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Feuille d’exercices numéro 0
— Calcul dans C, à toute allure —

1 Des gammes plus ou moins exponentielles

1.1) Calculer les parties réelle et imaginaire, le module, et l’argument principal de 1√
3+3i

, de j = e2iπ/3 et

de 1
1−j . Montrer que 1 + j + j2 = 0. Quelles sont les racines du polynôme X2 +X + 1 ?

1.2) Montrer que pour tout z ∈ C, |ez| = eℜz et arg(ez) = ℑ(z) [2π].
1.3) Résoudre l’équation ez = 1 dans C.

1.4) Plus généralement, si w ∈ C, résoudre l’équation ez = w dans C. Est-il vrai que l’exponentielle établit
une bijection (et donc un isomorphisme de groupes) entre C et C∗ ?

1.5) Soit n ∈ N∗. Quelles sont les racines du polynôme Xn − 1 ?

2 Pentagone

On note ω = e2iπ/5. Montrer que

1 +

Å
ω +

1

ω

ã
+

Å
ω2 +

1

ω2

ã
= 0.

En déduire que cos 2π/5 est solution d’une équation polynomiale de degré 2. Donner une expression exacte de
cos 2π/5 et sin 2π/5 en fonction de

√
5 et comparer avec les valeurs approchées d’une calculatrice.

3 Un tout petit peu de géométrie euclidienne

3.1) Montrer que si u, v ∈ C \ {0}, si on note ⟨u|v⟩ le produit scalaire entre les vecteurs d’affixes u et v, alors

⟨u|v⟩ = ℜ (uv) et det (1,i)(u, v) = ℑ (uv) .

3.2) Quel est l’ensemble des nombres complexes z tels que |z − i| = |z + 2| ? Même question en remplaçant i
et −2 par deux nombres complexes quelconques a et b.

3.3) Soient a, b ∈ C. Montrer, lorsqu’elle a du sens, la formule

1− eia

1− eib
=
eia/2

eib/2
sin a/2

sin b/2
.

[Pour aller plus loin : montrer que cette égalité prouve un théorème célèbre de géométrie euclidienne.]

3.4) Théorème de Gauss-Lucas
Soit P ∈ C[X] un polynôme de degré 3.

(i) Montrer que les racines de P ′ sont dans l’enveloppe
convexe de l’ensemble des racines de P .
[On pourra raisonner à partir de la dérivée logarithmique de P ].

(ii) Pour aller plus loin : dans les cas non triviaux, mon-
trer les égalités angulaires de la figure ci-contre (nota-
tions évidentes).

(iii) Pour aller encore plus loin : montrer qu’il existe une unique ellipse
tangente aux trois côtés du triangle des racines de P dont les foyers
sont les racines de P ′.

(iv) Que subsiste-t-il de ces énoncés lorsque P est de
degré quelconque ?
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4 Un tout petit peu de topologie dans C
Dessiner, calculer l’adhérence, l’intérieur et la frontière des parties de C suivantes, pour la topologie usuelle :

(i) {z ∈ C, |z| < 2} (ii) {z ∈ C, |z| ≥ 1} (iii) {z ∈ C, 1 < |z| ≤ 2} (iv) iR

(v) {z ∈ C, |z − 1| ≤ 1} ∪ {z ∈ C, |z + 1| < 1} (vi) {z ∈ C, |z| ≤ 1 et ℜ(z) ∈ Q}

(vii)
{
x+ iy, x ∈ {−1, 1} et y ∈ [−1, 1]

}
∪
{
x+ iy, x ∈ [−1, 1] et y ∈ {−1, 1}

}
(viii) {z ∈ C, ℑ(z)ℜ(z) = 1} (ix)

{
t1+i, t ∈ [0, 1]

}
.

5 Sommes géométriques

Montrer que pour nombre complexe z /∈ 2πZ,

1

2
+ cos z + cos 2z + · · ·+ cosnz =

sin
(
n+ 1

2

)
z

2 sin z
2

.

Que se passe-t-il lorsque sin z
2 = 0 ? Pour quels z ∈ C cela arrive-t-il ?

6 Une limite complexe

On note S1 le cercle unité du plan complexe : S1 = {z ∈ C, |z| = 1}. Montrer que la formule

f(z) = lim
n→+∞

zn − 1

zn + 1

définit une fonction continue sur le complémentaire de S1 dans C, qui n’admet de prolongement par continuité
en aucun point de S1.

7 Module du sinus

Soit z un nombre complexe. On note x sa partie réelle et y sa partie imaginaire. Montrer que

|sin z|2 = (sinx)
2
+ (sinh y)

2
.

Trouver et prouver des formules analogues pour le module de cos z, de sinh z et de cosh z.
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Feuille d’exercices numéro 1 : vers l’holomorphie

8 Dérivation au sens complexe

8.1) Soient f une fonction dérivable au sens complexe, g une fonction dérivable de la variable réelle à valeurs
réelles et z un nombre complexe. On note h la fonction de la variable réelle définie partout où cela a un sens
par

h(t) = f [g(t)z] .

Est-il vrai que h est dérivable et que h′(t) = f ′ [g(t)z]× g′(t)× z ?

8.2) Dessiner le graphe des fonctions sinh et cosh sur R. Calculer les zéros complexes de sinh et de cosh.
Montrer que pour tout n ∈ Z,

lim
z→iπn
z ̸=iπn

cosh z − (−1)n

z − iπn
= 0.

Les paysages de sinh et de sin

9 Polynômes

9.1) Prolongement analytique pour les polynômes
Soient f et g deux fonctions polynomiales à coefficients réels. Est-il vrai que si f et g prennent les mêmes
valeurs sur ]0, 1[∩Q, elles ont les mêmes coefficients (et donc sont égales sur R) ?
Rassembler tout ce que vous savez sur l’ensemble des racines d’un polynôme à coefficients complexes (en étant
bien au point sur les preuves qui mènent à ces résultats).

9.2) Une preuve classique du théorème de d’Alembert-Gauss
Soit P un polynôme à coefficients complexes.

(i) Montrer qu’il existe z0 ∈ C tel que
|P (z0)| = min

C
|P |.

(ii) On suppose que P n’est pas constant. S’assurer que P (z0 + z) est un polynôme qui s’écrit sous la forme
P (z0 + z) = a0 + anz

n + an+1z
n+1 + · · ·+ adz

d où 1 ≤ n ≤ d et an ̸= 0. Montrer qu’il existe θ ∈ R, M > 0 et
ε > 0 tels que ∣∣∣P (z0 + reiθ

)∣∣∣ ≤ |P (z0)| (1− rnM)

pour tout r ∈ [0, ε]. En déduire que P (z0) = 0, ce qui prouve le théorème de d’Alembert-Gauss.
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10 Un peu de connexité

10.1) Soient A une partie de C et D une partie discrète de C. Montrer qu’une application A→ D est continue
si, et seulement si elle est localement constante.

10.2) Soit A une partie de C. On note Int(A) l’intérieur de A et Ext(A) sont extérieur, qui est le complémentaire
dans C de son adhérence. Soit C une partie connexe de C. Montrer que si C ∩ Int(A) et C ∩ Ext(A) sont non
vides, alors C rencontre aussi la frontière de A ; autrement dit, C ∩ ∂A est également non vide.

10.3) L’objet de l’exercice est de montrer que le complémentaire C \ D d’une partie dénombrable de C est
connexe par arcs — donc connexe.

(i) Soient D une partie dénombrable de C et x, y ∈ C \D. On suppose que x et y sont distincts et on note M
la médiatrice du segment [x, y]. Pour tout m ∈M , on note Rm la réunion des segments

Rm = [x,m] ∪ [m, y]

— il est recommandé de faire un dessin, comme souvent. Montrer que m ̸= m′ =⇒ Rm ∩ Rm′ = {x, y} ; en
déduire que {m ∈M, Rm ∩D ̸= ∅} est au plus dénombrable.

(ii) Montrer qu’il existe m ∈M tel que Rm ⊆ C \D.

(iii) Montrer que C \D est connexe par arcs.

10.4) Les sous-ensembles de C suivants sont-ils connexes ?

(i) Q (ii) C \Q (iii) C \ (Q+ iQ) (iv) C \ {z ∈ C, |z| = 1}

(v) {z ∈ C, 1 < |z − i| < 3} (vi) C \ {z ∈ C, 1 < |z − i| < 3}

10.5) Montrer qu’un cercle et un segment ne sont pas homéomorphes — à moins qu’ils ne soient tous les deux
réduits à un point.

10.6) Montrer que GL (2,R) n’est pas connexe — pour la topologie usuelle de R4.
[Mieux : montrer que ce groupe a deux composantes connexes.]

11 Quelques images

11.1) Dessiner le carré abcd où a = 1/2, b = 3/2, c = 3/2+ i, d = 1/2+ i et son image par les fonctions z 7→ z2

et z 7→ 1
2z2 (on pourra, à cet effet, chercher un paramétrage dudit carré).

11.2) Dessiner le rectangle efgh où e = 0, f = 1, g = 1+3i, h = 3i et son image par la fonction exponentielle.
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12 Chemins et lacets : premiers pas

12.1) Donner une paramétrisation des chemins décrits géométriquement ci-dessous.

(i) Le cercle trigonométrique parcouru une fois dans le sens direct (on oriente le plan complexe par sa base (1, i),
comme d’habitude)

(ii) Le cercle trigonométrique parcouru trois fois dans le sens direct

(iii) Le cercle trigonométrique parcouru trois fois dans le sens indirect

(iv) Le demi cercle, intersection du cercle trigonométrique avec le demi-plan supérieur {z, ℑ(z) ≥ 0}, parcouru
une fois dans le sens direct

(v) Le cercle de centre ω ∈ C et de rayon R > 0 parcouru une fois dans le sens direct

(vi) Le triangle (1, j, j2) parcouru une fois dans le sens direct, où j = exp(2iπ/3).

12.2) On note γ : [0, 2π] → C le lacet suivant (attention, son support n’est pas une lemniscate de Bernoulli) :

∀t ∈ [0, 2π], γ(t) = 2 cos t+ i sin(2t).

(i) Dessiner le support de γ.

(ii) Vérifier que γ est homotope, dans C \ {−1, 1}, au lacet formé de la concaténation des chemins suivants :

- le demi-cercle de centre 1 et de rayon 1 parcouru une fois dans le sens direct en partant du point 2

- le cercle de centre −1 et de rayon 1 parcouru une fois dans le sens indirect à partir de 0

- le le demi-cercle de centre 1 et de rayon 1 parcouru une fois dans le sens direct en partant du point 0.

Pour “vérifier” cela, on se contentera de l’évidence de l’énoncé tout en décrivant ce que serait une démarche
complète de preuve.

(iii) En admettant — ce sera démontré dans le cours — que deux lacets C \ {u}-homotopes ont le même indice
par rapport à u, calculer l’indice de γ par rapport aux points 1, i, −1 et −i.
(iv) Ecrire la longueur de γ sous forme intégrale.
[On tombe sur une intégrale elliptique qu’on ne cherchera pas à calculer.]

12.3) Dans les situations suivantes, les arcs γ0 et γ1 : I → C sont-ils homotopes dans l’ouvert U ?

(i) I = [0, 2π], γ0(t) = eit, γ1(t) = −1 + 2eit, U = C \ {0}
(ii) I = [0, 2π], γ0(t) = e2it, γ1(t) = −1 + 2eit, U = C \ {0}
(iii) I = [0, 2π], γ0(t) = 2eit, γ1(t) = 2 cos t+ i sin t, U = C \ [0, 1]
(iv) I = [0, 2π], γ0(t) = eit, γ1(t) = i, U = C \ {2i}
(v) I = [0, 2π], γ0(t) = ieit, γ1(t) = i, U = C \ {2i}
(vi) I = [0, 2π], γ0(t) = ieit, γ1(t) = i, U = C \ {− i

2}

13 Intégrales curvilignes, échauffement

13.1) Soient a ∈ C et R > 0. Soit C le demi-cercle de diamètre [−R,R] contenu dans le demi-plan des parties

imaginaires positives et parcouru dans le sens positif. Calculer

∫
C

eazdz. Comparer ce nombre à

∫ R

−R

eaxdx.

13.2) Dessiner les chemins γ suivants, dont l’ensemble de départ est toujours [0, 1] :

(i) γ(t) = 1 + it (ii) γ(t) = eit (iii) γ(t) = e−it (iv) γ(t) = 1 + it+ t2

et calculer l’intégrale sur ces arcs des fonctions

(i) z3 (ii) z (iii) 1/z.
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13.3) Calculer

(i)

∫
T

zndz où T est le triangle (1, j, j2) parcouru une fois dans le sens direct, j = exp
(
2iπ
3

)
et n ∈ Z

(ii)

∫
T

ℜ(z)dz et

∫
T

|z|2dz

(iii)

∫
Q

zndz où Q est le carré (1− i, 1 + i,−1 + i,−1− i) parcouru une fois dans le sens direct et n ∈ Z

(iv)

∫
γ

ezdz et

∫
γ

|ez| dz où γ est successivement le triangle et le carré des questions (i) et (iii)

(v)

∫
γ

1

z − a
dz où a = 2i/3 et où γ est successivement le triangle et le carré des questions (i) et (iii).

13.4) Soient γ un chemin de C et f : Supp γ ×X → C une application continue, où X est une partie de C�.
Montrer que l’application

x 7→
∮
γ

f(z, x)dz,

définie sur X, est continue.

13.5) Si r > 0 et s > 0, on note Rr,s le rectangle [−r, r] + i[−s, s] et ∂Rr,s son bord parcouru une fois dans le
sens direct. On note aussi hr l’hexagone parcouru une fois dans le sens direct, dont le support est la réunion
des segments [eikπ/3, ei(k+1)π/3], pour 0 ≤ k ≤ 5. Calculer∫

∂Rr,s

dz

z
,

∫
∂Rr,s

dz

z2
,

∫
hr

dz

z
et

∫
hr

dz

z2
.

14 Calculs de rayons, pour s’exercer

14.1) Calculer les rayons des séries entières suivantes.

(i)
∑
n

n!zn (ii)
∑
n

zn√
n!

(iii)
∑
n

qnzn (iv)
∑
n

qn
2

zn où q ∈ C (v)
∑
n

zn
2

(vi)
∑
n

n7 − 2n2 − 18

n6 + 3
zn (vii)

∑
n

anz
n où an = 1/3n si n est pair et an = 4n si n est impair

(viii)
∑
n

(lnn)2zn (ix)
∑
n

n!

nn
zn.

14.2) Soit (an)n≥0 une suite de nombres complexes. Les séries entières∑
n

anz
n,

∑
n

n(n− 1)anz
n,

∑
n

nanz
n+2,

∑
n

2nanz
n

ont-elles toutes le même rayon ?

14.3) Soit (an)n∈N une suite de nombres complexes. On suppose que la série entière
∑

n anz
n est de rayon 1.

On suppose en outre que

0 <
∑
n≥2

n |an| ≤ |a1| .

Montrer que la série converge en tout point z tel que |z| = 1 et que z 7→
∞∑

n=0

anz
n est injective sur le disque

unité ouvert.

�En toute généralité, X est un espace topologique quelconque.
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14.4) Soit (an)n∈N la suite de nombres complexes définie par a0 = a1 = 1 et

∀n ∈ N, an+2 = an+1 + 3an.

Dans l’ordre que l’on voudra :

(i) calculer le rayon de la série entière
∑

n anz
n ;

(ii) montrer que la fonction z 7→
∞∑

n=0

anz
n est une fraction rationnelle que l’on explicitera.

Même question en remplaçant an+2 = an+1 + 3an par an+2 = an+1 − 3an, puis par an+2 = 6an+1 − 9an.

