, on a la formule™
20(z) =T (2 + 1). (16)

(i) Montrer comment (16) permet de prolonger analytiquement I' & la bande {z € C, —1 < R(z) <0} \ {0}
puis, par récurrence, a C\ Z<. On notera encore

F:C\ZS()*)(C

ce prolongement, qui vérifie évidemment toujours I’équation fonctionnelle (16).

(ii) Pour tout a € C, écrire le DSE(0) de (1 + 2)* a l’aide de la fonction I' (c’est une ré-écriture des coefficients
du binéme généralisés).

(iii) Montrer que I' est méromorphe, a des poles simples en tous les entiers négatifs ou nuls et montrer que les
résidus de I" sont donnés par la formule

_1)n
Vn € N, Res (T, —n) = ( n') .

“(Classiquement, on démontre d’abord cette égalité, lorsque z est réel, en intégrant par parties — sur des intervalles compacts,
puis on passe a la limite. Ensuite, on prolonge analytiquement & Q tout entier.
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+o0o
82.4) Montrer que la fonction z +— / n 1dt est entiere.
1 € -

82.5) Le DSE(0) de t + -, valide sur le disque ouvert de centre 0 et de rayon 27, s’écrit

et—1°

t B 1,1 1 1
=) ' =1—ct+ =P — —t o ——t0+
et —1 WZ;B n! 3 T 12" T 70" T302m00 T

ol les B, sont les célebres nombres de Bernoulli ; on montre facilement, par exemple, que Bs,+1 = 0, pour
tout n > 1. Montrer que pour tout z € P,

1 4z—1
t 1 B,
dt = _
_/Oet—l z—1+zn!(z—|—n—l)

n>1

82.6) En déduire que la formule

dt
et —1 7

1 1 Bn 1 +oo tzfl
(=) = G-l T «nl(z+n—1) ) /1

n>

valide pour tout z € P, permet de prolonger analytiquement ¢ & C\ {0}. On notera encore

¢:C\{1}=C

ce prolongement. Montrer que ¢ a un pole simple en 0 et que son résidu égale 1.

82.7) Montrer que les entiers pairs strictement négatifs sont des zéros de ¢ (c’en sont les zéros triviauz).

Calculer ¢(0), ¢(—1), ¢(—3), ¢(-5).

[Voir ci-dessous un apergu du graphe réel de ¢ autour de l'origine.]

r-0.099

'
N

—44

La trace réelle de ¢ sur [—10,—1], puis sur [—5, 5]

A ce stade, il est impossible de ne pas énoncer la célébrissime conjecture de Riemann dont les répercussions
arithmétiques sont immenses :

Conjecture : les zéros non triviauz de ¢ sont tous sur l'aze {z € C, R(z) = %}

A ce jour, cette conjecture est irrésolue, quoiqu’extrémement explorée.
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