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LSMA621 (analyse complexe)

Analyse complexe : notes de cours

Table des matières
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1.2.3 Intégrale le long d’un chemin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.4 Indice d’un point par rapport à un lacet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.5 Vérifier la formule de Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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3 Le théorème de Cauchy global 43

4 La question des primitives et du relèvement de l’exponentielle 48
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5.1 Séries de Laurent, fonctions analytiques dans une couronne . . . . . . . . . . . . . . . . . . . . . 62
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5.2.2 Pôles, fonctions méromorphes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.3 Points singuliers essentiels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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1 Le théorème d’équivalence pour les fonctions holomorphes

Trois grands points de vue sur les fonctions complexes de la variable complexe s’avèrent être équivalents : le
point de vue de la dérivation au sens complexe, celui du développement en séries entières et enfin celui de la
formule (locale et circulaire) de Cauchy qui relie la valeur d’une fonction en un point à des intégrales curvilignes
sur des cercles entourant ledit point. Dans ce chapitre, on étudie séparément les trois aspects et on prouve
ensuite leur équivalence, qui fonde la définition et la puissance opératoire des fonctions holomorphes — dites
aussi analytiques complexes.

1.1 Dérivation au sens complexe

Dans tout ce texte, si c ∈ Z et si r ≥ 0, on note

D (c, r) = {z ∈ C, |z − c| < r}

le disque ouvert de centre c et de rayon r et

D (c, r) = {z ∈ C, |z − c| ≤ r}

son adhérence pour la topologie usuelle de C, qui est le disque fermé de centre c et de rayon r.

Exercice 1
A propos de la cohérence du vocabulaire : si r > 0, montrer que le disque ouvert de centre c et de rayon r est
un ouvert de C dont l’adhérence est le disque fermé de centre c et de rayon r.

1.1.1 Dériver au sens complexe

Définition (fonction dérivable au sens complexe)
Soient U un ouvert de C et f : U → C une application. Pour tout z0 ∈ U , on dit que f est dérivable au sens
complexe en z0 ou dérivable (tout court) en z0 lorsqu’il existe a ∈ C tel que

f(z) = f (z0) + a (z − z0) + o (z − z0) (1)

lorsque z tend vers z0 — le o est la notation petit o de Landau�. Lorsque f est dérivable au sens complexe en
tout point de U , on dit que f est dérivable au sens complexe sur U .

Exercice 2
Avec les notations de la définition, si f est dérivable en z0, alors il existe un unique nombre complexe a qui
vérifie (1).

Définition (fonction dérivée)
Avec les notations de la définition précédente, si f est dérivable en z0, l’unique nombre a qui vérifie (1) est
appelé nombre dérivé de f en z0 ; on le note f ′ (z0). Lorsque f est dérivable sur U , l’application f ′ : U → C,
z 7→ f ′(z) est la fonction dérivée de f . On note aussi indifféremment

f ′ =
df

dz
= ∂f.

A noter

(i) Dans les conditions de la définition, f est dérivable en z0 et admet a ∈ C comme nombre dérivé en z0 si, et
seulement si

lim
z→z0
z ̸=z0

f (z)− f (z0)

z − z0
= a.

Autrement dit, ∀ε > 0, ∃η > 0, ∀z ∈ U , z ∈ D (z0, η) =⇒ |f (z)− f (z0)− a (z − z0)| ≤ ε |z − z0|.
(ii) Bien sûr, toute fonction dérivable en un point est continue en ce point. Noter que cet énoncé, s’il est vrai, n’a
pas grand intérêt : quel sens cela aurait-il de se poser la question de la dérivabilité en un point d’une application
non continue en ledit point ?

�Edmund Landau, 1877–1938
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Exemples

(i) Les règles opératoires de la dérivation des fonctions réelles de la variable réelle sont encore valides pour la
dérivation au sens complexe. Notamment, sans entrer dans le détail des notations évidentes, la dérivée d’une
fonction constante est la fonction nulle, (f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′, (f ◦ g)′ = (f ′ ◦ g) × g′. En
particulier, toute fonction rationnelle est dérivable hors de ses pôles, avec les formules usuelles de dérivation.

(ii) Soit (fn)n∈N une suite de fonctions complexes dérivables sur un ouvert U de C. On suppose que A est une
partie de U sur laquelle la suite (fn)n∈N converge simplement vers une application g : A→ C et sur laquelle la
suite (f ′

n)n∈N converge uniformément. Alors g est dérivable en tout point de A et f ′
n(z) tend vers g′(z) lorsque

n tend vers +∞.

Cette assertion s’étend bien sûr au cas des séries de fonctions. Dans ce cadre, on retiendra le cas des séries de
fonctions dérivables dont la série des dérivées converge normalement — donc uniformément — sur A.

Ces énoncés généralisent les théorèmes standard de dérivation des limites (ou des sommes) de fonctions dérivables
de la variable réelle, dont les preuves s’adaptent immédiatement. En particulier, la convergence uniforme sur
tout compact de U de la suite des dérivées permet de conclure à la dérivabilité de la limite, puisque la dérivabilité
est une notion locale — prendre pour A n’importe quel compact de U , ou encore les éléments d’une suite de
compacts dont la réunion recouvre U .

Cela dit, on le verra plus bas, la dérivation des limites de fonctions dérivables au sens complexe fait l’objet
d’énoncés dont les hypothèses sont plus faibles : il suffit que la suite de fonctions dérivables converge uni-
formément sur une partie A pour que la limite soit dérivable sur A et pour que la limite de la dérivée soit la
dérivée de la limite. L’ingrédient essentiel de cette simplification des hypothèses est la formule de Cauchy�.

(iii) Une fonction f : z 7→
∞∑

n=0

anz
n définie par une série entière de rayon R > 0 est dérivable sur son disque de

convergence D (0, R), et la dérivation se fait terme à terme : f ′(z) =

∞∑
n=0

(n+1)an+1z
n, pour tout z ∈ D (0, R).

En effet, la série des dérivées est une série entière de même rayon R. Elle converge donc normalement sur tout
disque fermé contenu dans D (0, R) : on peut appliquer le théorème de dérivation des séries au voisinage de
chaque point de D (0, R), puisque tout point de D (0, R) est contenu dans un disque fermé D (0, r), 0 < r < R,
lui-même contenu dans D (0, R) — on pourra se référer au mémento sur les séries entières.

Exercice 3
Démontrer avec soin toutes les assertions ci-dessus.

Proposition (l’exponentielle)

La fonction exponentielle exp : C→ C, définie par la somme de la série entière de rayon infini

exp(z) = ez =

∞∑
n=0

zn

n!

est dérivable au sens complexe, et exp′(z) = exp(z), pour tout z ∈ C.

Preuve. Elle est dérivable au sens complexe en tant que fonction entière — une fonction entière est une
fonction définie par une série entière de rayon infini. Sa dérivée, qui se calcule donc terme à terme, est exp′(z) =∑∞

n=0(n+1) 1
(n+1)!z

n = exp(z), selon le (iii) des Exemples ci-dessus. [Lire, pour davantage de détails, les toutes

premières pages du livre Real and complex analysis de Walter Rudin, qui sont entièrement et brillamment
consacrées à l’exponentielle.]

Exemples
Les fonctions trigonométriques et trigonométriques hyperboliques sont aussi dérivables sur C. Elles vérifient les
formules valides pour tout z ∈ C :

cosh z
def
=

ez + e−z

2
=

∞∑
n=0

z2n

(2n)!
et sinh z

def
=

ez − e−z

2
=

∞∑
n=0

z2n+1

(2n+ 1)!
,

�Augustin-Louis Cauchy, 1789–1857

N. Pouyanne, UVSQ 2026, LSMA621 3



cos z
def
=

eiz + e−iz

2
=

∞∑
n=0

(−1)nz2n

(2n)!
et sin z

def
=

eiz − e−iz

2i
=

∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
,

cosh′ = sinh, sinh′ = cosh, cos′ = − sin et sin′ = cos .