15 Prélude aux frontières naturelles

15.1) En quels points du cercle unité la somme de la série entière
∑

n z
n converge-t-elle ? Au voisinage de

quels points du cercle unité peut-on prolonger la somme de cette série en une fonction analytique ?

15.2) En quels points du cercle unité la somme de la série entière
∑

n
1
nz

n converge-t-elle ?

15.3) Calculer le rayon de la série entière
∑

n z
2n . Montrer que la série diverge en tous les points d’une partie

dense du cercle de convergence.

16 Autour d’Abel radial

16.1) Montrer que
π

4
=

+∞∑
n=0

(−1)n

2n+ 1
.

16.2) Soient (an)n∈N et (bn)n∈N deux suites de nombres complexes. Pour tout n ∈ N, on note

cn =
∑

0≤k≤n

akbn−k.

On suppose que les trois séries numériques
∑
an,

∑
bn et

∑
cn convergent. En utilisant le théorème d’Abel

radial, montrer que
∞∑

n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

17 Fonction développable en série entière

17.1) La série géométrique
Prouver soigneusement que la série

∑
n z

n converge pour tout z ∈ C tel que |z| < 1 et que∑
n≥0

zn =
1

1− z
.

Dire en passant tout ce que vous pouvez sur le type convergence (ou de divergence) de la série numérique
∑

n z
n

(pour tout z) et de la série de fonctions (de z)
∑

n z
n.

17.2) Introduction au prolongement analytique

Montrer que la fonction z 7→ 1

1− z
est développable en série entière au voisinage de n’importe quel nombre

complexe différent de 1. Pour tout a ̸= 1, écrire le développement en série entière en a de
1

1− z
et calculer son

rayon de convergence. Montrer que si a, b et 1 ne sont pas alignés, les disques de convergence des DSE de
1

1− z
en a et b ont une intersection non vide.
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17.3) Des gammes

Se rappeler les DSE(0) de
1

1− z
et de exp(z). En déduire les DSE(0) usuels (et leurs rayons) de cosh z, sinh z,

cos z, sin z, ln(1− z) (dans ce dernier cas, pour z réel, on reviendra dans le cours sur le sens du logarithme d’un
nombre complexe), (1− z)a lorsque a est un nombre complexe (même remarque que pour le logarithme lorsque
a n’est pas entier), arctan z.

Comment calculer le (début du) DSE(0) de tan z, de tanh z, de
z

ez − 1
?

17.4) Soit a ∈ C. Montrer que

∀z ∈ C, ez = ea + ea
∞∑

n=1

(z − a)n

n!
.

17.5) Fonction plate
Montrer que la fonction f : R → R définie par f(0) = 0 et

∀x ̸= 0, f(x) = exp
(
−1/x2)

)
est de classe C∞ sur R mais n’est pas développable en série entière en 0.

17.6) Une équation différentielle
Soit d un entier naturel. Trouver toutes les solutions DSE(0) de l’équation différentielle linéaire

x2y′′ + xy′ + (x2 − d2)y = 0

— on trouve une droite vectorielle de fonctions, engendrée par la célèbre fonction de Bessel de première espèce
d’ordre d.

17.7) Soit f une fonction DSE en u ∈ C. On suppose que f n’est pas localement constante en u. Montrer
qu’il existe un voisinage V de u tel que

∀z ∈ V, f(z) = f(u) =⇒ z = u.

18 Nombres de Bernoulli

18.1) Trouver les trois premiers termes non nuls des développements en séries entières à l’origine de la fonction
tangente et de la fonction z 7→ z

sin z .

18.2) Trouver le plus grand R > 0 tel que la fonction z 7→ z
ez−1 soit analytique sur le disque ouvert de centre 0

et de rayon R. On note Bn/n! le coefficient d’ordre n du développement en série entière à l’origine de cette
fonction ; ainsi, pour tout z ∈ C,

|z| < R =⇒ z

ez − 1
=
∑
n≥0

Bn

n!
zn.

Les Bn sont les nombres de Bernoulli. Montrer que la suite (Bn)n est réelle et n’est pas bornée (en dire même
davantage).

18.3) En considérant la relation z = (ez − 1)

( ∞∑
n=0

Bn

n!
zn

)
, calculer B0 et montrer que pour tout n ≥ 2,

n−1∑
k=0

Bk

k!(n− k)!
= 0.

Calculer B1, B2, B3, B4.

18.4) Montrer que la fonction z 7→ z

ez − 1
− 1 +

z

2
est paire. En déduire que B2n+1 = 0 pour tout n ≥ 1.
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18.5) Montrer que
z

2
× e

z
2 + e−

z
2

e
z
2 − e−

z
2
=
∑
n≥0

B2n

(2n)!
z2n

au voisinage de l’origine. Sur quels disques ouverts centrés en l’origine cette égalité est-elle valide ? En déduire
que

πz cotanπz =
∑
n≥0

(−1)n
(2π)2n

(2n)!
B2nz

2n

sur le disque unité ouvert, où cotan = 1
tan désigne la fonction cotangente.

18.6) Montrer que tan z = cotan z − 2 cotan 2z et que
1

sin z
= cotan z + tan

z

2
. En déduire les développements

en séries entières à l’origine de la fonction tangente et de la fonction z 7→ z

sin z
en fonction des nombres de

Bernoulli.

[Réponses : tan z =
∑
n≥1

(−1)
n−1 22n

(
22n − 1

)
(2n)!

B2nz
2n−1

et
z

sin z
=

∑
n≥0

(−1)
n−1

(
22n − 2

)
(2n)!

B2nz
2n

.]
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UVSQ 2024/2025
Licence de sciences et technologie, santé
LSMA621 (analyse complexe)

Feuille d’exercices numéro 2 : premiers pas holomorphes

19 Quelques gammes

19.1) Dessiner la couronne C = {z ∈ C, 1
2 < |z + 1| < 3}. Est-il vrai que si une fonction f , holomorphe

sur C, vérifie que ∀z ∈ C, f ′(z) = 0, alors f est constante sur C ? Même question sur le complémentaire de
l’adhérence de la couronne.

19.2) Montrer que la fonction f : z 7→ sin π
1−z est analytique sur le disque ouvert de centre 0 et de rayon 1.

En quels nombres complexes la fonction f s’annule-t-elle ? Comparer le résultat au principe des zéros isolés.

19.3) Soit f une fonction holomorphe sur un ouvert connexe U de C. Montrer que s’il existe a ∈ U tel que
f (q)(a) = 0 pour tout q ∈ N, alors f est identiquement nulle sur U .

19.4) Pour tout z ∈ C \ (π + 2πZ), on note t = t(z) = tan z
2 . Lorsque les nombres écrits sont bien définis, les

formules

cos z =
1− t2

1 + t2
, sin z =

2t

1 + t2
et tan z =

2t

1− t2
,

valides lorsque z est réel, sont-elles aussi valides lorsque z est complexe ?

20 Equation fonctionnelle de l’exponentielle

Soit f une fonction analytique non nulle sur un ouvert connexe U de C contenant 0. On suppose que f(a+ b) =
f(a)f(b) pour tous a et b de U tels que a+ b ∈ U . Montrer que f est de la forme f(z) = ewz où w ∈ C.

21 Autour des équations de Cauchy-Riemann

21.1) Montrer que z 7→ z n’est holomorphe en aucun point de C.

21.2) Parmi les applications R2 → C suivantes, lesquelles sont dérivables au sens complexe ?

(i) x4y5 + ixy3 (ii) y2 sinx+ iy (iii) sin2(x+ y) + i cos2(x+ y)

(iv) ex cos y − 2xy + i
(
ex sin y + x2 − y2

)
(v) −6 (cosx+ i sin y) + (2− 2i)y3 + 15

(
y2 + 2y

)
21.3) Trouver toutes les fonctions holomorphes sur C dont la partie réelle est la fonction suivante (notation
évidente, x = ℜz et y = ℑz) :

z = x+ iy 7→ 2xy.

21.4) Montrer que si f est une fonction holomorphe, alors l’application z 7→ f (z) est également holomorphe.

21.5) Soient U un ouvert connexe de C et f : U → C une fonction. Montrer que si f et z 7→ f(z) sont
holomorphes, alors f est constante.

21.6) Vocabulaire : le d et le d-barre

On note ∂ et ∂ les opérateurs différentiels

∂ =
1

2

Å
∂

∂x
− i

∂

∂y

ã
et ∂ =

1

2

Å
∂

∂x
+ i

∂

∂y

ã
,

qui agissent sur les fonctions définies sur un ouvert de R2 et admettant des dérivées partielles. Soient U un
ouvert de R2 et f : U → C une application de classe C1. En identifiant R2 et C selon l’usage standard, montrer
que f est holomorphe si, et seulement si ∂f = 0. Dans ces conditions, calculer ∂f .
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22 Fonctions harmoniques

22.1) Montrer que si une fonction u de classe C2 est la partie réelle d’une fonction holomorphe, alors elle vérifie
(on dit alors que u est harmonique)

∂2u

∂x2
+
∂2u

∂y2
= 0.

22.2) Montrer qu’une application C → R de classe C2 est la partie réelle d’une fonction holomorphe si, et
seulement si elle est harmonique.

[Pour aller plus loin : sur un ouvert simplement connexe de C, toute fonction harmonique est la partie réelle d’une fonction holomorphe.]

22.3) Montrer que la fonction z 7→ ln |z| est harmonique sur C \ {0}, mais n’est pas la partie réelle d’une
fonction holomorphe sur C \ {0}.

23 Zéros des fonctions analytiques : premier aperçu

23.1) Peut-on trouver une fonction entière qui s’annule en tous les nombres entiers ?

23.2) Trouver une fonction entière qui prenne la valeur 2n en n’importe quel entier naturel n. Y en a-t-il
plusieurs ?

23.3) Soit U un ouvert non vide de C et f : U → C une fonction holomorphe.

(i) On note U∗ le symétrique de U par rapport à l’axe réel — se convaincre rapidement, mais avec une argu-
mentation solide, que U∗ est encore ouvert. Montrer que la fonction

g : U∗ −→ C
z 7−→ f (z)

est holomorphe sur U∗.

(ii) Montrer que R ∩ U est un ouvert de R.
[En particulier, s’il est non vide, il contient un intervalle ouvert non vide.]

(iii) On suppose que U est connexe, rencontre l’axe réel, est symétrique par rapport à l’axe réel, et que f(z) est
réel pour tout z ∈ R ∩ U . Montrer que pour tout z ∈ U ,

f(z) = f (z). (1)

[On pourra aussi montrer que l’hypothèse est redondante : tout ouvert non vide connexe symétrique par rapport à l’axe réel rencontre
nécessairement l’axe réel.]

(iv) Dans la même veine, vu autrement : montrer que si une fonction holomorphe U → C est réelle sur R ∩ U ,
alors tout développement en série de f en un point de R ∩ U a des coefficients réels. [Par conséquent, la
formule (1) est vraie sur tout disque de convergence ouvert du DSE de f en un point de R ∩ U . Vérifier cela.]

23.4) Parmi les anneaux suivants, lesquels sont intègres ?

(i) L’anneau des fonctions continues sur R
(ii) L’anneau des fonctions continues sur le disque unité ouvert

(iii) L’anneau des fonctions de classe C∞ sur R
(iv) L’anneau des fonctions de classe C∞ sur le disque unité ouvert (plus technique)

(v) L’anneau des fonctions holomorphes sur le disque unité ouvert

(vi) L’anneau des fonctions holomorphes sur l’union du disque unité ouvert de centre 2i et de son symétrique
par rapport à l’axe réel.

23.5) Existe-t-il une fonction f analytique sur le disque unité ouvert telle que

f

Å
1

2n

ã
= f

Å
1

2n+ 1

ã
=

1

2n

pour tout n ∈ N∗ ?

Même question avec f(1/n) = f(−1/n) = 1/n2.

N. Pouyanne, B. Elsner, UVSQ 2026, LSMA621 14/53



24 Zéros des dérivées supérieures

Soient U un ouvert connexe de C et f une fonction holomorphe sur U . Pour tout a ∈ U , on note

f(z) =
∑
n≥0

cn(a)(z − a)n

le développement en série entière de f au voisinage de a.

24.1) Montrer la propriété de topologie élémentaire suivante : dans un compact, toute partie infinie admet un
point d’accumulation.

24.2) Si a ∈ U et si n est un entier naturel, écrire cn(a) en fonction de la dérivée ne de f .

24.3) On suppose, jusqu’à la fin du problème, que f vérifie la propriété suivante :

∀a ∈ U , ∃n ∈ N, cn(a) = 0

Pour chaque n ∈ N, on désigne par En la partie de U définie par

En = {a ∈ U, cn(a) = 0} .

Montrer que si D est un disque fermé de U de rayon non nul, alors

D =
⋃
n∈N

D ∩ En.

En déduire que l’un au moins des D ∩ En est une partie infinie de D.

24.4) Montrer qu’il existe n ∈ N tel que la dérivée nième de f soit la fonction nulle sur U .

24.5) Montrer que f est nécessairement polynomiale.

25 Quelques applications du théorème de Liouville

25.1) Trouver toutes les fonctions entières vérifiant

∀z ∈ C, |f(z)| = |z|2.

25.2) Montrer que l’image d’une fonction entière non constante est dense dans C.
[Indications. Si f est entière et si son image ne rencontre pas un disque ouvert de centre w, considérer la fonction z 7→ 1

f(z)−w
.]

25.3) Soit f une fonction entière vérifiant

lim
|z|→+∞

|f(z)| = +∞

(on dit que f(z) tend vers l’infini quand z tend vers l’infini). Montrer que f ne s’annule qu’en un nombre fini
de points. En déduire que f est polynomiale.

[Indications. Comme |f | ≥ 1 hors d’un disque, ses zéros sont dans ce disque fermé qui est compact. Si P est le produit des zéros de f

comptés avec leur multiplicité, la fonction P/f est entière et majorée par C|z|d si d est le degré de P . Donc g := P/f est polynomiale

puisque, si T est le polynôme de Taylor de degré d de g en 0, alors (g−T )/zd+1 est une fonction entière et bornée, donc constante). Ainsi,

f est une fraction rationnelle entière : c’est un polynôme.]

25.4) Soit f une fonction entière. On suppose qu’il existe c > 0 et n ∈ N tels que |f(z)| ≤ c(1 + |z|n) pour
tout z ∈ C. Montrer que f est une fonction polynomiale de degré inférieur ou égal à n.

25.5) Montrer que si f est une fonction entière qui admet 1 et i pour périodes, elle est constante. Par quoi
peut-on remplacer le couple (1, i) en conservant le résultat ?
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26 Un développement de
(

π
sinπz

)2
Les questions de cet exercice se suivent pour aboutir à la formule (3).

26.1) Montrer que si z ∈ C \ Z, la série
∑
n∈Z

1

(z − n)2
converge. Pour tout z ∈ C \ Z, on note

f(z) =
∑
n∈Z

1

(z − n)2
. (2)

Est-il vrai que f est une fonction paire et 1-périodique ?

26.2) Montrer que la série de fonctions (2) converge uniformément sur tout compact de C \ Z.
26.3) Déduire de la question précédente que :

(i) f est holomorphe sur C \ Z ;

(ii) la fonction z 7→ f(z)− 1

z2
est holomorphe sur (C \ Z) ∪ {0}.

26.4) Soit B = {z ∈ C, |ℜ(z)| ≤ 1
2}, où le symbole ℜ désigne la partie réelle. Dessiner B et montrer que pour

tout x ∈ [− 1
2 ,

1
2 ] et pour tout n ∈ Z \ {0}, on a l’inégalité (x− n)2 ≥

(
|n| − 1

2

)2
.

En déduire que la fonction z 7→ f(z)− 1

z2
est bornée sur B.

26.5) Soit g la fonction sur C définie par la formule

g(z) =
( π

sinπz

)2
.

Montrer que g est holomorphe et 1-périodique sur C\Z et que z 7→ g(z)− 1

z2
est holomorphe au voisinage de 0.

26.6) Soient z un nombre complexe. On note x sa partie réelle et y sa partie imaginaire. Montrer que

|sin z|2 = (sinx)
2
+ (sinh y)

2
et |cos z|2 = (cosx)

2
+ (sinh y)

2
.

En déduire que la fonction z 7→ g(z)− 1

z2
est bornée sur B.

26.7) Démontrer que pour tout z ∈ C \ Z,( π

sinπz

)2
=
∑
n∈Z

1

(z − n)2
. (3)

[Indication : on pourra considérer la fonction f − g et montrer qu’elle se prolonge en une fonction définie, holomorphe et bornée sur C.]

27 Applications directes du principe du module maximum

27.1) Soit f une fonction continue sur le disque unité fermé, holomorphe dans le disque unité ouvert. On
suppose que f est nulle sur le demi-cercle {z, |z| = 1, ℑ(z) ≥ 0}. Montrer que f est nulle partout.

[On pourra s’aider de la fonction f(z)f(−z).]

27.2) Principe du module minimum
Montrer que si f est holomorphe sur un ouvert connexe U et si x ∈ U est un minimum local de |f |, alors
f(x) = 0 ou f est constante sur U .

En déduire que le paysage d’une fonction holomorphe a tous ses minimums à l’altitude zéro.

[Le paysage d’une fonction holomorphe f est le graphe dans C × R+ de la fonction |f |, c’est écrit dans le cours.]

27.3) Soient U un ouvert contenant le disque unité fermé et f une fonction holomorphe sur U . On suppose
que f(0) = 1 et que |f(z)| > 1 pour tout z sur le cercle unité. Montrer que f s’annule en au moins un point du
disque unité ouvert.
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27.4) On note D le disque unité ouvert du plan complexe, D son adhérence et ∂D son bord. Soient U =
C \ {2, 2i,−2,−2i} et f une fonction holomorphe sur U . On suppose que

f(∂D) ⊆ D et f

Å
1

2

ã
= i.

En combinant le principe du module maximum et le principe du prolongement analytique, montrer que

∀z ∈ U, f(z) = i.

28 Elle crôıt

Soient R > 0 et f une fonction holomorphe sur le disque ouvert de centre 0 et de rayon R. Pour tout r ∈ [0, R[,
on note

M(r) = max
|z|=r

|f(z)| .

28.1) Montrer que M est une fonction croissante.

28.2) Est-il vrai que si f n’est pas constante, alors M est une fonction strictement croissante ?

28.3) Calculer M(r) pour tout r ∈ [0, 1[ lorsque f est la fonction f(z) = 1
1−z .

29 Eneström-Kakeya

On note D le disque unité fermé D = {z ∈ C, |z| ≤ 1} et ∂D = {z ∈ C, |z| = 1} son bord.

Soit P (z) =

d∑
k=0

akz
k un polynôme de degré d ≥ 1 et à coefficients réels. On suppose que

0 ≤ a0 ≤ a1 ≤ · · · ≤ ad.

L’objet de cet exercice est de démontrer l’assertion suivante :

dans ces conditions, tous les zéros complexes de P sont dans D.

29.1) Soit f le polynôme défini par la formule

f(z) = adz
d+1 + (1− z)P (z).

Calculer les coefficients de f et en déduire que |f(z)| ≤ ad, pour tout z ∈ ∂D.

29.2) On note g(z) = zdf
(
1
z

)
le polynôme aux inverses de f . Montrer que

max
z∈∂D

|f(z)| = max
z∈∂D

|g(z)|

29.3) Déduire soigneusement des questions précédentes que max
z∈D

|g(z)| ≤ ad.

29.4) En déduire que, pour tout z ∈ C,

|z| ≥ 1 =⇒ |f(z)| ≤ ad|z|d.

29.5) Montrer que, pour tout z ∈ C,

|z| ≥ 1 =⇒ |(1− z)P (z)| ≥ ad|z|d (|z| − 1) .

et en conclure que les zéros de P sont tous dans D.
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30 Deux séries de Lambert

30.1) Soit f une fonction holomorphe sur le disque unité ouvert D, telle que f(0) = 0. Montrer que pour tout
r ∈]0, 1[, il existe Ar > 0 tel que

∀z ∈ D,∀n ≥ 1, |z| ≤ r =⇒ |f(zn)| ≤ Arr
n.

En déduire que la série de fonctions
∑

n f(z
n) converge normalement sur tout compact de D.

30.2) Soient f et g deux fonctions holomorphes sur le disque unité ouvert vérifiant f(0) = g(0) = 0. On note

f(z) =
∑
n≥0

fnz
n et g(z) =

∑
n≥0

gnz
n

leurs développements respectifs en 0. Montrer que les séries de fonctions

F (z) =
∑
n≥0

fng(z
n) et G(z) =

∑
n≥0

gnf(z
n)

définissent des fonctions analytiques sur le disque unité ouvert et montrer que F = G.

30.3) Montrer que pour tout z dans le disque unité ouvert, on a les deux formules∑
n≥1

Log(1 + zn) =
∑
n≥1

(−1)n+1

n

zn

1− zn

et
∑
n≥1

(−1)n+1 zn

1− zn
=
∑
n≥1

zn

1 + zn
.

31 Intégrales à paramètres : premiers pas

31.1) Les fonctions z 7→
∫ +∞

1

cos tz

t2
dt, z 7→

∫ +∞

1

sin tz

t
dt et z 7→

∫ 1

0

sin tz

t
dt sont-elles entières ?

31.2) Soit Γ la fonction d’Euler, définie sur le demi-plan P = {z ∈ C, ℜz > 0} par Γ(z) =

∫ +∞

0

tz−1e−tdt.

Montrer que pour tout z ∈ P, on a
Γ(z + 1) = zΓ(z).

Montrer comment cette dernière formule permet de prolonger analytiquement Γ à C \ Z−.

31.3) Montrer que pour tout z ∈ C, ez = lim
n→∞

(
1 +

z

n

)n
(on pourra développer la puissance par la formule

du binôme).

32 Fonction définie par une intégrale à la Cauchy

32.1) Soient γ : [0, 1] → C un chemin de classe C1 par morceaux. Soit f : Supp(γ) → C une fonction continue.
Montrer que la fonction F définie par

F (z) =

∫
γ

f(ζ)

ζ − z
dζ

est holomorphe sur C \ Supp(γ) et tend vers 0 lorsque |z| tend vers +∞.

32.2) Soient U un ouvert de C contenant le disque unité fermé, f une fonction holomorphe sur U et γ l’arc

paramétré γ : [0, 2π] → C, t 7→ exp(it). Calculer

∫
γ

Å
1

z
+ 2 + z

ã
f(z)

dz

z
. En déduire que

2

π

∫ 2π

0

f
(
eiθ
)
cos2

θ

2
dθ = 2f(0) + f ′(0).

Trouver une formule analogue pour
2

π

∫ 2π

0

f
(
eiθ
)
sin2

θ

2
dθ.
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33 Liouville via Cauchy

Soient f une fonction holomorphe dans tout le plan complexe, a et b deux nombres complexes et R un réel
strictement positif. On note γR “le” chemin constitué du cercle de centre 0 et de rayon R, parcouru une fois
dans le sens direct.

33.1) Lorsque |a| < R, calculer

∫
γR

f(z)

z − a
dz.

33.2) On suppose que a et b sont deux complexes distincts du disque ouvert de centre 0 et de rayon R. En
décomposant la fraction rationnelle 1

(X−a)(X−b) en éléments simples, calculer∫
γR

f(z)

(z − a)(z − b)
dz.

33.3) On suppose que f est bornée sur C, c’est-à-dire qu’il existe M > 0 tel que |f(z)| ≤M , pour tout z ∈ C.
Montrer que dans ces conditions,

lim
R→+∞

∫
γR

f(z)

(z − a)(z − b)
dz = 0.

33.4) En rassemblant les questions précédentes, donner une (autre) preuve du théorème de Liouville : si f est
à la fois entière et bornée, alors f est constante.

34 Un calcul d’intégrale

On note V =
{
z ∈ C, ℜ

(
z2
)
> 0
}
.

34.1) Dessiner V et donner le nombre de ses composantes connexes.

34.2) Pour tout α > 0, on note Vα =
{
z ∈ C, ℜ

(
z2
)
> α

}
. Montrer que

∀α > 0,∀t ≥ 0,∀z ∈ Vα,
∣∣∣e−z2t2

∣∣∣ ≤ e−αt2 .

34.3) Montrer que la fonction f : z 7→
∫ +∞

0

e−z2t2dt est holomorphe sur V .

34.4) Montrer� que f(x) =

√
π

2x
, pour tout x > 0.

34.5) Trouver l’ensemble des nombres complexes z ∈ V pour lesquels

∫ +∞

0

e−z2t2dt =

√
π

2z
.

35 Formule de Stirling d’un coup de Cauchy

L’objectif est de montrer le célèbre équivalent : lorsque n tend vers l’infini,

n! ∼ nne−n
√
2πn. (4)

35.1) Montrer que pour tout r > 0 et pour tout entier naturel n,

1

n!
=

1

2iπ

∫
C(0,r)

ez

zn+1
dz.

35.2) En déduire que pour tout entier naturel n,

2π

n!
×
(n
e

)n
=

∫ π

−π

en(e
iθ−1−iθ)dθ.

�On se rappelera que

∫ +∞

0
e−u2

du =

√
π

2
.
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35.3) Pour tout entier naturel non nul n, on note θn = n−
2
5 et In et Jn les deux intégrales�

In =

∫ θn

−θn

en(e
iθ−1−iθ)dθ et Jn =

∫ 2π−θn

θn

en(e
iθ−1−iθ)dθ.

Vérifier que 2π
n! n

ne−n = In + Jn.

35.4) Démontrer que
√
n× sup

θ∈[θn,2π−θn]

∣∣∣en(eiθ−1−iθ)
∣∣∣ −→
n→∞

0

et en déduire que Jn est négligeable devant 1√
n
lorsque n tend vers l’infini.

35.5) Dans cette question, on montre que, lorsque n tend vers l’infini�,

In =

…
2π

n
+ o

Å
1√
n

ã
. (5)

(i) Montrer, par un changement de variables sous l’intégrale, que

∫ θn

−θn

e−n θ2

2 dθ =

…
2π

n

(
1 + o(1)

)
lorsque n

tend vers l’infini — on pourra se rappeler l’égalité

∫
R
e−

x2

2 dx =
√
2π, qui se prouve d’un coup de jacobien.

(ii) Montrer successivement :

1○ il existe η1 > 0 tel que ∀z ∈ C, |z| ≤ η1 =⇒ |ez − 1| ≤ 2|z|

2○ il existe η2 > 0 tel que ∀θ ∈ R, |θ| ≤ η2 =⇒
∣∣∣eiθ − 1− iθ + θ2

2

∣∣∣ ≤ |θ|3

3○ il existe N ∈ N tel que ∀n ∈ N, n ≥ N =⇒ ∀θ ∈ [−θn, θn] ,
∣∣∣∣en(eiθ−1−iθ+ θ2

2

)
− 1

∣∣∣∣ ≤ 2n−
1
5

4○
∫ θn

−θn

Å
e
n
(
eiθ−1−iθ+ θ2

2

)
− 1

ã
e−n θ2

2 dθ ∈ o

Å
1√
n

ã
lorsque n tend vers l’infini.

(iii) Prouver (5)

35.6) Prouver la formule de Stirling (4).

36 Un peu de simple connexité

Soient a ∈ C, r > 0 et U un ouvert simplement connexe de C contenant le cercle de centre a et de rayon r.
Montrer que U contient le disque fermé de centre a et de rayon r.

�Noter que le choix de ce judicieux θn est dicté par la méthode du col dont les fondements sont dus à Pierre-Simon Laplace.
�Le petit o est celui des notations de Landau.
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Feuille d’exercices numéro 3 : relèvements, logarithmes, etc

37 Gammes logarithmiques

On note Log le logarithme principal.

37.1) Dans cet exercice, les puissances sont leurs déterminations principales.

(i) Calculer Log
î
(−1 + i

√
3)n
ó
, pour tout n ∈ Z.

(ii) Calculer toutes les racines cubiques de −1− i et, parmi elles, 3
√
−1− i. Idem pour les racines cinquièmes.

37.2) Même exercice que le précédent en remplaçant le logarithme principal par la détermination continue
définie sur C \ R+ par la formule

log reiθ = ln r + iθ pour θ ∈]0, 2π[.

37.3) Pour quels nombres complexes z a-t-on Log 1
z = −Log z ? Trouver toutes les déterminations continues

du logarithme sur le plan privé d’une demi-droite fermée partant de l’origine pour lesquelles la formule est vraie.

37.4) Sur quelle partie du plan la fonction Log(1− z2) est-elle définie ?

37.5) Soit V un ouvert connexe de C ne contenant pas 0. On suppose que f est une fonction analytique sur
V qui vérifie

∀v ∈ V, f ′(v) =
1

v
et ∃a ∈ V, exp f(a) = a.

Montrer que f est une détermination continue du logarithme sur V . Que se passe-t-il si V = C∗ ?

37.6) Soient n un entier relatif et log une détermination continue du logarithme sur un ouvert U de C. Est-il
vrai que zn = exp (n log z) pour tout z ∈ U ?

37.7) Pour tout entier naturel non nul m, on note m
√
· la détermination principale de la racine me.

(i) Si z est un nombre complexe, calculer
√
z2 chaque fois que ce nombre a du sens.

(ii) Plus généralement, montrer que
m√zm

z est une racine me de l’unité, que l’on déterminera en fonction de

l’argument (principal) de z. Faire un dessin des régions du plan sur lesquelles la fonction z 7→ m
√
zm/z est

constante.

37.8) Dessiner l’image par le logarithme principal d’une droite horizontale du plan de la forme R + iα où
α ∈ R \ {0}.

38 Variations sur un thème primitif

38.1) Montrer que la fonction z 7→ 1
z2−z n’a pas de primitive sur {z ∈ C, 0 < |z − 1| < 1}.

38.2) Soient U et V deux ouverts connexes et simplement connexes de C. On suppose que U ∩ V est connexe
et non vide. Sans utiliser la simple connexité de U ∪ V — qui est pourtant garantie par un théorème du cours
—, montrer que toute fonction holomorphe sur U ∪ V admet une primitive sur U ∪ V .

Peut-on enlever l’hypothèse de connexité de U et de V ?

38.3) On note f(z) =
1

z(z − 1)
, pour tout z ∈ C \ {0, 1}.

(i) Soit U = C \ [0, 1]. Montrer que si γ est n’importe quel lacet de U , alors

∫
γ

1

z(z − 1)
dz = 0.

(ii) Même question en remplaçant U par V = C \ (]−∞, 0] ∪ [1,+∞[).

(iii) Même question en remplaçant U parW = C\Γ où Γ est le demi-cercle Γ =
{
z ∈ C,

∣∣z − 1
2

∣∣ = 1
2 et ℑ(z) ≥ 0

}
.

[On pourra paramétrer ce demi-cercle et chercher l’image de son complémentaire par l’homographie z 7→ z
z−1 .]
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39 Un logarithme

39.1) On note γ “le” chemin de C qui part de 1, suit simplement
le demi-cercle unité du demi-plan des parties imaginaires positives
jusqu’au point −1, puis le segment [−1,−2], et enfin le demi-cercle
de rayon 2 centré en l’origine du demi-plan des parties imaginaires
négatives jusqu’au point 2. On en représente le support ci-contre.

Calculer

∫
γ

dz

z
.