Exercice 4
Démontrer les célèbres formules valables pour tous x, y ∈ C : cosh2 x− sinh2 x = 1

cosh(x+ y) = coshx cosh y + sinhx sinh y
sinh(x+ y) = sinhx cosh y + coshx sinh y

 cos2 x+ sin2 x = 1
cos(x+ y) = cosx cos y − sinx sin y
sin(x+ y) = sinx cos y + cosx sin y

En inventer d’autres — jouer sur la parité de ces fonctions, écrire coshnz en fonction de coshx et de sinhx
lorsque n ∈ N, trouver des formules faisant intervenir tanh z = sinh z

cosh z et tan z = sin z
cos z , etc. On pourra économiser

sa peine en notant que ∀z ∈ C, cos z = cosh(iz) et sin z = −i sinh(iz).

1.1.2 Eléments de connexité

Exercice 5
Soient U = D (−2, 1) ∪D (2, 1) et f : U → C définie par : ∀z ∈ D (−2, 1) , f(z) = 0 et ∀z ∈ D (2, 1) , f(z) = 1.
Dessiner U . Montrer que f est continue et même dérivable, et que f ′(z) = 0, pour tout z ∈ U — pourtant, f
n’est pas constante.

Définition (connexité d’une partie de C)
Soit A une partie de C. On dit que A est connexe lorsque A ne rencontre pas deux ouverts disjoints et non
vides dans la réunion desquels il est inclus. Autrement dit, A est connexe si, et seulement si pour tous U, V
ouverts non vides de C, (

A ⊆ U ∪ V et U ∩ V = ∅
)
=⇒

(
A ⊆ U ou A ⊆ V

)
.

A noter
C’est la formalisation de l’idée d’une partie “en un seul morceau”. Ce que l’on dit ici sur la connexité est loin de
faire le tour de la notion. Il s’agit d’introduire le concept et d’en dégager les premiers mécanismes opératoires.
En particulier, la notion de topologie induite, qui permet pourtant de bien asseoir la connexité et de simplifier
les raisonnements, est absente du présent discours.

Exemples

(i) L’ensemble vide et C sont connexes (sans blague !).

(ii) L’union D (−2, 1) ∪D (2, 1) n’est pas connexe.

Proposition (caractérisation de la connexité)

Soit A ⊆ C. Les assertions suivantes sont équivalentes.

(i) A est connexe

(ii) Toute application continue A→ {0, 1} est constante.
Preuve. Si A est vide, il n’y a pas grand chose à montrer ; on suppose que A n’est pas vide.
(i)⇒ (ii), par contraposition : on suppose qu’une application continue f : A→ {0, 1} n’est pas constante. On
note U = f−1 ({0}) et V = f−1 ({1}) ; ce sont deux parties disjointes de C dont la réunion contient A — et
même égale A. Puisque f n’est pas constante, U et V sont non vides et A n’est inclus ni dans U ni dans V .
Par ailleurs, comme U = f−1

(
D
(
0, 1

2

))
et V = f−1

(
D
(
1, 1

2

))
, en tant qu’images inverses d’ouverts par une

application continue, U et V sont deux ouverts de C. On a trouvé deux ouverts non vides disjoints qui, chacun,
rencontrent A : on a montré que A n’est pas connexe.
(ii) ⇒ (i) On suppose que toute application continue A → {0, 1} est constante. Soient U et V deux ouverts
disjoints non vides de C tels que A ⊆ U ∪ V . Soit f : A → {0, 1} l’application définie par f(a) = 0 si a ∈ U
et f(a) = 1 si a ∈ V ; noter que cette application n’est bien définie que parce que U et V sont disjoints. On
montre que f est continue sur A. Soit a ∈ A. Puisque A ⊆ U ∪ V , on suppose pour commencer que a ∈ U .
Comme U est ouvert, soit r > 0 tel que D (a, r) ⊆ U . Alors, f(z) = 0 pour tout z ∈ D (a, r)∩A ; en particulier,
|f(z)− f(a)| = 0 ≤ ε pour tout ε > 0 (!). Cela montre que f est continue en a. De la même façon, si a ∈ V ,
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on montre que f est continue en a : on a montré que f est continue sur A. En appliquant l’hypothèse, on en
déduit que f est constante, ce qui montre que A ⊆ U ou A ⊆ V .

Exercice 6
Soit F une partie finie de C ayant au moins deux éléments. Montrer que A est connexe si, et seulement si toute
application continue A→ F est constante.

Exercice 7
Montrer que si U et V sont deux parties connexes non disjointes, alors U ∪ V est encore connexe.

Corollaire (l’intervalle [0, 1] est connexe)
L’intervalle [0, 1] est connexe.

Preuve. En effet, soit f : [0, 1] → {0, 1} une application continue. Quitte à remplacer f par 1 − f , on
peut supposer que f(0) = 0. Alors, {x ∈ [0, 1], f(x) = 0} est une partie non vide de R : elle admet une borne
supérieure. On note m = sup {x ∈ [0, 1], f(x) = 0}. Puisque f est continue, f(m) = 0. On suppose que m < 1 ;
alors, f(x) = 1 pour tout x ∈ ]m, 1] ce qui entrâıne, toujours par continuité de f , que f(m) = 1 empêchant
l’hypothèse m < 1 de tenir. Ainsi, m = 1 et f est la fonction constante égale à 0 sur [0, 1] : on a montré que
[0, 1] est connexe.

Proposition (théorème des valeurs intermédiaires)

Si A ⊆ C est connexe et si f : A→ C est continue, alors f(A) est connexe.

Preuve. Soit c : f(A) → {0, 1} une application continue. Alors, c ◦ f : A → {0, 1} est aussi continue, donc
constante puisque A est connexe. Donc c est constante.

Le slogan : l’image continue d’un connexe est encore connexe.

Exercice 8
Pourquoi appeler ce théorème “théorème des valeurs intermédiaires” alors qu’un théorème du même nom est
connu depuis le lycée, dont l’énoncé ne ressemble pas tout à fait à celui-ci ?

Définition (segment de C) Si a, b ∈ C, le segment [a, b] est [a, b] = {(1− t)a+ tb, t ∈ [0, 1]}.
A noter
Dans le plan complexe, [a, b] est la portion de droite (réelle) comprise
entre a et b, ces deux points étant inclus. On peut voir le point
(1− t)a+ tb comme le barycentre de a et b affecté des poids respectifs
1 − t et t. Considérer par exemple le milieu de [a, b], atteint lorsque
t = 1

2 .
e−

3iπ
4

e
iπ
6

Le segment
î
e−

3iπ
4 , e

iπ
6

ó
Exercice 9
Définir, dans la même veine, ce que seraient ]a, b[, ]a, b] et [a, b[, lorsque a ̸= b.

Exercice 10
Tout segment est connexe — le voir comme image continue du connexe [0, 1].

Définition (partie convexe de C)
Soit C ⊆ C. On dit que C est convexe lorsque ∀x, y ∈ C,

x, y ∈ C =⇒ [x, y] ⊆ C.

A noter
C’est l’idée d’une partie “sans concavité”. Une métaphore : A est convexe lorsque de tout point de A, on peut
voir tous les points de A. Dans les dessins sans paroles ci-dessous, un haricot n’est pas convexe, une couronne
non plus, deux disques disjoints non plus.
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Exercice 11
Les disques du plan complexe sont convexes.

Définition (partie étoilée de C)
Soit E ⊆ C. On dit que E est étoilée lorsqu’il existe c ∈ E tel que ∀x ∈ C,

x ∈ E =⇒ [c, x] ⊆ E.

A noter
Le vocabulaire parle de lui-même : il existe un point de E d’où l’on voit tous les points de E. On appellera un
tel point un centre de l’étoilé. Voici quelques dessins sans paroles d’étoilés de C. Bien sûr, tout convexe non
vide est étoilé.

Proposition (Les disques, les convexes et les étoilés sont connexes)

(i) Tout disque de C est connexe.

(ii) Soit C une partie convexe de C. Alors, C est connexe.

(iii) Soit E une partie étoilée de C. Alors, E est connexe.