2−2

1−1

γ

39.2) Soit U , ouvert simplement connexe et connexe de C,
dont on dessine une représentation grisée ci-contre. On note
log l’unique logarithme sur U qui prend la valeur 0 en 1.

Calculer log(2).

On expliquera pourquoi il est inutile de mieux définir U pour
que la question ait un sens.

2−2
1−1

U

40 Développements logarithmiques

On considère les deux séries

f1(z) =
∑
n≥1

zn

n
et f2(z) = iπ +

∑
n≥1

(−1)n(z − 2)n

n
.

Démontrer qu’il existe une fonction analytique f sur un ouvert connexe du plan contenant les disques ouverts

D1 = {z ∈ C, |z| < 1} et D2 = {z ∈ C, |z − 2| < 1},

telle que f = f1 sur D1 et f = f2 sur D2.

41 Relever

41.1) Soient f une fonction holomorphe sur un ouvert U de C et z0 ∈ U tel que f(z0) ̸= 0. Montrer que pour
tout entier naturel non nul m, il existe un voisinage V de z0 et une fonction holomorphe g sur V telle que pour
tout z ∈ V , on ait

f(z) = g(z)m.

Combien de choix a-t-on pour une telle fonction g ? Si g est l’une d’entre elles, trouver toutes les autres.

41.2) Soit U = C \ {z ∈ R, |z| ≥ 1}. Dessiner U . Montrer qu’il existe une fonction f analytique sur U telle
que

f(z)2 = z2 − 1 et f(0) = i.

41.3) Soient f et g deux fonctions entières. On suppose que

∀z ∈ C, |f(z)| ≤ |g(z)|.

(i) Montrer que la fonction f/g se prolonge en une fonction entière.

(ii) En déduire qu’il existe C ∈ C telle que f = Cg.
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42 Formule d’inversion de Lagrange

42.1) Changement de variable sous l’intégrale curviligne
Soient U et V deux ouverts de C et φ : U → V un difféomorphisme analytique. Soient aussi γ un chemin de V
et f ∈ O(V ). Montrer que φ−1 ◦ γ est un chemin de U et que∮

γ

f(z)dz =

∮
φ−1◦γ

f ◦ φ(w)× φ′(w)dw

[Comme dans le cas d’un changement de variable sous l’intégrale ordinaire, cette formule peut se retenir via le moyen mnémotechnique

consistant à poser z = φ(w) et dz = φ′(w)dw.]

42.2) Soit Φ une fonction holomorphe au voisinage de 0, telle que Φ(0) ̸= 0. En appliquant le théorème
d’inversion locale holomorphe à la fonction z 7→ z

Φ(z) , montrer qu’il existe une unique fonction développable en

série entière en zéro, que l’on notera f , telle que

f(z) = zΦ (f(z))

pour tout z au voisinage de 0.

42.3) Si F est une fonction développable en série entière au voisinage de 0, pour tout entier naturel n, on note

[zn]F (z)

le coefficient de zn dans le DSE de F en 0. Montrer qu’il existe R > 0 tel que, pour tout entier naturel non
nul n et pour tout r ∈]0, R[,

[zn] f(z) =
1

2iπn

∮
C(0,r)

f ′(z)

zn
dz

où C(0, r) est le cercle de centre 0 et de rayon r, parcouru une fois dans le sens direct.

42.4) Après l’avoir dûment justifié, effectuer le changement de variable “w = f(z)” dans l’intégrale de la
question précédente et en déduire la formule d’inversion de Lagrange :

∀n ∈ N \ {0} , [zn] f(z) =
1

n

[
zn−1

]
Φn(z).

42.5) Application : DSE(0) de la fonction W de Lambert

(i) Tracer le graphe de la fonction x ∈ R 7→ xex et montrer qu’elle définit une bijection strictement croissante
de ]− 1,+∞[→]− 1/e,+∞[. La réciproque de cette bijection est la fonction W de Lambert. Tracer son graphe.

(ii) Montrer que W se prolonge au voisinage de 0 dans C en l’unique fonction holomorphe au voisinage de 0 qui
vérifie W (z) = ze−W (z) au voisinage de 0.

(iii) Montrer que le développement en série entière de W en 0 est

W (z) =

∞∑
n=1

(−n)n−1

n!
zn

et calculer son rayon.

y =W (x)

y = xex
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43 Composer-relever

Soient U et V deux ouverts de C, f, h : U → C et g : V → C trois applications. On suppose que h(U) ⊆ V , si
bien que la composée g ◦ h a un sens. On suppose aussi que

f = g ◦ h.

43.1) Est-il vrai que
(
f ∈ O(U) et g ∈ O(V )

)
=⇒

(
h ∈ O(U)

)
?

43.2) Est-il vrai que
(
f ∈ O(U) et h ∈ O(U)

)
=⇒

(
g ∈ O(V )

)
?

[Indications. On pourra traiter pour commencer le cas défavorable où h(U) ̸= V , puis supposer que h(U) = V . Soient v ∈ V et u ∈ U tel

que h(u) = v. Quitte à remplacer h(z) par h(z + u)− h(u), U par U − {u} et V par V − {v}, on peut supposer que u = v = 0. En notant

m l’ordre de h en 0, écrire h sous la forme km où k est un difféomorphisme analytique local au voisinage de 0 en appliquant le lemme de

revêtement sous sa seconde version. Montrer que dans ces conditions, l’application f ◦ k−1 : z 7→ g (zm) est DSE(0). En déduire que seuls

les coefficients des puissances de zm sont non nulles dans ces DSE et conclure que g est holomorphe.]

43.3) Dans le cadre de la variable réelle, lorsque f = g ◦ h, est-il vrai que g est dérivable dès que f et h le
sont ?

44 Questions de conformité

44.1) Montrer que le disque unité ouvert est homéomorphe à C. En utilisant le théorème de Liouville, montrer
qu’en revanche, un disque ouvert n’est jamais conformément équivalent à C. Généraliser.

44.2) Soient c ∈ C et r > 0. Trouver une similitude directe qui envoie le disque ouvert de centre c et de rayon r,
que l’on notera D(c, r), sur le disque unité ouvert. En déduire une description de tous les automorphismes
analytiques de D(c, r).

44.3) On note D le disque unité ouvert et

D′ = D \ {0} = {z ∈ C, 0 < |z| < 1} .

On cherche à montrer que :

le groupe des automorphismes analytiques de D′ est le groupe des rotations vectorielles,
formé des z 7→ λz, |λ| = 1.

(i) Soit f ∈ Aut (D′). Montrer que f se prolonge est une application holomorphe sur D, que l’on notera encore f .

(ii) Montrer que f(0) = 0.

(iii) Conclure.

44.4) On note
C = {z ∈ C, |z| > 1} .

Trouver un difféomorphisme analytique entre D′ = {z ∈ C, 0 < |z| < 1} et C. En utilisant l’exercice précédent,
en déduire tous les automorphismes analytiques de C.

44.5) Soient c ∈ C et r > 0. Utiliser l’exercice précédent pour trouver tous les automorphismes analytiques
des ouverts

{z ∈ C, 0 < |z − c| < r} et {z ∈ C, |z − c| > r} .
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Feuille d’exercices numéro 4 : autour des points singuliers et des séries de Laurent

45 Gammes singulières

45.1) Quelles sont les points singuliers (et leurs natures) de la fonction f : z 7−→ z

ez − 1
sur C ? Calculer les

ordres des pôles et leurs résidus. Même question pour la fonction z 7→ f
(
1
z

)
.

45.2) Montrer que f : z 7−→ sin
(
1
z

)
a un point singulier essentiel en 0. Si A ∈ C, calculer les solutions de

l’équation f(z) = A et trouver une suite (zn)n de nombres complexes qui tend vers 0 et telle que f(zn) = A
pour tout n.

46 Point singulier essentiel et densité

46.1) Un espace métrique complet est un espace de Baire

—Dans cette question, on peut remplacer C par n’importe quel espace métrique complet —

(i) Si A est une partie de C, son diamètre est sup {|x− y|, x, y ∈ A}. Soit (Fn)n une suite de parties fermées
non vides de C, décroissante pour l’inclusion. On suppose en outre que la suite (diam (Fn))n converge vers 0.
Montrer que l’intersection des Fn est non vide.

(ii) Soit (Ωn)n une suite d’ouverts denses de C. Montrer que l’intersection des Ωn est encore dense.

46.2) Soit a ∈ C. Pour tout r > 0, on note D′(a, r) = {z ∈ C, 0 < |z − a| < r} le disque épointé ouvert de
centre a et de rayon r. Soient R > 0 et f une fonction holomorphe sur D′(a,R), présentant un point singulier
essentiel en a. Montrer que ⋂

n> 1
R

f

Å
D′
Å
a,

1

n

ãã
est dense dans C (on pourra utiliser le théorème de l’application ouverte). En déduire que l’ensemble des
nombres complexes atteints une infinité de fois par f est dense dans C.

47 Séries de Laurent

47.1) Calculer les développements en série de Laurent des fonctions f suivantes, sur les couronnes C indiquées.

(i) f(z) = 1
z , C = {z ∈ C, |z| ≠ 0}

(ii) f(z) = 1
z−a , C = {z ∈ C, |z − a| > 0} où a ∈ C

(iii) f(z) = 1
z−a , C = {z ∈ C, |z| > |a|} où a ∈ C

(iv) f(z) = 1
z−a , C = {z ∈ C, |z| < |a|} où a ∈ C

(v) f(z) = exp
(
1
z

)
, C = C \ {0}

47.2) Soient a, b ∈ C. On suppose que |a| < |b| et on note C la couronne C = {z, |a| < |z| < |b|}. Calculer le
développement en série de Laurent sur C de

z 7→ 1

(z − a)(z − b)
.

47.3) Calculer le développement en série de Laurent de
z2 − 25z + 1

(z2 + 1)(z + 2)2
sur {z, 1 < |z| < 2}.

[On trouve
∑
n≥0

(−1)
n 17 + 11n

2n+2
z
n
+

∑
n≥1

an

zn
où a2n = 4(−1)n et a2n−1 = 3(−1)n pour tout n ≥ 1.]
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47.4) Montrer que la série de Laurent

· · ·+ 1

zn
+ · · ·+ 1

z2
+

1

z
+
z

2
+
z2

4
+ · · ·+ zn

2n
+ . . .

définit une fonction holomorphe qui n’a pas de point singulier essentiel en 0. En quoi ce développement infini du
côté des puissances négatives de z ne contredit-il pas les résultats du cours sur les points singuliers essentiels ?

48 Assouplissements méromorphes

48.1) Les fonctions suivantes sont-elles méromorphes sur C ? Dans tous les cas, donner leurs pôles avec leurs
ordres et leurs résidus.

(i)
z3 + 1

z4 − 1
(ii) exp

Å
1

z

ã
(iii)

eiz

z4 + 16
(iv)

z sin
(
1
z

)
z6 + 5

(v)
z3 − 1

(z6 − 1)
2

48.2) Calculer les pôles et les résidus de la fonction z 7→ 1

sin z
.

48.3) Montrer que les séries ci-dessous définissent des fonctions méromorphes sur C, calculer leurs pôles, leurs
ordres et leurs résidus.

(i)
∑
n∈N

(−1)n

n!(n+ z)
(ii)

∑
n≥1

1

z2 + n2
(iii)

+∞∑
n=1

1

(z + n)2

48.4) Soit f une fonction méromorphe sur un ouvert de C. Montrer que les pôles de la fonction f ′/f sont
exactement les zéros et les pôles de f , et calculer leurs résidus.

[En chaque point, on trouve que ce résidu est la valuation de f ].

49 Introduction aux fonctions elliptiques

On note Λ = Z+ iZ.

49.1) Montrer que la famille

Å
1

|λ|3

ã
λ∈Λ\{0}

est sommable (on pourra procéder à une comparaison série-

intégrale).

49.2) Montrer que, pour tout z ∈ C \ Λ, la formule

℘(z) =
1

z2
+

∑
λ∈Λ\{0}

Å
1

(z + λ)2
− 1

λ2

ã
définit une fonction méromorphe sur C dont les pôles sont exactement les éléments de Λ.
49.3) Calculer l’ordre des pôles de ℘.

49.4) Montrer que la dérivée de ℘ est impaire et Λ-périodique, ce qui signifie que ℘′(z+ λ) = ℘′(z), pour tout
z ∈ C \ Λ, pour tout λ ∈ Λ.

49.5) Montrer que ℘ est paire et Λ-périodique.

[On pourra démontrer l’égalité ℘
(
1
2

)
= ℘

(
− 1

2

)
et s’appuyer dessus.]

49.6) (Plus long) On note

g2 = 60
∑

λ∈Λ\{0}

1

λ4
et g3 = 140

∑
λ∈Λ\{0}

1

λ6
.

S’assurer que les séries qui définissent les nombres g2 et g3 sont convergentes. En calculant le début de son
développement en série de Laurent en 0, montrer que la fonction méromorphe z 7→ ℘′(z)2−4℘(z)3+g2℘(z)+g3
a un faux point singulier à l’origine ; déduire alors de sa Λ-périodicité que

∀z ∈ C \ Λ, ℘′(z)2 − 4℘(z)3 + g2℘(z) + g3 = 0.

A noter : la fonction ℘ est célébrissime. C’est la fonction ℘ de Weierstrass associée au réseau Z2, qui appartient
à la famille des fonctions elliptiques, qui permettent notamment de paramétrer les cubiques y2 = 4x3−g2x−g3.
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50 Automorphismes analytiques de C
50.1) Soit f un automorphisme analytique de C. On définit l’application g sur C \ {0} par la formule
g(z) = f

(
1
z

)
. Montrer que g est holomorphe sur C \ {0} et que 0 n’est pas un point singulier essentiel de g.

50.2) Montrer le résultat suivant� :

les automorphismes analytiques de C sont les applications C-affines inversibles,
à savoir les applications de la forme z 7→ az + b où a ∈ C \ {0} et b ∈ C.

51 Automorphismes analytiques de C \ {0}
En adaptant les arguments de l’exercice précédent, montrer que

les automorphismes analytiques de C\{0} sont les applications de la forme z 7→ az±1 où a ∈ C\{0}.

52 Liouville adapté

Si z est un nombre complexe, on note ℑ(z) sa partie imaginaire. On note aussi H le demi-plan de Poincaré et
D le disque unité ouvert :

H = {z ∈ C, ℑ(z) > 0} et D = {z ∈ C, |z| < 1} .

52.1) Montrer que la formule

φ(z) =
z − i

z + i

définit une application holomorphe et bijective φ : H → D dont la réciproque est également holomorphe.

52.2) En utilisant le théorème de Liouville et la question précédente, montrer que toute application holomorphe
C → H est nécessairement constante.

53 Automorphismes d’une couronne

Pour tous nombres réels r,R qui vérifient 0 < r < R, on note C(r,R) la couronne ouverte centrée à l’origine

C(r,R) = {z ∈ C, r < |z| < R} .

Il s’agit de prouver que les automorphismes analytiques de C(r,R) sont :

(i) les rotations z 7→ eiθz, θ ∈ R

(ii) les inversions-rotations z 7→ rReiθ

z , θ ∈ R.

53.1) Montrer que les rotations et les inversions-rotations sont des automorphismes analytiques de C(r,R).

53.2) Montrer que les couronnes C(r,R) et C
(
1, Rr

)
sont conformément équivalentes.

— Dans toute la suite on suppose que r > 1 et on étudie les automorphismes de la couronne C(1, r) —

53.3) On note H le demi-plan de Poincaré H = {z ∈ C, ℑ(z) > 0} et log la détermination principale du

logarithme. On note aussi α le réel strictement positif α =
ln r

π
. Montrer que la formule

p : H −→ C(1, r)

z 7−→ e−iα log z = z−iα

�A noter : d’un point de vue de la géométrie euclidienne, ces automorphismes de C sont les similitudes affines directes.
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définit une application holomorphe et surjective.