Preuve. Il suffit de montrer que tout étoilé est connexe, puisque les disques sont convexes et les convexes sont
étoilés. Soit ainsi E une partie étoilée et c un centre de E, c’est-à-dire une point de E qui vérifie : ∀x ∈ E,
[c, x] ⊆ E. Soit aussi f : E → {0, 1} une application continue. Quitte à remplacer f par 1−f , on peut supposer
que f(c) = 0. Soit x ∈ E. La restriction de f au segment [c, x] est encore continue ; puisque [c, x] est connexe,
alors f est constante sur ce segment : f(x) = f(c) = 0. Ainsi, f(x) = 0 pour tout x ∈ E : on a montré que E
est connexe.

Proposition (fonctions à dérivée nulle)

Soient U un ouvert connexe de C et f : U → C une application dérivable. On suppose que f ′(z) = 0, pour tout
z ∈ C. Alors, f est constante sur U .

Preuve. 1○ On montre d’abord que pour tout x ∈ U , il existe r > 0 tel que f(z) = f(x) pour tout z ∈ D (x, r).
Soit x ∈ U . Puisque U est ouvert, soit r > 0 tel que D (x, r) ⊆ U . Soit alors y ∈ D (x, r). L’application
φ : [0, 1] → C, t 7→ f ((1− t)x+ ty) est une fonction dérivable de la variable réelle (à valeurs complexes), bien
définie puisque D (x, r) est un convexe inclus dans U . En outre, φ′(t) = (y−x)f ′ ((1− t)x+ ty) = 0, pour tout
t ∈ [0, 1]. Alors, en tant que fonction à dérivée nulle sur un intervalle, φ est constante — c’est une conséquence
de la célèbre inégalité des accroissements finis. En particulier, φ(0) = φ(1), ce qui s’écrit encore f(x) = f(y).
On a montré que f est constante sur D (x, r).
2○ Fin de la preuve. Si U est vide, c’est idiot. On suppose que U est non vide ; soit x ∈ U . Soient alors
V = {z ∈ U, f(z) = f(x)} et W = {z ∈ U, f(z) ̸= f(x)}. Alors, V n’est pas vide (il contient x) et U = V ∪W .
Comme f est localement constante — c’est ce qu’on vient de montrer en 1○ —, V est ouvert. Par ailleurs,
puisque f est continue (elle est même dérivable), W = f−1 (C \ {f(x)}) est également ouvert. Comme U est
connexe, cela impose que W = ∅, c’est-à-dire que f est constante, égale à f(x) sur U .

A noter
Une application f : U → C est dite localement constante lorsque pour tout u ∈ U , il existe r > 0 tel que f
soit constante — nécessairement égale à f(u) — sur U ∩D (u, r). Une façon de décrire la preuve : on montre
qu’une application de dérivée nulle est localement constante, ce qui implique qu’elle est constante puisque U
est connexe.

Exercice 12 (composantes connexes)
Soit A une partie de C. On définit sur A la relation binaire suivante : a ∼ b si, et seulement s’il existe une
partie connexe de A qui contienne à la fois a et b.
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(i) Montrer que ∼ est une relation d’équivalence sur A.

(ii) Les classes d’équivalences de ∼ sont appelées les composantes connexes de A. Les composantes connexes
de A formalisent l’idée des “morceaux” de A. Montrer que si E est un ensemble, toute application A → E
localement constante sur A est constante sur chaque composante connexe de A.

(iii) Montrer qu’une application A→ {0, 1} est localement constante si, et seulement si elle est continue.

1.2 Formule de Cauchy

1.2.1 Chemins et lacets, support

Définition (chemin et lacet)
Un chemin est une application continue γ : [a, b]→ C, de classe C1 par morceaux et dont la dérivée est bornée, où
a et b sont des nombres réels, a < b. Autrement dit, une telle application γ est un chemin lorsqu’elle est continue
et lorsqu’il existe un entier naturel n et des nombres réels c0, . . . cn+1 tels que a = c0 < c1 < · · · < cn < cn+1 = b,
la restriction de γ à chaque intervalle ]ck, ck+1[ est continûment dérivable et il existe M > 0 tel que |γ′(t)| ≤M ,
pour tout t ∈ [a, b] \ {c0, . . . cn+1}. Les nombres γ(a) et γ(b) sont les bouts du chemin ; s’il faut détailler, on
dira que γ(a) est l’origine du chemin et γ(b) son extrémité.
Avec ces notations, lorsque γ(a) = γ(b), on dit que le chemin est un lacet. Autrement dit, un lacet est un
chemin dont l’origine et l’extrémité sont confondues.
Le support d’un chemin est son image ; on le note Supp(γ) = γ ([a, b]).

A noter

(i) L’hypothèse sur le caractère borné de la dérivée d’un chemin assure qu’un chemin est un arc rectifiable, ce
qui signifie qu’il a une longueur finie. Plus précisément, avec les notations de la définition, lorsque γ est de
classe C1, on définit la longueur de γ comme étant le nombre

Long(γ) =

∫ b

a

|γ′(t)| dt. (2)

Dans le cas général des chemins, avec les notations de la définition, la longueur de γ est

Long(γ) =

n∑
k=0

∫ ck+1

ck

|γ′(t)| dt.

Bien sûr, on a toujours la majoration grossière Long(γ) ≤M(b− a).

(ii) De façon plus générale, un chemin de l’espace euclidien Rd, d ≥ 1, est une application continue [a, b]→ Rd,

de classe C1 par morceaux et à dérivée bornée. Sa longueur est alors

∫ b

a

∥γ′(t)∥2 dt.

Exercice 13
Montrer, en approchant un arc par des lignes polygonales et en utilisant l’intégrale au sens de Riemann�, que
l’intégrale de la formule (2) correspond bien à ce que l’on attend de la longueur d’un chemin (exercice long, à
documenter à partir d’un livre ou d’un autre texte de référence s’il le faut).

Exemples

(i) Cercles et arcs de cercles
Si c ∈ C et si r ≥ 0, le cercle de centre c et de rayon r est {z ∈ C, |z − c| = r}. Un paramétrage du “cercle de
centre c, de rayon r, parcouru une fois dans le sens direct” est le chemin (c’est un lacet)

C(c, r) : [0, 2π] −→ C
t 7−→ c+ reit.

(3)

De façon générale, si θ1 ≤ θ2, le chemin [θ1, θ2] → C, t 7→ c + reit est un paramétrage de l’arc de cercle de
centre c et de rayon r compris entre les angles (orientés) θ1 et θ2, parcouru dans le sens direct.

�Bernhard Riemann, 1826–1866
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Les lacets suivants ont le même support :

(a) t ∈ [0, 2π] 7→ c+ re−it qui est le “cercle de centre c, de rayon r, parcouru une fois dans le sens indirect”

(b) t ∈ [0, 4π] 7→ c+ reit qui est le “cercle de centre c, de rayon r, parcouru deux fois dans le sens direct”

(ii) Segments
Si u, v ∈ C, le segment [u, v], on l’a vu, est {(1− t)u+ tv, t ∈ [0, 1]}. Un paramétrage du “segment d’origine u
et d’extrémité v” est le chemin

S(u, v) : [0, 1] −→ C
t 7−→ (1− t)u+ tv = u+ t(v − u).

(4)

De la même façon, le chemin S(v, u) est un paramétrage du “segment d’origine v et d’extrémité u”.

(iii) Un paramétrage du carré unité parcouru une fois dans le sens direct est le chemin γ : [0, 4]→ C défini par :

γ(t) =


t si 0 ≤ t ≤ 1

1 + i(t− 1) si 1 ≤ t ≤ 2

1 + i− (t− 2) si 2 ≤ t ≤ 3

i− i(t− 3) si 3 ≤ t ≤ 4

(iv) Sans parole.

c

c+ rei
π
4

c− r

c+ re
3iπ
2

r

0 1

1 + ii

Exercice 14
Avec la notion (définitive) de longueur établie au (i) du A noter de la page 7, calculer le périmètre d’un disque
de rayon r.

Exercice 15
Exprimer la longueur de l’ellipse de grand axe a et de petit axe b, où 0 < b < a, sous la forme d’une intégrale.
Cette ellipse, lorsqu’elle a l’origine pour centre et lorsque ses axes sont parallèles aux axes de coordonnées, est¶
(x, y), x2

a2 + y2

b2 = 1
©
. Un paramétrage de cette ellipse “parcourue une fois dans le sens direct” en est le chemin

t ∈ [0, 2π] 7→ a cos t+ ib sin t.

Une forme possible de l’écriture de cette longueur est a

∫ 2π

0

√
1 − e2 cos2 tdt où e =

√
1 − b2

a2 est l’excentricité de l’ellipse. Ne pas chercher,

lorsque a ̸= b, à calculer cette intégrale en cherchant une primitive de l’intégrand qui s’exprimerait à l’aide de fonctions usuelles. Une telle
primitive n’existe pas, c’est un théorème qui dépasse le cadre de ce cours. Dans le jargon consacré, on tombe sur une intégrale elliptique
(c’est malin !).

Exercice 16
Si r > 0, calculer la longueur de la portion de parabole d’équation y = x2 comprise entre les points d’abscisses
0 et r (petit exercice de calcul de primitives).

r
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Exercice 17

Calculer la longueur de la célèbre châınette, graphe de l’application
[−a, a] → R, x 7→ r cosh

(
x
r

)
où a, r > 0. La châınette est, selon

le modèle étudié dans le courant du XVIIe et devenu standard, la
courbe que suit un câble pendu par ses extrémités et soumis à son
seul propre poids — le paramètre r est une constante qui dépend
des caractéristiques physiques du câble, on voit ce que représente a.
Dans le dessin ci-contre, a = 4 et r = 2. En pointillés, est dessiné
le graphe de la parabole passant par les bouts et le sommet de
la châınette. On a pu croire un temps, à tort, dans l’histoire des
sciences, avant d’avoir développé le calcul infinitésimal, que le câble
prenait la forme de cette parabole.

Définition (chemins équivalents, changement de paramétrage)
Soient γ0 : [a, b]→ C et γ1 : [c, d]→ C deux chemins. On dit que γ0 et γ1 sont équivalents (on ajoute parfois et
de même orientation) lorsqu’il existe un C1-difféomorphisme φ : [a, b]→ [c, d] croissant tel que γ0 = γ1 ◦ φ. On
dit parfois que φ est un changement (croissant) de paramètre dans le chemin γ1.

A noter

(i) Un C1-difféomorphisme entre [a, b] et [c, d] est une application de classe C1, bijective, dont la réciproque est
également de classe C1. Une application φ : [a, b] → [c, d] surjective, strictement croissante et de classe C1 est
un C1-difféomorphisme entre [a, b] et [c, d] dès lors que sa dérivée est strictement positive sur [a, b]. Dans le
contexte de la définition précédente, sa réciproque peut être vue comme un changement de paramètre dans γ0.

(ii) Cela définit une relation d’équivalence sur l’ensemble des chemins de C.
(iii) Deux chemins équivalents ont le même support. Mieux que cela, en termes cinématiques, deux chemins
équivalents parcourent leur support commun en passant et repassant par les mêmes endroits et dans le même
sens, mais à des vitesses éventuellement différentes.

(iv) Dans la définition, la croissance sert seulement à assurer que γ0 et γ1 ont la même origine et la même
extrémité, tout en n’écrivant les intervalles de départ des chemins que sous le forme [a, b] avec a ≤ b. Par
exemple, les chemins γ : [a, b] → C et t ∈ [a, b] 7→ γ (a+ b− t) ne sont en général pas équivalents puisqu’ils
échangent leurs origines et leurs extrémités.

Définition (chemin standard)
Un chemin standard est un chemin dont l’intervalle de départ est [0, 1].

Définition (version standard d’un chemin)
On suppose a < b. En composant un chemin γ : [a, b]→ C par la paramétrisation standard S(a, b) : [0, 1]→ [a, b],
t 7→ (1 − t)a + tb du segment [a, b] qui est un C1-difféomorphisme croissant, on obtient le chemin γ ◦ S(a, b)
paramétré par [0, 1] qui est la version standard de γ.

Définition (concaténation des chemins)

(i) (les intervalles de définitions s’aboutent)
Soient γ0 : [a, b] → C et γ1 = [b, c] → C deux chemins. On suppose que l’extrémité de γ0 égale l’origine de γ1,
assavoir γ0(b) = γ1(b). Le chemin concaténé de γ0 et γ1 est le chemin

γ0γ1 : [a, c] −→ C

t 7−→
®

γ0(t) si a ≤ t ≤ b

γ1(t) si b < t ≤ c.

(ii) (situation générale)
Soient γ0 : [a, b] → C et γ1 = [c, d] → C deux chemins. On suppose que l’extrémité de γ0 égale l’origine de γ1,
savoir γ0(b) = γ1(c). La concaténation de γ0 et γ1 est le chemin concaténé de γ0 et du chemin [b, b+d− c]→ C,
t 7→ γ1(t+ c− b) ; on note encore γ0γ1.

Exercice 18 L’application γ0γ1 est bien un chemin de C.
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A noter

(i) Le chemin γ0γ1 est la formalisation de l’idée : on parcourt γ0, puis γ1, dans cet ordre.

(ii) Si γ0, γ1 et γ2 sont des chemins dont les bouts sont compatibles — dans un sens évident —, on a
l’“associativité” (γ0γ1) γ2 = γ0 (γ1γ2). On note alors γ0γ1γ2 ce chemin, que l’on pourrait aussi définir di-
rectement, sur le mode de la définition de γ0γ1, en faisant une disjonction de trois cas selon la valeur de t.

Exercice 19
Ecrire explicitement une paramétrisation de la concaténation γ0γ1 de deux chemins γ0 : [a, b] → C et γ1 :
[c, d]→ C tels que γ0(b) = γ1(c).

Lemme (version standard du concaténé de deux chemins standard)

Soient γ0 et γ1 deux chemins standard, tels que γ0(1) = γ1(0). Alors, la version standard du concaténé γ0γ1 est
l’application

γ : [0, 1] −→ C

t 7−→

{
γ0 (2t) si 0 ≤ t ≤ 1

2

γ1 (2t− 1) si 1
2 ≤ t ≤ 1.

Preuve. Il s’agit de concaténer le chemin γ0 : [0, 1] → C et le chemin ‹γ1 : [1, 2] → C, t 7→ γ1(t − 1), puis de
standardiser γ0‹γ1 : [0, 2]→ C. Cette dernière standardisation revient à composer par S(0, 2) : t 7→ 2t.

1.2.2 Homotopie des chemins

C’est une notion importante pour les affaires de fonctions holomorphes, qui ne sont pas encore définies à ce
point mais qui font l’objet de tout le chapitre. Ce que la définition formalise, c’est que deux chemins dans une
partie de C sont homotopes lorsqu’on peut déformer continûment l’un sur l’autre en restant dans la partie et
en gardant les bouts fixes.

Définition (chemins homotopes)

(i) (Chemins standard)
Soient A une partie de C et γ0, γ1 : [0, 1]→ A deux chemins dont le support est dans A et ayant les mêmes bouts
— autrement dit, γ0(0) = γ1(0) et γ0(1) = γ1(1). On dit que γ0 et γ1 sont A-homotopes ou encore homotopes
dans A lorsqu’il existe une application continue H : [0, 1]2 → A telle que :

1) ∀t ∈ [0, 1], H(0, t) = γ0(t) — le chemin de départ H(0, ·) est γ0
2) ∀t ∈ [0, 1], H(1, t) = γ1(t) — le chemin d’arrivée H(1, ·) est γ1
3) ∀s ∈ [0, 1], H(s, 0) = γ0(0) = γ1(0) et H(s, 1) = γ0(1) = γ1(1) — tous les “chemins” H(s, .) ont la même
origine et la même extrémité.

(ii) (Cas général)
Deux chemins quelconques de A sont dits A-homotopes lorsque leurs versions standard le sont.

A noter

(i) Lorsqu’elle existe, une telle application H est une (A-)homotopie entre les chemins γ0 et γ1.

(ii) Les guillemets autour du mot chemin dans le 3) de la définition viennent du fait qu’on ne suppose pas que
les applications t 7→ H(s, t), s ∈]0, 1[ soient de classe C1 par morceaux.