53.4) Montrer que pour tous x, y ∈ H,

p(x) = p(y) ⇐⇒ log x− log y ∈
Å
2π

α

ã
Z. (6)

53.5) Soit f un automorphisme analytique de C(1, r).

(i) Montrer qu’il existe une application holomorphe G : H → C
telle que ∀z ∈ H, eG(z) = f ◦ p(z) et que l’image de G est incluse
dans la bande {z ∈ C, 0 < ℜ(z) < ln r}.
(ii) En déduire qu’il existe une application g : H → H, holomorphe
et injective telle que p ◦ g = f ◦ p.
(iii) Montrer que g est un automorphisme analytique de H.

C(1, r) C(1, r)

H H

∼
f

g

p p

[Pour montrer la surjectivité de g, on pourra s’y pren-

dre comme suit, en faisant “deux tours du diagramme”.

Prendre w ∈ H, en haut à droite. On cherche z ∈ H tel

que g(z) = w. Prendre z0 ∈ H, en haut à gauche, dans

la fibre p−1
Ä
f−1 ◦ p(w)

ä
. Nommer w0 = g (z0), qui est

dans la fibre de p au dessus de p(w). Prendre un chemin

γ de H d’origine w0 et d’extrémité w — il en existe, on

peut même prendre un segment. L’image par p de γ

est un lacet δ de C(1, r) puisque p(w) = p (w0). On

prend l’image de ce lacet par f−1, qui est un lacet δ′ de

C(1, r). Puisque les intervalles de R sont simplement

connexes, on peut relever ce lacet via l’exponentielle

d’abord, puis par p en divisant par iα, de sorte qu’on ob-

tienne un chemin γ′ de H, d’origine z0, dont on nomme

l’extrémité z. En outre, pour tout w ∈ H et pour

tout lacet de C(1, r) d’origine p(w), il existe un unique

chemin de H d’origine w dont l’image par p soit le lacet

— cela vient de la connexité de [0, 1]. Alors, g(z) = w.]

w0

w

γ

z0

z γ′

δ

δ′

f

∼

g

∼

p p

53.6) On note ρ = e
2π
α . Soient f un automorphisme analytique de C(1, r) et g l’automorphisme� de H tel que

p ◦ g = f ◦ p.
(i) Montrer que, pour tous x, y ∈ H,

y

x
∈ ρZ =⇒ g(y)

g(x)
∈ ρZ.

En déduire que pour tous z ∈ H et pour tout n ∈ Z, le quotient g(ρnz)
g(z) est un nombre réel.

(ii) En utilisant le fait que les automorphismes de H sont les homographies issues de matrices de SL (2,R)
(résultat du cours) et en appliquant le (i) pour z = i, montrer que les seuls automorphismes de C(1, r) sont les

rotations z 7→ eiθz et les inversions-rotations z 7→ reiθ

z où θ ∈ R.

53.7) Si c ∈ C et si 0 < r < R, quels sont les automorphismes de la couronne

{z ∈ C, r < |z − c| < R} ?

�Question subsidiaire : montrer qu’il n’existe qu’un seul automorphisme g de H qui vérifie p ◦ g = f ◦ p.
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Feuille d’exercices numéro 5 : autour de la formule des résidus

54 Un calcul d’intégrale par la méthode des résidus

Soient a et b deux réels strictement positifs et soit

f(z) =
1

z2 + 1
exp

Å
i

Å
az − b

z

ãã
.

54.1) Montrer que f est méromorphe sur C \ {0}. Quels sont les pôles de f ? Calculer les résidus en tous les
pôles de f .

54.2) Pour θ ∈ [0, π] et r > 0, r ̸= 1, soit z = reiθ un point du demi-cercle du demi-plan supérieur, de centre 0
et de rayon r. Calculer ∣∣∣∣expÅiÅaz − b

z

ãã∣∣∣∣
en fonction de a, b, r, θ et en déduire que |f(z)| ≤ 1

|r2 − 1|
.

54.3) Soit ε ∈]0, 1[, R > 1. Soit ΓR le demi-cercle du demi-plan supérieur, de centre 0 et de rayon R parcouru
une fois dans le sens trigonométrique. Soit γε le demi-cercle du demi-plan supérieur, de centre 0 et de rayon ε
parcouru une fois dans le sens inverse du sens trigonométrique.

(i) Montrer que

∫
ΓR

f(z)dz tend vers 0 quand R tend vers +∞.

(ii) Montrer que

∫
γε

f(z)dz tend vers 0 quand ε tend vers 0.

54.4) Montrer que f est intégrable sur R et que∫ +∞

−∞
f(x)dx = 2

∫ +∞

0

1

x2 + 1
cos

Å
ax− b

x

ã
dx.

54.5) Soit γε,R le lacet simple dessiné ci-dessous.

0 ε R

Utiliser le théorème des résidus pour calculer l’intégrale I =

∫ +∞

0

1

x2 + 1
cos

Å
ax− b

x

ã
dx.

55 Vrac de calculs d’intégrales par résidus

55.1) Calculer

∫ +∞

0

dt

1 + t6
par la méthode des résidus (choisir un contour ad hoc). [On trouve π/3.]

55.2) Soit a > 0. Calculer l’intégrale réelle

∫ +∞

−∞

dx

(x4 + a4)
2 . [On trouve 1

a7
3π

√
2

8 .]

N. Pouyanne, B. Elsner, UVSQ 2026, LSMA621 29/53



55.3) Calculer les résidus de
eiz

1 + z + z2
. En déduire que

∫ +∞

−∞

eiu

1 + u+ u2
du =

2π√
3
exp

Ç
−
√
3

2

å
e−

i
2

et la valeur des intégrales réelles qui en découlent naturellement.

55.4) Montrer l’égalité

∫ +∞

−∞

eitx

1 + t2
dt = πe−|x|, pour tout x ∈ R.

55.5) Calculer les intégrales suivantes.

(i)

∫ +∞

0

cos
(
x2
)
dx [ Calculer l’intégrale de eix

2
en intégrant le long de . La réponse :

√
2π
4 . ]

(ii)

∫ +∞

−∞
eitxe−

t2

2 dt, x ∈ R. [ On trouve
√
2πe−x2/2. ]

[Indication : intégrer e−
1
2
z2 sur le rectangle (−R,R,R − ix,−R − ix).]

(iii)

∫ +∞

0

x2

(x2 + 2) (x2 + 1)
dx. [ On trouve π

2 (−1 +
√
2). ]

55.6) Soit f une fonction méromorphe au voisinage de 0, présentant un pôle simple en 0. Pour tout ε > 0, on
note γε le demi-cercle {z ∈ C, |z| = ε, ℑ(z) ≥ 0}, parcouru une fois dans le sens direct — ℑ désigne la partie
imaginaire. Montrer que

lim
ε→0
ε>0

∫
γε

f(z)dz = iπRes (f, 0) .

Application : en intégrant eiz

z le long du lacet simple ci-dessous, montrer que

∫ +∞

0

sin t

t
dt =

π

2
.

0 ε R

55.7) Etablir l’égalité

∫ +∞

0

lnx

(1 + x)3
dx = −1

2
, en intégrant

log2 z

(1 + z)3
sur un contour du type suivant (attention

à la détermination du logarithme que l’on utilise).

55.8) Soient m et n des entiers vérifiant m ≥ 1 et n ≥ m + 2. Montrer que

∫ +∞

0

xm

1 + xn
dx =

π

n sin (m+1)π
n

.

On pourra utiliser un contour voisin de celui utilisé au (i) du 5) ci-dessus.
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55.9) Soit x ∈]0, 1[.
(i) Quelle est la partie du plan complexe formée des points en lesquels la fonction z 7→ exz

1 + ez
n’est pas

holomorphe ?

(ii) Calculer le résidu en iπ de la fonction z 7−→ exz

1 + ez
.

(iii) Pour tout R > 0, on note SR “le” chemin du plan complexe consistant à parcourir une fois le segment
[2iπ +R, 2iπ −R]. Donner une paramétrisation de SR et montrer que∮

SR

exz

1 + ez
dz = −e2iπx

∫ R

−R

ext

1 + et
dt.

(iv) Pour tout R > 0, on note γR “le” chemin du plan complexe consistant à parcourir une fois le rectangle de

sommets (R,R+ 2iπ,−R+ 2iπ,−R) dans le sens direct. Utiliser la formule des résidus en intégrant z 7→ exz

1 + ez
le long de γR pour démontrer la formule ∫ +∞

−∞

ext

1 + et
dt =

π

sinπx
. (7)

(v) La formule (7) est-elle encore vraie lorsque x est un nombre complexe dont la partie réelle est dans
l’intervalle ]0, 1[ ? Pourquoi limiter la question à cette bande ouverte ?

56 Et encore un calcul d’intégrale

L’objet de cette partie consiste à calculer l’intégrale

Jn(a) =

∫ π

0

cos(nt)

1− 2a cos t+ a2
dt

lorsque a est un nombre complexe non nul de module différent de 1 et n un entier naturel.

56.1) Si t est un nombre réel, factoriser sur C le polynôme X2 − 2X cos t+ 1.

56.2) Soient a un nombre complexe non nul de module différent de 1 et n un entier naturel. Calculer les
résidus en les pôles de la fonction méromorphe

z 7−→ zn

(z − a)
(
z − 1

a

) .
56.3) Soient a un nombre complexe non nul de module strictement inférieur à 1 et n un entier naturel. En
appliquant la formule des résidus, calculer l’intégrale∫

C

zn

(z − a)
(
z − 1

a

)dz,
où C désigne le cercle unité parcouru une fois dans le sens direct.

56.4) En paramétrant convenablement le lacet C, déduire de la question précédente que si 0 < |a| < 1,

Jn(a) =
πan

1− a2
.

56.5) On suppose que n ∈ N et que a ∈ C a un module strictement supérieur à 1. Calculer Jn(a).

56.6) Que se passe-t-il pour Jn(a) lorsque le module de a égale 1 ?
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57 Un calcul d’intégrale et son domaine de validité

57.1 Sur l’intervalle

Soit α ∈]0, 1[. L’objet de cette partie consiste à montrer la formule∫ +∞

0

tα

1 + t2
dt =

π

2 cos
(
πα
2

) . (8)

On note log l’unique détermination du logarithme sur C \ [0,+∞[ qui prend la valeur iπ en −1. En outre, pour
tout z ∈ C \ [0,+∞[, on note zα = eα log(z).

57.1) Justifier que l’intégrale de la formule (8) a du sens.

57.2) Calculer log(i) et log(−i).

57.3) Calculer les résidus de la fonction z 7→ zα

1 + z2
en ses pôles.

57.4) Montrer que pour tous x > 0 et y > 0,

(x+ iy)α = |x+ iy|α eiα arctan( y
x ) et (x− iy)α = |x− iy|α eiα(2π−arctan( y

x ))

57.5) Lorsque r et R sont des nombres réels vérifiant
0 < r < 1 < R, on note

Ir,R =

∫
γr,R

zα

1 + z2
dz (9)

où γr,R est “le” lacet ci-contre, parcouru une fois dans
le sens direct — les lignes droites du support dessiné
représentent des segments parallèles aux axes de coor-
données, la partie courbe représente un demi-cercle.

Expliquer pourquoi l’énoncé place des guillemets autour
du “le” ci-dessus, et pourquoi l’intégrale curviligne (9)
est définie sans ambigüıté.

i

−r−R R

γr,R

57.6) Soit R > 1. Montrer que l’intégrale curviligne de
zα

1 + z2
le long du segment [ir, R + ir] tend vers∫ R

0

tα

1 + t2
dt lorsque r tend vers 0 en restant strictement positif.

57.7) Montrer que l’intégrale curviligne de
zα

1 + z2
le long du segment [R−ir,−ir] tend vers −e2iπα

∫ R

0

tα

1 + t2
dt

lorsque r tend vers 0 en restant strictement positif.

57.8) Montrer que l’intégrale curviligne de
zα

1 + z2
le long du demi-cercle de centre 0 et de rayon r qui intervient

dans γr,R tend vers 0 lorsque r tend vers 0.

57.9) Montrer que l’intégrale de
zα

1 + z2
le long de la réunion des cinq segments [R+ ir, R+ iR], [R+ iR,−R+ iR],

[−R+ iR,−R− iR], [−R− iR,R− iR] et [R− iR,R− ir] qui intervient dans le chemin γr,R tend vers 0 lorsque
R tend vers +∞.

57.10) Démontrer la formule (8).

57.2 Domaine de validité

57.11) Donner le plus grand ouvert de C sur lequel la fonction z 7→ π

2 cos
(
πz
2

) est holomorphe.
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57.12) On note V l’ensemble des nombres complexes z pour lesquels la fonction

t 7→ tz

1 + t2

est intégrable sur [0,+∞[. Montrer que V = {z ∈ C, − 1 < ℜ(z) < 1}.
57.13) La fonction

z 7→
∫ +∞

0

tz

1 + t2
dt

est-elle holomorphe sur V ?

57.14) La formule (8) est-elle valide pour tout nombre complexe α ∈ V ?
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Feuille d’exercices numéro 6 : mélanges

58 Formule de Cauchy et primitivation

Soit f : z 7→ 1

z(1− z)
, définie sur C \ {0, 1}.

58.1) Montrer que f n’a pas de primitive sur l’ouvert {z ∈ C, 0 < |z − 1| < 1}.

58.2) Montrer que si γ est un lacet de C \ [0, 1], alors
∫
γ

f(z)dz = 0.

58.3) La fonction f a-t-elle des primitives sur C \ [0, 1] ?

59 Une intégrale à la Jensen

L’objet de cet exercice consiste à démontrer l’égalité

∫ 2π

0

log
∣∣∣1− eiθ

∣∣∣ dθ = 0. (10)

Si z est un nombre complexe, on note respectivement ℜ(z) et ℑ(z) ses parties réelle et imaginaire. On note
aussi P le demi-plan

P = {z ∈ C, ℜ(z) < 1} .
59.1) Justifier rapidement que la fonction θ 7→ log

∣∣1− eiθ
∣∣ est intégrable sur l’intervalle [0, 2π].

59.2) Montrer qu’il existe une unique fonction r holomorphe sur P telle que®
∀z ∈ P, er(z) = 1− z

r(0) = 0.

59.3) Justifier rapidement que la fonction z 7→ r(z)
z est holomorphe sur P.

59.4) Pour tout z ∈ P, calculer ℜ (r(z)) en fonction de z et montrer que ℑ (r(z)) ∈
]
−π

2 ,
π
2

[
.

59.5) Pour tout ε ∈ ]0, π[, on note Γε et γε les deux chemins

Γε : [ε, 2π − ε] −→ C
t 7−→ eit

et
γε :

[
−π−ε

2 , π−ε
2

]
−→ C

t 7−→ 1− 2e−it sin ε
2 .

(i) Montrer que Γε(ε) = γε
(
π−ε
2

)
et que Γε(2π − ε) = γε

(
−π−ε

2

)
.

(ii) On note ℓ(ε) le concaténé de Γε et de γε, dans cet ordre. La question précédente assure que ℓ(ε) est un
lacet. Dessiner le support de ℓ(ε).

59.6) Soit ε ∈]0, 1[. Montrer soigneusement les deux égalités∫ 2π−ε

ε

log
∣∣∣1− eiθ

∣∣∣ dθ = ℜ
Å
1

i

∮
Γε

r(z)

z
dz

ã
= ℜ

Ç
i

∮
γε

r(z)

z
dz

å
. (11)

59.7) En appliquant une majoration standard au dernier membre de (11), montrer que

lim
ε→0
ε>0

∫ 2π−ε

ε

log
∣∣∣1− eiθ

∣∣∣ dθ = 0.