(iii) On peut se représenter les chemins H(s, ·) comme des déformations continues de γ0. A ce titre, dans la
notation H(s, t), on peut voir s comme étant la variable de déformation (des chemins), la variable t étant la
variable de paramétrisation (des chemins déformés).

Exemples

(i) Dans C, on considère les deux chemins γ0 et γ1 respectivement définis sur [0, 1] par : pour tout t ∈ [0, 1],

γ0(t) = eiπt et γ1(t) = e−iπt.
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Leurs supports sont respectivement l’hémicercle (unité) nord et l’hémicercle
sud. Les chemins γ0 et γ1 ont tous les deux 1 pour origine et −1 = e−iπ

pour extrémité. En outre, ils sont C-homotopes. Par exemple, l’application
H(s, t) = (1 − s)eiπt + se−iπt est une C-homotopie entre les chemins γ0 et γ1
— pour la construire, on a simplement pris pour H(s, t) le barycentre de γ0(t)
et de γ1(t) affecté des poids respectifs 1− s et s.

1−1

γ0

γ1

En revanche, H ainsi définie n’est pas une C \ {0}-homotopie entre les chemins γ0 et γ1, puisque H
(
1
2 ,

1
2

)
= 0 :

le chemin H
(
1
2 , ·
)
passe par l’origine. A vrai dire, les chemins γ0 et γ1 ne sont pas homotopes dans C \ {0}. On

aura une argumentation très simple de cela une fois l’intégration des fonctions holomorphes le long de chemins
mise en place. Cette non-homotopie formalise l’idée que pour déformer continûment le demi-cercle nord sur le
demi-cercle sud en fixant l’est et l’ouest, on doit passer par l’origine à un moment.

(ii) On note Q(0, 1) le lacet standard qui paramétrise le carré {z ∈ C, |ℜz|+ |ℑz| = 1} parcouru une fois dans
le sens direct à partir de 1, en concaténant les segments S(1, i), S(i,−1), S(−1,−i) et S(−i, 1) dans cet ordre
— notation (4). On note aussi CS(0, 1) le chemin standardisé du cercle C(0, 1). Autrement dit, pour tout
t ∈ [0, 1],

Q(0, 1)(t) =


1 + 4t(i− 1) si 0 ≤ t ≤ 1/4

i+ 4
(
t− 1

4

)
(−1− i) si 1/4 ≤ t ≤ 1/2

−1 + 4
(
t− 1

2

)
(−i+ 1) si 1/2 ≤ t ≤ 3/4

−i+ 4
(
t− 3

4

)
(1 + i) si 3/4 ≤ t ≤ 1

et CS(0, 1)(t) = e2iπt.

1

i

Alors, l’application H = [0, 1]2 → C définie par

∀(s, t), H(s, t) = (1− s)Q(0, 1)(t) + sCS(0, 1)

est une C-homotopie entre le carré Q(0, 1) et le cercle CS(0, 1).

Dans le jargon ordinaire, lorsqu’il n’y a pas d’ambigüıté, on dira abusivement que le cercle et le carré sont
homotopes, sans expliciter les détails techniques ci-dessus qui, tout à la fois, apportent un sens précis et une
preuve à l’assertion.
Par ailleurs, si D est n’importe que sous-ensemble de l’“intérieur” du carré {z ∈ C, |ℜz|+ |ℑz| < 1}, le raison-
nement ci-dessus montre que le cercle et le carré sont aussi C \D-homotopes.

Exercice 20
Montrer que le graphe de n’importe quelle fonction f : [a, b] → R de classe C1 par morceaux et vérifiant
f(a) = f(b) = 0 est homotope dans C (ou dans R2) au segment [a, b] — noter, dans cet énoncé, qu’en l’absence
d’ambigüıté du contexte, on étend abusivement la notion d’homotopie de deux chemins à celle de leurs supports.

Proposition (les chemins constants sont homotopiquement neutres pour la concaténation)

Soient A une partie de C et γ un chemin d’origine u et d’extrémité v. On note cu : [0, 1] → A, t 7→ u le lacet
(standard) constant égal à u. Alors, les chemins γ et les concaténés cuγ et γcv sont tous homotopes.

Preuve. On peut supposer que γ est un chemin standard. Alors, la version standard du concaténé cuγ est
l’application [0, 1]→ A, t 7→ u si 0 ≤ t ≤ 1

2 ou t 7→ γ(2t− 1) si 1
2 ≤ t ≤ 1 et on vérifie aisément que l’application

F : [0, 1]2 −→ A

(s, t) 7−→

 u si 0 ≤ t ≤ s
2

γ
Ä
2t−s
2−s

ä
si s

2 ≤ t ≤ 1

est une A-homotopie de γ vers cuγ. Dans la zone grisée
du dessin, l’homotopie F est constante égale à u. s

t

Le fait que γ et γcv soient homotopes est du même acabit.
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Proposition (un aller-retour est homotope à zéro)

Soient A une partie de C et γ : [a, b]→ A un chemin de A, d’origine u = γ(a) et d’extrémité v = γ(b). On note
γ−1 l’application t ∈ [a, b] 7→ γ(a+ b− t). Alors,

(i) γ−1 est un chemin de A d’origine v et d’extrémité u, que l’on nomme chemin inverse de γ ;

(ii) le concaténé γγ−1 est un lacet homotope au lacet (standard) constant cu : [0, 1]→ A, t 7→ u ;

(iii) le concaténé γ−1γ est un lacet homotope au lacet (standard) constant cv : [0, 1]→ A, t 7→ v.

Preuve. (i) est immédiat. Pour (ii) et (iii), on peut supposer que γ est standard, c’est-à-dire que [a, b] = [0, 1].
Alors, γ−1(t) = γ(1 − t), pour tout t ∈ [0, 1]. La version standard de γγ−1 est t 7→ γ(2t) si 0 ≤ t ≤ 1

2 ou
t 7→ γ(2− 2t) si 1

2 ≤ t ≤ 1 et on vérifie aisément que l’application

F : [0, 1]2 −→ A

(s, t) 7−→


γ(2t) si 0 ≤ t ≤ 1−s

2

γ(1− s) si 1−s
2 ≤ t ≤ 1+s

2

γ(2− 2t) si 1+s
2 ≤ t ≤ 1

est une A-homotopie de γγ−1 vers cu. s

t

Le fait que γ−1γ soit homotope à cv est du même acabit.

Exercice 21
Soit A une partie de C et soient u et v dans A. Dans l’ensemble de chemins (standards) de A d’origine u et
d’extrémité v, montrer que la relation de A-homotopie est une relation d’équivalence. Pour cette relation, la
classe d’un chemin est la classe d’homotopie dudit chemin.

Proposition (l’homotopie est compatible avec la concaténation)

Soient γ0, γ
′
0, γ1 et γ′

1 quatre chemins standard d’une partie A de C. On suppose que

(i) γ0 et γ′
0 sont A-homotopes et que γ1 et γ′

1 sont A-homotopes ;

(ii) l’extrémité commune de γ0 et γ′
0 égale l’origine commune de γ1 et γ′

1.

Alors, les concaténés γ0γ1 et γ′
0γ

′
1 sont A-homotopes.

Preuve. Soient F0 : [0, 1]2 → A une homotopie de γ0 vers γ′
0 et F1 : [0, 1]2 → A une homotopie de γ1 vers γ′

1.
Alors, on vérifie immédiatement que l’application

F : [0, 1]2 −→ A

(s, t) 7−→

{
F0(s, 2t) si 0 ≤ t ≤ 1

2

F1(s, 2t− 1) si 1
2 ≤ t ≤ 1

est une A-homotopie de γ0γ1 vers γ′
0γ

′
1, sa continuité en un point de la forme

(
s, 1

2

)
venant du fait que∣∣F (s, 1

2

)
− F (s, t)

∣∣, qui égale ∣∣F0

(
s, 1

2

)
− F0(s, t)

∣∣ si t ∈ [0, 1
2

]
ou
∣∣F1

(
s, 1

2

)
− F1(s, t)

∣∣ si t ∈ [ 12 , 1], tend toujours
vers 0 lorsque t tend vers 1

2 — exprimer cela “avec des epsilons” pour une traduction parfaitement rigoureuse
du “tend toujours vers 0” ci-dessus.

Exemple (concaténer un aller-retour ne change pas la classe d’homotopie)
Soient A une partie de C, ℓ un lacet de A d’origine u et γ un chemin de A d’origine u. On note γ−1 le chemin
inverse de γ. Alors, les lacets ℓ et ℓγγ−1 sont A-homotopes.

En effet, γγ−1 est homotope au lacet constant u. Concaténer un lacet constant ne change pas la classe
d’homotopie. Sans paroles :

∼ puis ∼ ∼ ∼
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Définition (lacet homotope à zéro)
Soient A une partie de C et γ un lacet de A, d’origine u. On dit que γ est A-homotope à zéro lorsqu’il est
A-homotope au lacet constant cu : [0, 1]→ A, t 7→ u.

Exercice 22
Soient A une partie de C et γ un lacet standard de A, d’origine u. Si τ ∈ [0, 1] et si v = γ(τ), on note γτ le
“même lacet γ dont on a décalé l’origine en v”, c’est-à-dire le lacet

γτ : [0, 1] −→ A
t 7−→ γ ({t+ τ})

où {x} = x − ⌊x⌋ désigne la partie fractionnaire du réel x (et ⌊x⌋ sa partie entière). Montrer que pour tout
τ ∈ [0, 1], γ est homotope à zéro si, et seulement si γτ l’est.

Autrement dit, dire qu’un lacet est homotope à zéro ne dépend pas de l’origine dudit lacet

Sans paroles

1.2.3 Intégrale le long d’un chemin

Définition (intégrale d’une fonction le long d’un chemin)
Soient γ : [a, b] → C un chemin de classe C1 de C et f : Supp(γ) → C une application continue. L’intégrale

(curviligne) de f le long de γ est le nombre

∫
γ

f(z)dz défini par

∫
γ

f(z)dz =

∫ b

a

f (γ(t))× γ′(t)dt. (5)

On note aussi parfois

∫
γ

f(z)dz =

∮
γ

f(z)dz =

∫
γ

f . Lorsque le chemin est seulement de classe C1 par morceaux,

comme dans la définition générale qu’on a prise, on fait la somme des intégrales sur les intervalles sur lesquels
γ est de classe C1. Avec les notations de la définition d’un chemin, si on note γk la restriction de γ à l’intervalle
[ck, ck+1], cela s’écrit ∫

γ

f(z)dz =

n∑
k=0

∫
γk

f(z)dz =

n∑
k=0

∫ ck+1

ck

f (γ(t))× γ′(t)dt.

Cela dit, si on se place dans l’obédience de l’intégrale de Lebesgue�, les points en lesquels γ n’est pas dérivable
forment un ensemble de mesure nulle, rendant la formule (5) toujours valide.

Exemple fondamental
Pour tout r > 0 et pour tout a ∈ C, on note C (a, r) le cercle de centre a et de rayon r parcouru une fois dans
le sens direct selon la notation (3). Alors,

�Henri-Léon Lebesgue, 1875–1941
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∫
C(0,r)

dz

z
= 2iπ

et

∀n ∈ Z \ {−1} ,
∫
C(0,r)

zndz = 0

Pour montrer cela, il suffit de faire le calcul : d’une part

∫
C(0,r)

dz

z
=

∫ 2π

0

(
reit
)−1 × rieitdt = 2iπ et d’autre

part, si n ̸= −1,
∫
C(0,r)

zndz =

∫ 2π

0

(
reit
)n

ireitdt = irn+1

∫ 2π

0

ei(n+1)tdt = irn+1

ñ
ei(n+1)t

n+ 1

ô2π
0

= 0.

De façon (à peine) plus générale,∫
C(a,r)

dz

z − a
= 2iπ et

∫
C(a,r)

(z − a)ndz = 0, ∀n ∈ Z \ {−1} .

Exemple (aller-retour sur un segment)
Soient U un ouvert de C et f : U → C une application continue. Si [u, v] ⊆ U , alors, avec les notations (4)∫

S(u,v)

f(z)dz +

∫
S(v,u)

f(z)dz = 0

En effet, faisant le changement de variable s = 1− t, on obtient
∫ 1

0
f((1− t)u+ tv)dt =

∫ 1

0
f((1− s)v + su)ds

et on reconnâıt de part et d’autre de l’égalité les intégrales curvilignes de l’énoncé, aux facteurs u− v près.

Proposition (intégrale curviligne et concaténation)

Si une fonction f : C→ C est continue et si γ0 et γ1 sont deux chemins que l’on peut concaténer, alors∫
γ0γ1

f(z)dz =

∫
γ0

f(z)dz +

∫
γ1

f(z)dz

Preuve. C’est immédiat à partir de la définition de la concaténation de deux chemins.

Proposition (invariance par équivalence de chemins)

Soit f : C → C une fonction continue. Soient a, b, c, d des nombres réels, γ : [c, d] → C un chemin et
φ : [a, b] → [c, d] une application de classe C1 strictement croissante et surjective. Alors, les intégrales de f le
long des chemins γ et γ ◦ φ sont égales : ∫

γ

f(z)dz =

∫
γ◦φ

f(z)dz

Preuve. C’est le changement de variable sous l’intégrale ordinaire, ou encore le théorème de dérivation des
fonctions composées : lorsque γ est de classe C1,∫

γ

f(z)dz =

∫ d

c

f (γ(t)) γ′(t)dt =

∫ b

a

f (γ ◦ φ(s)) γ′ (φ(s))φ′(s)ds =

∫
γ◦φ

f(z)dz,

la dernière égalité étant garantie par le fait que la croissance de φ impose que a ≤ b. Lorsque γ est seulement
C1 par morceaux, ce calcul vaut pour tous les intervalles sur lesquels γ est C1 et il n’y a qu’à sommer.

A noter
La preuve montre immédiatement, par l’intégration de la formule de la dérivée d’une fonction composée et appli-
cation du théorème fondamental de l’analyse, que cette invariance s’étend au cas de n’importe quel changement
de paramètre du chemin, fût-il non injectif. L’énoncé est le suivant : soit f : C → C une fonction continue.
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Soient a, b, α, β des nombres réels, γ : [a, b] → C un chemin et φ : [α, β] → [a, b] une application de classe C1
telle que φ(α) = a et φ(β) = b. Alors, les intégrales de f le long des chemins γ et γ ◦ φ sont égales.

Exemple
On note C le carré de sommets 1, i, −1 et −i parcouru une fois dans le sens direct à partir de 1. Alors,

∀n ∈ Z,
∫
C

zndz =

∫
C(0,r)

zndz.

En effet, on calcule brutalement : en décomposant le lacet en quatre chemins de classe C1 que l’on paramètre
directement avec l’intervalle [0, 1] en utilisant le théorème d’invariance par changement de paramétrage des
chemins, il vient ∫

C

zndz =

∫
S(1,i)

zndz +

∫
S(i,−1)

zndz +

∫
S(−1,−i)

zndz +

∫
S(−i,1)

zndz.

Or, lorsque n ̸= −1 et u, v ∈ C, un calcul immédiat de primitive fournit∫
S(u,v)

zndz =

∫ 1

0

(u+ t(v − u))
n
(v − u)dt =

ñ
(u+ t(v − u))

n+1

n+ 1

ô1
0

=
vn+1 − un+1

n+ 1
.

Ainsi, lorsque n ̸= −1, les termes se simplifient deux à deux et∫
C

zndz =
1

n+ 1

((
in+1 − 1

)
+
(
(−1)n+1 − in+1

)
+
(
(−i)n+1 − (1)n+1

)
+
(
1− (−i)n+1

))
= 0.

Pour n = −1, le calcul devient∫
C

dz

z
= (−1 + i)

∫ 1

0

dt

1− t+ it
− (1 + i)

∫ 1

0

dt

−t+ i(1− t)
+ (1− i)

∫ 1

0

dt

−1 + t− it
+ (1 + i)

∫ 1

0

dt

t− i(1− t)

= −2(1− i)

∫ 1

0

dt

1− t+ it
+ 2(1 + i)

∫ 1

0

dt

t− i(1− t)

= −2(1− i)

∫ 1

0

1− t− it

(1− t)2 + t2
dt+ 2(1 + i)

∫ 1

0

t+ i(1− t)

t2 + (1− t)2
dt.