59.8) Rassembler les résultats des questions précédentes pour démontrer (10).
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60 Une application du théorème de Rouché

Combien le polynôme z8 − 4z5 + z2 − 1 a-t-il de racines dans le disque unité ?

[On pourra appliquer le théorème de Rouché en comparant ce polynôme au polynôme −4z5.]

61 Théorème de Phragmen-Lindelöf

Soit B = {z ∈ C, |ℑ(z)| < π
2 }. On note B l’adhérence de B et ∂B la frontière de B.

61.1) Dessiner B.

61.2) On note φ(z) = ee
z

. Montrer que |φ(z)| = 1 pour tout z ∈ ∂B, et que φ n’est pas bornée sur B.

61.3) Soit f une fonction continue sur B et holomorphe sur B. On suppose que f vérifie les deux propriétés
suivantes :

• ∀z ∈ ∂B, |f(z)| ≤ 1 ;

• ∀z ∈ B, |f(z)| ≤ exp
(
Aec|ℜ(z)|),

où A est un réel strictement positif et c est un réel de l’intervalle ]0, 1[.

L’objectif de la suite est de montrer que |f(z)| ≤ 1 pour tout z ∈ B (Phragmen-Lindelöf).

(i) Pour ε ∈]0, 1[ et b ∈]c, 1[, on pose

hε(z) = exp
(
−ε
(
ebz + e−bz

))
.

La fonction hε est-elle holomorphe sur un ouvert contenant B ?

(ii) Montrer que pour tout z ∈ B, si on note x = ℜ(z),

|f(z)hε(z)| ≤ exp

ï
Aec|x| − εeb|x| cos

Å
bπ

2

ãò
.

(iii) En déduire qu’il existe ρ > 0 tel que |f(z)hε(z)| ≤ 1, pour tout z ∈ B tel que |ℜ(z)| ≥ ρ.

(iv) En appliquant le principe du module maximum sur un compact bien choisi, montrer que |f(z)hε(z)| ≤ 1
sur B. En déduire que

∀z ∈ B, |f(z)| ≤ 1.

61.4) Le résultat subsiste-t-il quand c = 1 ?

62 Théorème de Pringsheim

62.1) Pour se rafrâıchir la mémoire

Soit f(z) =

∞∑
n=0

anz
n une série entière de rayon R > 0 et soit u dans son disque ouvert de convergence. Quel

théorème du cours permet de dire que le DSE(u) de f a un rayon supérieur ou égal à R− |u| ?
62.2) Théorème de Pringsheim
Soit (an)n∈N une suite de nombres réels positifs ou nuls. On suppose que la série entière

f(z) =
∑
n≥0

anz
n

a un rayon R fini et strictement positif. Montrer que R est un point singulier de f , c’est-à-dire que f ne se
prolonge en une fonction analytique sur aucun voisinage de R.

[Indication. Par l’absurde, supposer que f admet un DSE en R dont le rayon est r > 0, prendre ρ = r
4 , développer f au point R − ρ et

montrer, en calculant f(R+ ρ) via ce développement et en utilisant la positivité des séries en jeu, que le DSE de f en 0 converge en R+ ρ.]
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63 Fonction arctangente

63.1) Sur quel ouvert maximal de C la fonction tangente, définie par la formule

tan(z) =
sin(z)

cos(z)

est-elle holomorphe ? Calculer son image.

63.2) Soit S = {iy, y ∈ R, |y| ≥ 1}, soit D = C \ R− et soit g l’homographie définie par la formule

g(z) =
1 + iz

1− iz
.

Dessiner S. Montrer que g définit une bijection biholomorphe de C \ S dans D.

63.3) En déduire que

f(z) =
1

2i
Log

Å
1 + iz

1− iz

ã
définit une fonction holomorphe sur C \ S. Quelle est l’image par f de C \ S ?

63.4) Montrer que pour tout x ∈ R, tan(f(x)) = x. En déduire que f est l’unique fonction holomorphe sur
C \ S vérifiant

∀z ∈ C \ S, tan(f(z)) = z.

Pour cette raison, puisque f prolonge la fonction arctangente réelle, on lui attribue le même nom et on note

∀z ∈ C \ S, f(z) = arctan z.

63.5) Montrer que arctan′(z) =
1

1 + z2
, pour tout z ∈ C \ S. En déduire que

∀z ∈ C, |z| < 1 =⇒ f(z) =
∑
n≥0

(−1)n
z2n+1

2n+ 1
.

63.6) Quel est l’ensemble des nombres complexes z pour lesquels la relation tan(arctan z) = z est valide ?
Quel est l’ensemble des nombres complexes z pour lesquels la relation arctan(tan z) = z est valide ? Calculer
arctan(tan z) en fonction de z chaque fois que cela a du sens.

63.7) Montrer que si ℜ(z) > 0, alors

arctan z + arctan

Å
1

z

ã
=
π

2
.

Quelle est la valeur de cette somme si ℜ(z) < 0 ?

64 Principe de réflexion de Schwarz

Ce résultat, ainsi que l’exercice 77 sur les produits de Blaschke, est un des outils
d’une preuve constructive du théorème de représentation conforme de Riemann.

64.1) Soit U un ouvert de C. Soit f une fonction holomorphe sur U \R et continue sur U . Montrer que f est
holomorphe sur U .

[On pourra penser à utiliser la formule de Cauchy.]

64.2) On note D un disque ouvert du plan complexe, centré en un nombre réel. On note également D+ =
D ∩ {z, ℑz > 0} et D+ = D ∩ {z, ℑz ≥ 0}. Soit f une fonction holomorphe sur D+, continue sur D+, prenant
des valeurs réelles sur D ∩ R. Montrer que la formule

∀z ∈ D+, f (z) = f(z)

définit un prolongement holomorphe de f à D.
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65 Cylindrique de Bessel

Pour tous z ∈ C et w ∈ C \ {0}, on note

B(z, w) = exp

Å
z

2

Å
w − 1

w

ãã
.

Pour tous n ∈ Z et z ∈ C, on note aussi Jn(z) le n
e coefficient du développement en série de Laurent à l’origine

de w 7→ B(z, w), si bien que

e
z
2 (w− 1

w ) =

+∞∑
n=−∞

Jn(z)w
n. (12)

65.1) Si z ∈ C, sur quelle couronne ouverte maximale le développement en série de Laurent (12) est-il valide ?

65.2) Montrer que, pour tout n ∈ Z et pour tout z ∈ C,

Jn(z) =
1

2iπ

∮
C(0,1)

e
z
2 (w− 1

w )

wn+1
dw (13)

où C(0, 1) désigne le cercle unité parcouru une fois dans le sens direct.

65.3) Montrer que pour tous w, z ∈ C,

|w| = 1 =⇒
∣∣∣∣∣e

z
2 (w− 1

w )

wn+1

∣∣∣∣∣ = e−ℑ(w)ℑ(z).

65.4) En déduire que Jn est une fonction entière, pour tout n ∈ Z.

65.5) Soit n ∈ Z. En appliquant la formule des résidus à l’intégrale (13), montrer que Jn(z) est le coefficient
de w−1 dans la série de Laurent (en w)

∑
m,k≥0
k≤m

(−1)k

k!(m− k)!

(z
2

)m
wm−2k−n−1

et en déduire que le développement en série entière de Jn à l’origine est

Jn(z) =

+∞∑
k=0

(−1)k

k!(n+ k)!

(z
2

)2k+n

.

66 Théorème de Morera

66.1) Le théorème (triangulaire) de Morera

Si u, v, w ∈ C, on note T (u, v, w) le lacet formé de la concaténation des segments standards [u, v], [v, w] et [w, u],
et [u, v, w] l’enveloppe convexe du triplet {u, v, w} (le triangle, quoi). Démontrer le théorème de Morera dont
l’énoncé est le suivant.

Soient U un ouvert de C et f : U → C une application continue. Alors, f est holomorphe si, et seulement si∮
T (u,v,w)

f(z)dz = 0,

pour tous u, v, w ∈ U tels que [u, v, w] ⊆ U .

[On pourra adapter la partie preuve du théorème d’équivalence pour les fonctions holomorphes qui permet de montrer, une fois la nullité

de l’intégrale sur les triangles acquises, que la fonction admet des primitives.]
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66.2) Variante rectangulaire du théorème de Morera

Si a, b ∈ C, on note R(a, b) le lacet (standard) formé de la concaténation des
côtés du rectangle dont les sommets sont a et b et dont les côtés sont parallèles
aux axes de coordonnées, parcouru une fois dans le sens direct en partant de a.
On note aussi Rect(a, b) l’enveloppe convexe du support de R(a, b). Montrer
la variante suivante du théorème de Morera.

a

b

Soient U un ouvert de C et f : U → C une application continue. Alors, f est holomorphe

si, et seulement si

∮
R(a,b)

f(z)dz = 0, pour tous a, b ∈ U tels que Rect(a, b) ⊆ U .

[On pourra chercher des primitives locales en intégrant la fonction le long de chemins qui suivent les directions des axes de coordonnées.

66.3) Reprendre la preuve du principe de réflexion de Schwarz à la lumière de cette variante du théorème de
Morera ; elle s’en trouve simplifiée — cf exercice 64.

67 Série de Fourier d’une fonction holomorphe périodique

Soit f : C → C une fonction entière. On suppose que f est 1-périodique, c’est-à-dire que

∀z ∈ C, f(z + 1) = f(z).

67.1 Développer une fonction entière périodique en série de Fourier

On admet pour l’instant qu’il existe une fonction h : C∗ → C, holomorphe, telle que

∀z ∈ C, f(z) = h
(
e2iπz

)
;

la preuve de son existence fait l’objet de la seconde partie.

67.1) Pour tout n ∈ Z, soit an ∈ C tel que

∀w ∈ C∗, h(w) =

+∞∑
n=−∞

anw
n.

Quel énoncé du cours garantit-il l’existence d’une telle suite (an)n∈Z ?

67.2) Montrer que, pour tout n ∈ Z,

an =

∫ 1

0

f(t)e−2iπntdt.

67.3) Montrer que pour tout b ∈ R, on a aussi

an =

∫ 1

0

f(t+ ib)e−2iπn(t+ib)dt.

67.4) Est-il vrai que an =

∫ 1

0

f(t+ ib)e−2iπn(t+ib)dt pour tout b ∈ C ?

67.5) Donner des éléments d’explication du titre de l’exercice.

67.2 Une fonction entière périodique est une fonction holomorphe sur le tore

Cette partie est consacrée à une preuve de la propriété des fonctions entières périodiques énoncée dans le
préambule de la partie 1 (existence de la fonction h).

67.6) Si a et b sont deux nombres réels tels que a < b, on note

Ba,b = {z ∈ C, a < ℜ(z) < b}
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où le symbole ℜ désigne la partie réelle. Montrer que Ba,b est un ouvert de C. Dessiner B0,1 et B− 1
2 ,

1
2
sur un

même dessin.

67.7) On note U1 = {z ∈ C, z /∈ R+} et U2 = {z ∈ C, z /∈ R−}. Montrer que l’application z 7→ exp(2iπz)
définit d’une part un difféomorphisme analytique entre B0,1 et U1 dont on note ψ1 : U1 → B0,1 la réciproque, et
d’autre part un difféomorphisme analytique entre B− 1

2 ,
1
2
et U2 dont on note ψ2 : U2 → B− 1

2 ,
1
2
la réciproque.

67.8) Quelle est l’image de B0, 12
par z 7→ exp(2iπz) ?

67.9) Soit f : C → C un fonction entière et 1-périodique. Montrer qu’il existe h1 : U1 → C, holomorphe, telle
que

∀z ∈ B0,1, f(z) = h1
(
e2iπz

)
.

De même, montrer qu’il existe h2 : U2 → C, holomorphe, telle que ∀z ∈ B− 1
2 ,

1
2
, f(z) = h2

(
e2iπz

)
.

67.10) Pour tout w ∈ C∗, on note

h(w) =

 h1(w) si w ∈ U1 ;

h2(w) si w ∈ U2.

Montrer que ces relations définissent une application h : C∗ → C, holomorphe, telle que

∀z ∈ C, f(z) = h
(
e2iπz

)
.

67.3 Entière périodique équivaut à holomorphe sur le tore – bis

Où l’on démontre d’une autre façon l’existence de la fonction h.

67.11) Soit φ : C → C définie par la formule φ(z) = e2iπz. Montrer que φ est un difféomorphisme analytique
local.

[Cela signifie, c’est dans le cours, que pour tout z ∈ C, il existe un voisinage ouvert V de z tel que la restriction de φ à V soit un

difféomorphisme analytique de V sur φ(V ).]

67.12) Soit f une fonction entière et 1-périodique. Montrer qu’il existe une unique application h : C∗ → C
telle que f = h ◦ φ. Montrer que h est nécessairement holomorphe sur C∗.

[On pourra s’inspirer de la propriété universelle du quotient pour les applications générales.]

68 Constance et intégrité

Soit k : R → R la fonction continue et affine par morceaux dont le graphe est représenté ci-dessous.

y

x

y = k(x)

−1−2 1 2

1

Soit f : C → C la fonction définie par
∀z ∈ C, f(z) = k (|z|) .

Soit enfin
V = {z ∈ C, ℜz < 0} ,

où ℜz désigne la partie réelle du nombre complexe z.

68.1) Démontrer le résultat de topologie suivant : toute partie non vide, connexe et discrète (de C) est réduite
à un point.

68.2) Montrer que l’image de la fonction h : V → C, z 7→ h(z) = exp(z) est contenue dans le disque unité
ouvert.
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68.3) Soient V un ouvert connexe de C et H : V → C une fonction holomorphe. Soit U un ouvert connexe
de C et F : U → C une application. On suppose que U contient l’image de H (pour pouvoir définir F ◦ H).
Montrer que l’implicationÑ

F continue
H holomorphe
F ◦H constante

é
=⇒

(
F constante ou H constante

)
est fausse.

68.4) Soient F une fonction holomorphe et non constante sur un ouvert connexe U et a un nombre complexe.
Justifier brièvement que l’ensemble F−1(a) = {z ∈ U , F (z) = a} est une partie discrète de U .
68.5) Soient V un ouvert connexe de C et H : V → C une fonction holomorphe. Soit U un ouvert connexe
de C et F : U → C une application. On suppose que U contient l’image de H (pour pouvoir définir F ◦ H).
L’implication Ñ

F holomorphe
H holomorphe
F ◦H constante

é
=⇒

(
F constante ou H constante

)
est-elle vraie ?

69 Théorème de l’application ouverte — une preuve alternative

L’objet de cet exercice consiste à donner une preuve — alternative à celle du cours — du théorème de l’application
ouverte : si f est holomorphe et non constante sur un ouvert connexe U alors l’image de U par f est un ouvert.

Soient, donc, U un ouvert connexe de C et f ∈ O(U), non constante.

On raisonne par l’absurde en supposant que f(U) n’est pas ouvert.

69.1) Montrer qu’il existe x ∈ U et une suite (an)n de nombres complexes qui converge vers f(x) et qui vérifie :

∀n, an /∈ f(U).

69.2) Montrer que pour tout n, la fonction

gn(z) =
1

f(z)− an

est définie et holomorphe sur U .

69.3) Montrer qu’il existe D(x, r) un disque fermé de centre x et de rayon r > 0 contenu dans U pour lequel

∀z ∈ D(x, r), (z ̸= x) =⇒ (f(z) ̸= f(x)) .

[Indication : penser au principe des zéros isolés. ]

69.4) Montrer qu’il existe une suite (zn)n de points du cercle C(x, r) tels que pour tout n,

1

|f(x)− an|
≤ 1

|f(zn)− an|
.

69.5) Montrer qu’il existe un ε > 0 tel que pour tout z sur le cercle C(x, r), |f(z)− f(x)| > ε.