Or, une primitive de t 7→ t
2t2−2t+1 est 1

4 ln
(
2t2 − 2t+ 1

)
+ 1

2 arctan (2t− 1) et une primitive de t 7→ 1−t
2t2−2t+1

est − 1
4 ln

(
2t2 − 2t+ 1

)
+ 1

2 arctan (2t− 1) — selon la technique ordinaire, pour calculer ces primitives, écrire le

dénominateur sous forme canonique 2t2−2t+1 = 2
(
t− 1

2

)2
+ 1

2 , changer de variable s = t− 1
2 , faire apparâıtre

et reconnâıtre les primitives de s
2s2+ 1

2

et de 1
2s2+ 1

2

, ces dernières faisant intervenir le logarithme d’un côté,

l’arctangente de l’autre. Il en résulte que∫ 1

0

t

2t2 − 2t+ 1
dt =

∫ 1

0

1− t

2t2 − 2t+ 1
dt =

π

4
.

Par conséquent, ∫
C

dz

z
= −2(1− i)

π

4
(1− i) + 2(1 + i)

π

4
(1 + i) = 2iπ.

Ouf ! Ce résultat est un cas particulier de résultats beaucoup plus généraux qui seront abordés plus bas. Une
fois les théorèmes sur les fonctions holomorphes installés, ce fastidieux calcul sera bien inutile et son résultat,
rendu immédiat, ne nécessitera aucun développement technique.

Exercice 23
Soient m,n ∈ Z, m ≥ 2, n ̸= −1. On note P le polygone régulier à m côtés dont les sommets sont les racines me

de l’unité, parcouru une fois dans le sens direct en partant de 1. Alors,
∮
P zndz = 0.
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Proposition (majoration standard d’une intégrale curviligne)

Soient f : C→ C une fonction continue et γ un chemin de C. Alors,

(i)

∣∣∣∣∣
∫
γ

f(z)dz

∣∣∣∣∣ ≤ max
Supp(γ)

|f | × Long(γ).

(ii) Si

∣∣∣∣∣
∫
γ

f(z)dz

∣∣∣∣∣ = max
Supp(γ)

|f | × Long(γ), alors |f | est constant sur le support de γ.

Preuve. (i) Si γ est défini sur l’intervalle [a, b], alors∣∣∣∣∣
∫
γ

f(z)dz

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

f (γ(t)) γ′(t)dt

∣∣∣∣∣ ≤
∫ b

a

max
Supp(γ)

|f | × |γ′(t)| dt = max
Supp(γ)

|f | × Long(γ).

Noter que Supp(γ) = γ([a, b]) est compact puisque γ est continu et l’intervalle [a, b] compact ; c’est cela qui
permet la notation max.

(ii) Si une fonction φ : [a, b]→ R est continue et positive ou nulle, alors
∫ b

a
φ(t)dt = 0 si, et seulement si φ ≡ 0.

[En effet, si Φ[a, b] → R est la fonction Φ(t) =
∫ t
a
φ(τ)dτ , alors le théorème fondamental de l’analyse assure que Φ est une primitive de φ ;

en particulier, Φ est croissante et vérifie Φ(a) = 0. Ainsi, Φ(b) = 0 si, et seulement si Φ ≡ 0, qui équivaut encore au fait que φ soit nulle.]

On applique ce résultat d’analyse élémentaire à la fonction t 7→
(
maxSupp(γ) |f | − |f (γ(t))|

)
× |γ′(t)|.

Exemple (en général, l’intégrale curviligne dépend du chemin)

On considère deux chemins reliant 1 et −1 : d’une part le segment S, d’autre part
l’hémicercle nord C de centre 0. Plus précisément, on prend les paramétrages sur
[0, 1] suivants :

∀t ∈ [0, 1], S(t) = 1− 2t et C(t) = eiπt.
1−1

On intègre la fonction z 7→ ℜ(z) sur ces deux chemins. On trouve d’un côté
∫
S
ℜ(z)dz =

∫ 1

0
(1− 2t)(−2)dt = 0

et de l’autre
∫
C
ℜ(z)dz =

∫ 1

0
cos(πt)×

(
iπeiπt

)
dt = iπ

2 .

A noter
L’implication du (ii) dans la proposition précédente n’est pas une équivalence, comme le montre par exemple
l’intégration de la fonction z 7→ z sur le cercle unité parcouru une fois dans le sens direct.

Définition (primitive complexe)
Soient D un ouvert de C et f : D → C. On dit qu’une application F : D → C est une primitive (complexe)
de f lorsque F est dérivable au sens complexe et F ′(z) = f(z), pour tout z ∈ D.

Proposition (intégrale curviligne d’une fonction admettant une primitive)

Soient D un ouvert du plan complexe et f : D → C une fonction continue admettant une primitive F sur D.

(i) Si u, v ∈ C et si γ un chemin de D d’origine u et d’extrémité v, alors

∫
γ

f(z)dz ne dépend que de u et v,

mais pas du choix du chemin γ reliant u à v. Plus précisément,∫
γ

f(z)dz = F (v)− F (u).

(ii) En particulier, si γ est un lacet,

∫
γ

f(z)dz = 0.

Preuve. C’est le théorème fondamental de l’analyse. Il suffit de montrer (i) puisque (ii) en est un corollaire
immédiat. Soit [a, b] l’intervalle sur lequel γ est défini. On suppose d’abord que γ est de classe C1. Alors,∫
γ
f(z)dz =

∫ b

a
F ′ (γ(t)) γ′(t)dt = F ◦ γ(b)− F ◦ γ(a) = F (v)− F (u). Lorsque γ est de classe C1 par morceaux,

on applique ce résultat sur chaque sous-intervalle où γ est de classe C1 ; les valeurs de F en les bouts de ces
sous-intervalles se simplifient.

A noter

(i) Reprendre, à la lumière de ce résultat, les calculs d’intégrales de zn le long du cercle ou du carré, en notant

que si n ̸= −1, l’application zn+1

n+1 est une primitive complexe de zn sur l’ouvert C \ {0}.
En particulier, le fait que l’intégrale de 1

z le long du cercle unité ne soit pas nulle démontre que
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z 7→ 1
z n’admet pas de primitive sur C∗

Il sera plus bas longuement question des primitives de 1
z et des déterminations du logarithme complexe dans

certains ouverts de C \ {0}.
(ii) L’exemple En général, l’intégrale curviligne dépend du chemin de la page 16 montre aussi que l’application
z 7→ ℜ(z) n’a pas de primitive sur C. On aura plus bas des arguments qui assurent que cette fonction n’admet
de primitive sur aucun ouvert de C.

1.2.4 Indice d’un point par rapport à un lacet

Théorème (indice d’un point)

Soit γ un lacet de C. On note U l’ouvert du plan U = C \ Supp(γ). On note Ind l’application

Indγ : U −→ C

p 7−→ 1

2iπ

∫
γ

dz

z − p

Alors,

(i) Indγ(p) ∈ Z, pour tout p ∈ U

(ii) Indγ est constante sur tout composante connexe de U

(iii) Indγ(p) = 0 pour tout p appartenant à l’unique composante connexe non bornée de U .

Preuve. (i) Si [a, b] est l’intervalle sur lequel γ est défini, Indγ(p) =
1

2iπ

∫ b

a

γ′(t)dt

γ(t)− p
. En particulier, cette

écriture montre immédiatement que Indγ(p) est défini dès que p /∈ Supp(γ). Pour montrer que Indγ(p) est
entier, il suffit de montrer que exp (2iπ Indγ(p)) = 1. On suppose d’abord que γ est de classe C1. On note
f : [a, b]→ C l’application

f(t) = exp

∫ t

a

γ′(t)dt

γ(t)− p
.

Puisque l’intégrand est continu, le théorème fondamental de l’analyse assure que f est dérivable et que, pour
tout t ∈ [a, b],

f ′(t)

f(t)
=

γ′(t)

γ(t)− p
.