69.6) En déduire que |f(zn) − an| ≥ |f(zn) − f(x)| − |f(x) − an| ≥ ε
2 pour n assez grand et trouver une

contradiction avec les questions précédentes.
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70 Un calcul d’intégrale par la méthode des résidus

70.1) Soit a ∈ C. Montrer que si f est holomorphe au voisinage de a, le résidu en a de la fonction z 7→ f(z)
(z−a)2

est f ′(a).

70.2) Soient a et b deux nombres complexes distincts. Calculer le résidu en a de la fonction

z 7−→ z

(z − a)2(z − b)2
.

70.3) Soit x ∈]0, 1[. Montrer que les résidus de la fonction méromorphe z 7→ z

(z2 + 2
xz + 1)2

en ses pôles sont

les réels
±x2

4 (1− x2)
3/2

.

70.4) Soit x ∈]0, 1[. On note γ le cercle trigonométrique parcouru une fois dans le sens positif. Montrer que

4

ix2

∮
γ

z(
z2 + 2

xz + 1
)2 dz = ∫ 2π

0

dt

(1 + x cos t)2
.

70.5) En utilisant (soigneusement) la formule des résidus, en déduire la formule

∀x ∈]0, 1[,
∫ 2π

0

dt

(1 + x cos t)2
=

2π

(1− x2)
3/2

.

70.6) On note
√
· la détermination principale de la racine carrée. Sur quel ouvert maximal de C la fonction

z 7→
√
1− z2

est-elle holomorphe ? On note O cet ouvert. Dessiner O.

70.7) Soit z ∈ O. Montrer que le segment Kz = {1 + uz, − 1 ≤ u ≤ 1} est un compact ne contenant pas
l’origine. En déduire qu’il existe ηz > 0 tel que

∀t ∈ R, |1 + z cos t| ≥ ηz.

70.8) Montrer que l’application

z 7−→
∫ 2π

0

dt

(1 + z cos t)2

est holomorphe sur O.

70.9) Expliquer pourquoi la formule suivante est exacte :

∀z ∈ O,
∫ 2π

0

dt

(1 + z cos t)2
=

2πÄ√
1− z2

ä3 .
71 Une ébauche du théorème de transfert

Soient r et R des nombres réels tels que 1 < r < R, et α ∈ R. Dans le plan complexe, on note D(0, R) le disque
ouvert de centre 0 et de rayon R, et U l’ouvert

U = D(0, R) \ [1,+∞[.

Soit f : U → C une fonction holomorphe. Pour tout n ∈ N, on note

[zn]f(z)

le ne coefficient du développement en série entière de f à l’origine.
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71.1) Dessiner U .
71.2) On note Log le logarithme complexe principal et

(1− z)α = exp [αLog(1− z)] .

Sur quel ouvert maximal de C la fonction z 7→ (1− z)α est-elle analytique ?

71.3) Soit β ∈]0, π/2[. On note C(z, ρ) le cercle de centre z et de rayon ρ. Pour tout n ∈ N∗, soit γn l’arc
dessiné sur la figure, composé des quatre arcs a, bn, cn et dn suivants :

βA

B

0

1
r

a

cn

(i) l’arc a part du point A, intersection de C(0, r) avec la demi-droite issue de
1 faisant avec l’axe des abscisses un angle β. Il parcourt C(0, r) dans le sens
positif jusqu’au point B, symétrique de A par rapport à l’axe des abscisses.

(ii) L’arc bn part de B et rejoint C
(
1, 1

n

)
le long du segment [B, 1].

(iii) L’arc cn parcourt C
(
1, 1

n

)
dans le sens négatif jusqu’au point d’intersection

de C
(
1, 1

n

)
et du segment [1, A], dont l’affixe est 1 + 1

ne
iβ .

(iv) L’arc dn part de l’extrémité de cn et rejoint A le long du segment [1, A].

Montrer que ∀n ∈ N∗, [zn]f(z) =
1

2iπ

∮
γn

f(u)

un+1
du.

71.4) Montrer qu’il existe A > 0 tel que ∀n ∈ N∗,

∣∣∣∣∮
a

f(u)

un+1
du

∣∣∣∣ ≤ A

Rn
.

71.5) On suppose que
f(z) = O1 (1− z)

α
,

c’est-à-dire qu’il existe un voisinage V de 1 dans C et un nombre réel strictement positif M tels que

∀z ∈ V ∩ U , |f(z)| ≤M |(1− z)α| .

Montrer qu’il existe N ∈ N∗ et B > 0 tels que ∀n ≥ N,

∣∣∣∣∮
cn

f(u)

un+1
du

∣∣∣∣ ≤ B

nα+1
— on pourra se rappeler que la

suite de terme général
(
1− 1

n

)n
converge.

71.6) Montrer que

lim
n→+∞

∫ +∞

1

tα
Å
1 +

t

n
cosβ

ã−(n+1)

dt =

∫ +∞

1

tαe−t cos βdt,

en utilisant par exemple le théorème de convergence dominée de Lebesgue.

71.7) Montrer que

∣∣∣∣1 + t

n
eiβ
∣∣∣∣ ≥ 1 +

t

n
cosβ, pour tout t ≥ 0 et pour tout n ∈ N∗. En déduire que, si r est

choisi de sorte que Supp(dn) ⊂ V , il existe C > 0 tel que

∀n ≥ N,

∣∣∣∣∮
dn

f(u)

un+1
du

∣∣∣∣ ≤ C

nα+1
.

71.8) Rassembler les résultats des questions précédentes pour démontrer le théorème de transfert suivant :

si f(z) = O1 (1− z)
α
, alors [zn]f(z) = O

Å
1

nα+1

ã
lorsque n→ +∞.

Pour aller plus loin : il suffit, on le voit dans l’exercice, de supposer que f est holomorphe sur un
ouvert “camembert”, de la forme

U = {z ∈ C, |z| < 1 + η, z ̸= 1, |Arg(z − 1)| > β}

où η > 0 et β ∈
]
0, π

2

[
, pour que le résultat encadré soit valide.

1
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72 Théorème de Liouville — une preuve alternative

L’objet de cet exercice consiste à donner une preuve — alternative à celle du cours — du théorème de Liouville :
si f est une fonction à la fois entière et bornée, elle est constante.

Soient f une fonction holomorphe dans tout le plan complexe, a et b deux nombres complexes et R un réel
strictement positif. On note γR un arc paramétré constitué du cercle de centre 0 et de rayon R, parcouru une
fois dans le sens direct.

72.1) Lorsque a est hors du support de γR, calculer

∫
γR

f(z)

z − a
dz.

72.2) On suppose que a et b sont deux complexes distincts du disque ouvert de centre 0 et de rayon R. Calculer∫
γR

f(z)

(z − a)(z − b)
dz.

72.3) On suppose que f est bornée sur C, c’est-à-dire qu’il existe M > 0 tel que |f(z)| ≤M , pour tout z ∈ C.
Montrer que dans ces conditions,

lim
R→+∞

∫
γR

f(z)

(z − a)(z − b)
dz = 0.

72.4) En rassemblant les deux questions précédentes, démontrer le théorème de Liouville : si f est à la fois
holomorphe sur C et bornée, alors f est constante.

73 Un aperçu de Schwarz-Christoffel

On note

(i) D = {z ∈ C, |z| < 1} le disque unité ouvert et D son adhérence topologique

(ii) γ le lacet du plan complexe défini par ∀t ∈ [0, 2π], γ(t) = exp(it)

(iii) pour tout r > 0, Cr = {z ∈ C, |ℜ(z)|+ |ℑ(z)| < r} et Cr l’adhérence topologique de Cr

(iv) U = C \ F où F est la réunion des quatre demi-droites {t, t ≥ 1}, {it, t ≥ 1}, {−t, t ≥ 1} et {−it, t ≥ 1}
(v)

√
z la racine carrée principale du nombre complexe z ∈ C\]−∞, 0].

D

γ

1

Cr

r 1

U

73.1) Montrer que U est l’image réciproque du plan coupé C\]−∞, 0] par l’application z 7→ 1− z4.

73.2) Pour tout z ∈ U , on note

F (z) =

∫
[0;z]

dζ√
1− ζ4

où la notation [0 ; z] désigne n’importe quel chemin de U dont l’origine est 0 et l’extrémité z. Expliquer
pourquoi la fonction F est bien définie dans le sens où l’intégrale ne dépend pas du chemin choisi.

73.3) Montrer que

∀z ∈ U , F (z) = z

∫ 1

0

dt√
1− t4z4

et en déduire que F (iz) = iF (z), pour tout z ∈ U .
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73.4) Montrer que t 7→ 1√
1− t4

est intégrable sur [0, 1]. On note β =

∫ 1

0

dt√
1− t4

.

73.5) Montrer que lim
z→1
z∈D

F (z) = β. On notera encore F le prolongement par continuité de F à U ∪ {1}. En

particulier,
F (1) = β > 0.

73.6) Soit z = eiθ où θ ∈
]
0, π2

[
.

(i) Montrer que l’argument principal de
√
1− z4 est θ − π

4 .

(ii) En déduire que

F (z)− F (1) = e
3iπ
4

∫ θ

0

dt√
2 sin 2t

— on s’assurera de l’intégrabilité de l’intégrand de cette dernière intégrale.

(iii) On note O l’origine du plan, B le point d’affixe F (1) et Mz le point d’affixe F (z). Démontrer que l’angle

orienté de vecteurs
¤�Ä−−→
BO,

−−−→
BMz

ä
a pour mesure principale −π

4 .

73.7) En utilisant le résultat de la question 2.3, montrer que F se prolonge par continuité sur U ∪{1, i,−1,−i}
et que la restriction de F au cercle unité induit un homéomorphisme entre ∂D et ∂Cβ . Le dessin ci-dessous
résume la situation.

D

1
−→∼
F

Cβ

β

73.8) Soit w ∈ C \ ∂D. Montrer que

1

2iπ

∫
γ

F ′(z)

F (z)− w
dz = IndF◦γ(w),

où la notation IndΓ(w) désigne l’indice du point w par rapport au lacet Γ.

73.9) Montrer que la restriction de F à D induit un difféomorphisme analytique entre le disque ouvert D et
le carré ouvert Cβ .

On pourra si on veut s’appuyer sur l’assertion suivante, contenue dans les énoncés du cours et corollaire de la formule des résidus : soit f
une fonction continue sur D, holomorphe sur D et non constante. Soit aussi w ∈ C. Alors, le nombre de z ∈ D solutions de l’équation
f(z) = w, comptées avec leurs multiplicités, égale

1

2iπ

∫
γ

f ′(ζ)

f(ζ) − w
dζ.

74 Petit théorème de Picard

74.1) Montrer que |z − i|2 = |z + i|2 − 4ℑz, pour tout nombre complexe z.

74.2) Soient H = {z ∈ C, ℑz > 0} le demi-plan de Poincaré et h l’application

h : H −→ C
z 7−→ z−i

z+i .

Montrer que |h(z)| < 1, pour tout z ∈ H.
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74.3) Soient E, F et G trois ensembles et u : E → F et v : F → G deux applications. Montrer que(
v injective et v ◦ u constante

)
=⇒

(
u constante

)
.

74.4) Montrer qu’une fonction analytique C → H est nécessairement constante.

74.5) On admet l’existence d’une fonction holomorphe et injective

µ : C \ {0, 1} → H

(l’existence d’une telle fonction n’est pas élémentaire�). Montrer que toute fonction entière dont l’image est
contenue dans C \ {0, 1} est nécessairement constante.

74.6) Soient a et b deux nombres complexes distincts. Expliciter une bijection holomorphe

A : C \ {0, 1} → C \ {a, b}

dont la réciproque soit holomorphe (on pourra chercher parmi les applications polynomiales de degré 1).

74.7) Rassembler les résultats précédents pour démontrer le petit théorème de Picard qui s’énonce comme
suit.

L’image d’une fonction entière non constante est le plan complexe tout entier
ou le plan complexe privé d’un point.

75 Une équation fonctionnelle

On note S1 le cercle unité du plan complexe, et

C =

ß
z ∈ C,

1

2
< |z| < 2

™
.

Dans tout le problème, a ∈ S1 \ {1} et f : C → C est une fonction holomorphe telle que

∀z ∈ C, f(az) = f(z).

75.1) Montrer que {an, n ∈ N} est fini si, et seulement si a est une racine de l’unité, autrement dit si, et
seulement s’il existe N ∈ N∗ tel que aN = 1.

75.2) Montrer que la suite (f (an))n∈N est constante.

75.3) Montrer que si a n’est pas une racine de l’unité, alors f est constante sur C.

75.4) Le résultat subsiste-t-il si a est une racine de l’unité différente de 1 ?

75.5) Par quelle couronne centrée en 0 peut-on remplacer C pour obtenir le même résultat ?

76 Cotangente et Zeta des entiers pairs

Si z est un nombre complexe, on note cotan(z) =
cos z

sin z
la cotangente de z.

76.1) Dire pourquoi la fonction f définie par la formule

f(z) = π cotan(πz)

est méromorphe et 1-périodique sur C. Donner l’ensemble de ses pôles avec leurs multiplicités.

76.2) Calculer le résidu de f en 0.

�L’inverse d’une fonction célèbre, appelée modulaire, fournit un tel exemple et fut utilisée par Emile Picard lui-même pour
démontrer ce théorème en 1879.
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76.3) Montrer que la fonction z 7→ f(z)− 1

z
est holomorphe en 0.

76.4) Montrer que la série

g(z) =
1

z
+

+∞∑
n=1

Å
1

z − n
+

1

z + n

ã
définit une fonction holomorphe sur C \ Z.
76.5) En considérant les sommes partielles de la série de définition de g, montrer que g est 1-périodique.

76.6) En utilisant la périodicité de f et de g, montrer que f − g est une fonction entière.

76.7) Soient B = {z ∈ C, |ℑ(z)| ≤ 1} et R = B ∩
{
z ∈ C, |ℜ(z)| ≤ 1

2

}
. Dessiner B et R. Montrer que la

fonction f − g est bornée sur R. En déduire que f − g est bornée sur B.
76.8) Montrer que

∀z ∈ C \ Z, f(z) = iπ

Å
1 +

2

e2iπz − 1

ã
.

En déduire que f est bornée sur C \ B.
76.9) Montrer que g est bornée sur i[1,+∞[ — on pourra procéder à une comparaison série-intégrale. En
déduire que g est bornée sur C \ B.
76.10) Montrer que la fonction f − g est constante et en déduire la formule d’Euler

∀z ∈ C \ Z, π cotan(πz) =
1

z
+
∑
n≥1

Å
1

z − n
+

1

z + n

ã
.

76.11) Pour tout entier m ≥ 2, on note

ζ(m) =
∑
n≥1

1

nm
.

Pour tout entier non nul n, développer
z2

z2 − n2
en série entière au voisinage de l’origine. En déduire que

∀z ∈ C, |z| < 1 =⇒ πz cotan(πz) = 1− 2
∑
m≥1

ζ(2m)z2m.

76.12) Indiquer une méthode de calcul qui permet de montrer que le début du développement de Taylor de

πz cotan(πz) =
πz cos(πz)

sin(πz)
à l’origine est

πz cotan(πz) = 1− π2

3
z2 − π4

45
z4 − 2π6

945
z6 − π8

4725
z8 + · · ·

76.13) Calculer les nombres
∑
n≥1

1

n2
,
∑
n≥1

1

n4
,
∑
n≥1

1

n6
et
∑
n≥1

1

n8
sous la forme d’un nombre rationnel multiplié

par une puissance de π.
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77 Produits de Blaschke

77.1) Petit aparté général sur les produits infinis

(i) Montrer que si n est un entier naturel non nul et si z1, . . . zn sont des nombres complexes, alors

n∏
k=1

(1 + |zk|) ≤ exp

(
n∑

k=1

|zk|

)

et ∣∣∣∣∣
n∏

k=1

(1 + zk)− 1

∣∣∣∣∣ ≤
n∏

k=1

(1 + |zk|)− 1.

(ii) Soit A une partie non vide de C et (fn)n∈N une suite de fonctions A → C. Montrer que si la série de
fonctions ∑

n

(1− fn(z))

converge normalement sur A, alors la suite de fonctions(
n∏

k=0

fk(z)

)
n∈N

converge uniformément sur A vers une fonction P , que l’on note aussi

∞∏
k=0

fk(z) — on dit alors que le produit

infini
∏
n

fn(z) converge uniformément sur A. Montrer aussi que l’ensemble des zéros de P est la réunion des

zéros des fn

77.2) Produits de Blaschke

Il s’agit de construire une fonction holomorphe dont les zéros sont prescrits.

On note D le disque unité ouvert. Soit (an)n≥0 une suite de nombres complexes non nuls de D. On suppose
que la série ∑

n

(1− |an|)

converge.

(i) Montrer que la série de fonctions de z ∑
n

Å
1− |an|

an
× an − z

1− anz

ã
converge normalement sur tout compact de D.

(ii) Montrer que pour tout m ∈ N, le produit infini

B(z) = zm
∏
n≥0

Å |an|
an

× an − z

1− anz

ã
définit une fonction holomorphe sur D, à valeurs dans D, dont les zéros sont exactement 0 avec multiplicité m,
et les ak avec pour multiplicité le nombre de fois que le nombre ak apparâıt dans la suite (an)n≥0.

A noter : à vrai dire, on peut montrer que les zéros (an)n≥0 d’une fonction holomorphe sur D, bornée et non
constante vérifient nécessairement la condition

∑
n (1− |an|) < +∞. Voir par exemple le livre Analyse réelle

et complexe de W. Rudin.
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78 Les fonctions unitaires sont les produits (finis) de Blaschke

On note D = {z ∈ C, |z| < 1} le disque unité ouvert, D son adhérence topologique dans C et ∂D le cercle unité,
qui est la frontière de D.

78.1 Homographies de Blaschke

Pour tout a ∈ C, on note ha la fonction méromorphe

ha(z) =
z − a

1− az
.

78.1) Montrer que si a ̸= 0, la décomposition de la fraction rationnelle ha s’écrit

ha(z) =
1

a

Å
−1 +

1− |a|2

1− az

ã
.

En déduire les pôles de ha et calculer leurs modules.

78.2) Montrer que pour tout a ∈ D et pour tout z ∈ C,

|z| = 1 =⇒ |ha(z)| = 1.

78.3) Est-il vrai que ha(∂D) = ∂D, pour tout a ∈ D ?

78.2 Fonctions unitaires

Une appelle fonction unitaire toute fonction f continue sur D, holomorphe sur D et qui vérifie f(∂D) ⊆ ∂D.
La section qui précède montre que les homographies ha sont des fonctions unitaires lorsque a ∈ D.

78.4) Montrer que toute fonction unitaire f vérifie f
(
D
)
⊆ D.

78.5) Montrer que toute fonction unitaire et non constante a au moins un zéro dans D.
[Dans le cas où une fonction unitaire f ne s’annule pas, on pourra raisonner sur 1/f .]

78.6) On suppose que f est une fonction unitaire qui admet un unique zéro dans D, que l’on note a. On note
m la multiplicité de a en tant que zéro de f . Montrer qu’il existe un nombre complexe u, de module 1, tel que

∀z ∈ D, f(z) = u

Å
z − a

1− az

ãm

.

78.7) Montrer que l’ensemble des zéros dans D d’une fonction unitaire est fini.

78.8) En s’inspirant par exemple de la question 2.6), montrer que les fonctions unitaires non constantes sont
exactement les produits de la forme

u

n∏
k=1

Å
z − ak
1− akz

ãmk

où n,m1, . . .mn sont des entiers naturels non nuls, a1, . . . an sont des éléments distincts de D et u ∈ ∂D.

79 Une inégalité de Jensen

Soient R > 0, f une fonction définie et continue sur le disque fermé D = {z ∈ C, |z| ≤ R}, holomorphe sur le
disque ouvert D = {z ∈ C, |z| < R} et qui vérifie f(0) ̸= 0. On note z1, z2, . . . , zn les zéros de f dans D, en
prenant en compte leur multiplicités dans le sens où si un zéro de f est de multiplicité m, il apparâıt m fois
dans la liste z1, z2, . . . , zn.

L’objet de cet exercice consiste à montrer que, sous ces hypothèses, l’inégalité

|f(0)| ≤
∥f∥∂D
Rn

|z1| × |z2| × · · · × |zn| (14)

est valide, où l’on a noté ∥f∥∂D = sup {|f(z)| , |z| = R}. Dans l’hypothèse où f ne s’annulerait pas dans D,
l’assertion est vraie en convenant que n = 0 et que le produit |z1| |z2| . . . |zn| égale 1.
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79.1) Justifier rapidement que ∥f∥∂D ̸= +∞.

79.2) Quel théorème du cours permet de conclure immédiatement lorsque n = 0 ?

79.3) On note g la fonction définie sur D par

∀z ∈ D, g(z) =

n∏
k=1

R (zk − z)

R2 − zkz
.

Montrer que g est continue sur D et holomorphe sur D.

79.4) On note h = f
g . Montrer que h est continue sur D et holomorphe sur D.

79.5) Montrer que R(w−z)
R2−wz est de module 1 lorsque |z| = R et |w| < R. En appliquant le principe du module

maximum, en déduire que |h(z)| ≤ ∥f∥∂D, pour tout z ∈ D.

79.6) Calculer g(0) et en déduire l’inégalité (14).

79.7) Pour tout x ≥ 0, on note ν(x) le nombre de zéros de f dans le disque fermé {z ∈ C, |z| ≤ x}. Démontrer
que ∫ R

0

ν(x)
dx

x
≤ log ∥f∥∂D − log |f(0)| .

80 Un invariant à la Tutte

Si f et g sont deux fonctions complexes de la variable complexe, on dit que f et g sont équivalentes au
voisinage de l’infini et on note f ∼∞ g lorsque f(z)/g(z) tend vers 1 quand |z| tend vers +∞. Ainsi,
par définition,

f ∼∞ g ⇐⇒ lim
|z|→+∞

f(z)

g(z)
= 1.

80.1) Soit f une fonction entière. On suppose qu’il existe N ∈ N tel que f(z) ∼∞ zN .

(i) On note T le polynôme de Taylor à l’ordre N de f à l’origine. Ecrire T (z) en fonction de z et des dérivées
successives de f en 0.

(ii) Montrer que la fonction z 7→ f(z)− T (z)

zN+1
est entière et bornée.

(iii) En déduire que f est polynomiale.

80.2) Soit F une fonction méromorphe sur C. On suppose que F n’a qu’un nombre fini de pôles et qu’il existe
C ∈ C \ {0} et N ∈ Z tels que F (z) ∼∞ CzN .

(i) Montrer qu’il existe un polynôme P tel que z 7→ P (z)F (z) soit une fonction entière.

(ii) En déduire que F est une fraction rationnelle.

80.3) Soient D = {z ∈ C, 0 < |z| < 1} et I : C \ {0} −→ C l’application définie par la formule

I(z) = z +
1

z
.

(i) Soient z ∈ C \ {0} et w ∈ C tels que I(z) = w. Montrer que, pour tout x ∈ C,

I(x) = w ⇐⇒ x ∈
ß
z,

1

z

™
.

(ii) En déduire que I est injective sur D.

80.4) On note S1 le cercle unité de C. Montrer que I
(
S1
)
= [−2, 2] et que I(D) = C \ [−2, 2].
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80.5) Montrer que la restriction de I à D est un isomorphisme analytique entre D et C \ [−2, 2]. On note

J : C \ [−2, 2]
∼−→ D

la réciproque de cet isomorphisme analytique — autrement dit, J =
(
I|D
)−1

.

80.6) Soit M ∈ [2,+∞[. Montrer que pour tout z ∈ C,(
z ∈ D et |I(z)| ≥M

)
=⇒

(
|z| ≤ 1

M − 1

)
.

En déduire que lim
|z|→∞

J(z) = 0, puis que J(z) ∼∞
1

z
.

80.7) Soit F une fraction rationnelle à coefficients complexes telle que F (X) = F (1/X).

On admet que F ◦ J est alors une fonction méromorphe qui n’a qu’un nombre fini de pôles�.

(i) Montrer qu’il existe une fraction rationnelle G telle que

∀z ∈ D, F (z) = G

Å
z +

1

z

ã
. (15)

(ii) L’égalité (15) est-elle vraie pour tous les nombres complexes z qui ne sont pas des pôles de F ?

81 Fonction Gamma : formule des compléments

La fonction Gamma d’Euler, notée Γ, est une fonction holomorphe sur l’ouvert C\Z≤−1 qui est le complémentaire
dans C de l’ensemble des entiers strictement négatifs. Elle vérifie les trois propriétés suivantes :

(FI) ∀z ∈ C,
(
ℜ(z) > 0

)
=⇒

Ç
Γ(z) =

∫ +∞

0

tz−1e−tdt

å
(EF) ∀z ∈ C \ Z≤−1, Γ(z + 1) = zΓ(z)

(VP) Γ
(
1
2

)
=

√
π.

L’objet de cet exercice est de démontrer la formule des compléments d’Euler :

∀z ∈ C \ Z, Γ(z)Γ(1− z) =
π

sinπz

81.1) Donner un argumentaire qui justifie qu’il ne peut pas y avoir deux fonctions holomorphes sur C \ Z≤−1

distinctes qui vérifient simultanément (FI), (EF) et (VP).

81.2) Montrer que la fonction
f : z 7−→ Γ(z)Γ(1− z)

est holomorphe sur C \ Z et vérifie
∀z ∈ C \ Z, f(z + 1) = −f(z).

En déduire que f est 2-périodique.

81.3) En utilisant l’équation fonctionnelle (EF), montrer que la fonction z 7→ Γ(z) − 1

z
se prolonge en 0 en

une fonction holomorphe sur l’ouvert {z ∈ C, |ℜ(z)| < 1}.

81.4) En déduire soigneusement que la fonction d : z 7−→ Γ(z)Γ(1− z)− π

sinπz
est entière.

81.5) On note B = {z ∈ C, |ℑ(z)| ≤ 1}. Montrer que d est bornée sur {z ∈ C, |ℜ(z)| ≤ 1 et |ℑ(z)| ≤ 1}. En
déduire que d est bornée sur B.

�C’est une conséquence du théorème de Morera, par exemple.
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81.6) On note A = {z ∈ C, |ℑ(z)| ≥ 1} et g l’application

g : z 7−→ π

sinπz
.

(i) Montrer que pour tout z ∈ C,
|sin z|2 = sin2 ℜ(z) + sinh2 ℑ(z)

où ℜ(z) et ℑ(z) désignent respectivement la partie réelle et la partie imaginaire de z.

(ii) En déduire que g est bornée sur A.

81.7) En utilisant l’équation fonctionnelle (EF), montrer que Γ est bornée sur {z ∈ C, 0 ≤ ℜ(z) ≤ 1 et |ℑ(z)| ≥ 1}.
En déduire que f est bornée sur A.

81.8) Déduire des trois questions précédentes que d = f − g est bornée sur C.

81.9) Réunir les arguments des questions précédentes pour démontrer soigneusement la formule des compléments.

82 Lien entre Zeta et Gamma.

La fonction ζ de Riemann, c’est dans le cours, est la fonction holomorphe définie sur le demi-plan ouvert
P = {z ∈ C, ℜ(z) > 1} par la somme de la série

ζ(z) =

+∞∑
n=1

1

nz
.

La fonction Γ d’Euler, c’est aussi dans le cours, est la fonction holomorphe définie sur le demi-plan ouvert
Q = {z ∈ C, ℜ(z) > 0} par l’intégrale

Γ(z) =

∫ +∞

0

tz−1e−tdt.

82.1) Montrer que si z ∈ Q et si k est un entier naturel non nul,

Γ(x) = kz
∫ +∞

0

tz−1e−ktdt

82.2) En déduire que pour tout z ∈ P,

ζ(z)Γ(z) =

∫ +∞

0

tz−1

et − 1
dt.

82.3) Pour tout z ∈ Q, on a la formule�

zΓ(z) = Γ(z + 1). (16)

(i) Montrer comment (16) permet de prolonger analytiquement Γ à la bande {z ∈ C, − 1 < ℜ(z) ≤ 0} \ {0}
puis, par récurrence, à C \ Z≤0. On notera encore

Γ : C \ Z≤0 → C

ce prolongement, qui vérifie évidemment toujours l’équation fonctionnelle (16).

(ii) Pour tout a ∈ C, écrire le DSE(0) de (1 + z)a à l’aide de la fonction Γ (c’est une ré-écriture des coefficients
du binôme généralisés).

(iii) Montrer que Γ est méromorphe, a des pôles simples en tous les entiers négatifs ou nuls et montrer que les
résidus de Γ sont donnés par la formule

∀n ∈ N, Res (Γ,−n) = (−1)n

n!
.

�Classiquement, on démontre d’abord cette égalité, lorsque z est réel, en intégrant par parties — sur des intervalles compacts,
puis on passe à la limite. Ensuite, on prolonge analytiquement à Q tout entier.
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82.4) Montrer que la fonction z 7→
∫ +∞

1

tz−1

et − 1
dt est entière.

82.5) Le DSE(0) de t 7→ t
et−1 , valide sur le disque ouvert de centre 0 et de rayon 2π, s’écrit

t

et − 1
=
∑
n≥0

Bn

n!
tn = 1− 1

2
t+

1

12
t2 − 1

720
t4 +

1

30240
t6 + . . .

où les Bn sont les célèbres nombres de Bernoulli ; on montre facilement, par exemple, que B2n+1 = 0, pour
tout n ≥ 1. Montrer que pour tout z ∈ P,∫ 1

0

tz−1

et − 1
dt =

1

z − 1
+
∑
n≥1

Bn

n! (z + n− 1)
.

82.6) En déduire que la formule

ζ(z) =
1

(z − 1)Γ(z)
+

1

Γ(z)

∑
n≥1

Bn

n! (z + n− 1)
+

1

Γ(z)

∫ +∞

1

tz−1

et − 1
dt,

valide pour tout z ∈ P, permet de prolonger analytiquement ζ à C \ {0}. On notera encore

ζ : C \ {1} → C

ce prolongement. Montrer que ζ a un pôle simple en 0 et que son résidu égale 1.

82.7) Montrer que les entiers pairs strictement négatifs sont des zéros de ζ (c’en sont les zéros triviaux ).
Calculer ζ(0), ζ(−1), ζ(−3), ζ(−5).

[Voir ci-dessous un aperçu du graphe réel de ζ autour de l’origine.]

La trace réelle de ζ sur
[
−10,− 1

2

]
, puis sur [−5, 5]

A ce stade, il est impossible de ne pas énoncer la célébrissime conjecture de Riemann dont les répercussions
arithmétiques sont immenses :

Conjecture : les zéros non triviaux de ζ sont tous sur l’axe
{
z ∈ C, ℜ(z) = 1

2

}
A ce jour, cette conjecture est irrésolue, quoiqu’extrêmement explorée.
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Le chemin [0, 30] → C, t 7→ ζ
(
1
2 + it

)
Le chemin [0, 300] → C, t 7→ ζ

(
1
2 + it

)
Zoom du chemin [0, 300] → C, t 7→ ζ

(
1
2 + it

)

Le chemin [0, 100] → C, t 7→ ζ (0, 52 + it) Zoom du chemin [0, 100] → C, t 7→ ζ (0, 52 + it)
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