Cela montre que l’application t 7→ f(t)
γ(t)−p , qui est dérivable sur ]a, b[ et continue sur [a, b], a une dérivée nulle et

est donc constante sur le connexe [a, b]. Comme la valeur de f en a est 1, on obtient que

∀t ∈ [a, b], f(t) =
γ(t)− p

γ(a)− p
.

Enfin, puisque γ est un lacet, γ(b) = γ(a) et donc f(b) = 1, ce qu’il fallait démontrer pour assurer que Indγ(p)
est un nombre entier.
Si γ n’est plus de classe C1 que par morceaux, avec les notations de la définition d’un chemin, on étudie la même
fonction f sur chaque sous-intervalle [ck, ck+1] sur lequel γ est de classe C1. On montre ainsi que sur chaque

[ck, ck+1], la fonction f s’écrit f(t) = γ(t)−p
γ(ck)−p , si bien que

f(b) = exp

n∑
k=1

∫ ck+1

ck

γ′(t)dt

γ(t)− p
=

n∏
k=1

f (ck+1) =

n∏
k=1

γ (ck+1)− p

γ (ck)− p
=

γ(b)− p

γ(a)− p
= 1

la dernière égalité venant toujours du fait que γ est un lacet.

(ii) L’application Indγ est continue sur U . On peut voir cela de deux façons : dans l’obédience de l’intégrale

de Riemann, il suffit de remarquer que l’application (p, t) 7→ γ′(t)
γ(t)−p est continue sur U × [a, b]. Si l’on raisonne

dans le cadre de l’intégrale de Lebesgue, on peut remarquer que si p0 ∈ U et si D (p0, r) ⊆ U où r > 0, alors
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∣∣∣ γ′(t)
γ(t)−p

∣∣∣ ≤ max |γ′|
r pour tout t ∈ [a, b], ce qui suffit à montrer que Indγ est continue en p puisque, pour tout t,

l’application p 7→ γ′(t)
γ(t)−p l’est. Une fois la continuité de Indγ acquise, on conclut avec le théorème des valeurs

intermédiaires, les composantes connexes de Z étant les singletons {n}, n ∈ Z.
(iii) Soit M = maxt∈[a,b] |γ(t)| — se rappeler que γ est continu. Alors, pour tout R > M , si |p| ≥ R et si

z ∈ Supp (γ), la seconde inégalité triangulaire assure que |z − p| ≥ R −M et donc que |Indγ(p)| ≤ Long(γ)
2π(R−M) .

En faisant tendre R tend vers +∞, cela montre que Indγ(p) = 0 dès que p est dans la composante connexe non
bornée de U .

Exercice 24
Montrer que la compacité du support d’un lacet entrâıne l’existence et l’unicité de la composante connexe non
bornée de son complémentaire.

Définition (indice d’un point par rapport à un lacet)
Dans les conditions du théorème, on dit que Indγ(p) est l’indice du point p par rapport au lacet γ.

A noter
L’indice d’un point p par rapport à un lacet γ calcule, en le formalisant, le nombre de tours que fait le lacet γ
autour du point p.

Par exemple, si γ est le lacet qui, partant de 1, parcourt le
cercle de centre 0 et de rayon 1 une fois dans le sens direct,
puis le segment [1, 2], puis le cercle de centre 0 et de rayon
2 une fois dans le sens direct, puis le segment [2, 1].

Alors,

Indγ(p) =


2 si p ∈ D (0, 1)

1 si p est dans la couronne D (0, 2) \D (0, 1) privée du segment [1, 2]

0 si p /∈ D (0, 2) .

Exercice 25
Vérifier par le calcul la précédente disjonction des cas de valeurs de l’indice.

1.2.5 Vérifier la formule de Cauchy

Définition (vérifier la formule (locale et circulaire) de Cauchy)
Soient U un ouvert de C et f : U → C une application continue. On dit que f vérifie la formule (locale et
circulaire) de Cauchy sur U lorsque pour tout z ∈ U , pour tout w ∈ U , pour tout r > 0,

D (w, r) ⊆ U

et

z ∈ D (w, r)

 =⇒ f(z) =
1

2iπ

∫
C(w,r)

f(ζ)

ζ − z
dζ. (6)

Remarquer que lorsque f vérifie la formule de Cauchy, sa valeur en un point
z est déterminée par ses valeurs sur n’importe quel cercle de centre w et de
rayon r, pourvu que le disque fermé D (w, r) soit dans l’ouvert de définition
de f et que z soit dans le disque ouvert D (w, r). Le cas particulier où w = z
est souvent utilisé, qui donne lieu à la formule

f(z) =
1

2iπ

∫
C(z,r)

f(ζ)

ζ − z
dζ

dès que D (z, r) ⊆ U . Notamment, l’intégrale de cette dernière formule — dès
qu’elle a un sens ce qui est le cas pour tout r “assez petit” —, ne dépend pas
de r.

w

z

r
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Exemples

(i) Toute fonction constante vérifie la formule de Cauchy sur C.
En effet, soient c ∈ C, z, w ∈ C et r > 0 tels que z ∈ D (w, r). Alors,∫

C(w,r)

c

ζ − z
dζ = 2iπc IndC(w,r)(z) = 2iπc

puisque le cercle est parcouru une fois dans le sens direct par le chemin C(w, r). Noter que dans le cas où w = z,
ce résultat est une paraphrase du calcul de l’intégrale

∫
C(z,r)

dζ
ζ−z fait plus haut.

(ii) Plus généralement, si n est un entier naturel, la fonction z 7→ zn vérifie la formule de Cauchy sur C.
Pour montrer cela, on procède par récurrence sur n, le cas n = 0 étant acquis par le calcul pour les fonctions
constantes. Soient n un entier naturel non nul, z, w ∈ C et r > 0. On suppose que z ∈ D (w, r). Alors,∫

C(w,r)

ζn

ζ − z
dζ =

∫
C(w,r)

ζn−1(ζ − z)

ζ − z
dζ +

∫
C(w,r)

ζn−1z

ζ − z
dζ.

Puisque ζ 7→ ζn−1 admet une primitive sur C et puisque C(w, r) est un lacet, la première de ces deux intégrales
est nulle. Par récurrence, la seconde égale 2iπzn, ce qu’il fallait démontrer.

(iii) L’exponentielle vérifie la formule de Cauchy sur C.
En effet, pour tous z ∈ C et pour tout r > 0, puisque la série de Taylor de la fonction exponentielle est une série
entière de rayon infini, elle converge uniformément sur le disque (le cercle suffit, ici) de centre 0 et de rayon r,
ce qui légitime l’interversion de l’intégrale et de la série dans le calcul suivant :

1

2iπ

∫
C(w,r)

eζ

ζ − z
dζ =

1

2iπ

∫
C(w,r)

( ∞∑
n=0

1

n!

ζn

ζ − z

)
dζ =

∞∑
n=0

1

n!

1

2iπ

∫
C(w,r)

ζn

ζ − z
dζ =

∞∑
n=0

zn

n!
= ez.

Ce calcul typique sera repris plus bas dans un cadre beaucoup plus général.

A noter
Pour mesurer la puissance de ces raisonnements, tenter de montrer directement la formule zn = 1

2iπ

∫
C(w,r)

ζn

ζ−zdζ

en paramétrant le cercle et en cherchant des primitives des fonctions en jeu.

1.3 Fonctions développables en séries entières

1.3.1 Mémento sur les séries entières

Une série entière est une série de fonctions de la variable complexe z de la forme
∑
n

anz
n, où (an)n∈N est une

suite de nombres complexes.

A noter
Le vocable “soit

∑
n anz

n une série entière” est synonyme de “soit (an)n∈N une suite de nombres complexes”.
Cela dit, lorsqu’on choisit de dire ou d’écrire “soit

∑
n anz

n une série entière”, c’est qu’on s’apprête à focaliser
le discours sur la série de fonctions

∑
n anz

n, la plupart du temps sur la convergence de cette série en des sens
divers.

Proposition (lemme d’Abel�)

Soient
∑

n anz
n une série entière et z0 ∈ C. On suppose que la série numérique

∑
n anz

n
0 converge. Alors, la

série entière
∑

n anz
n converge normalement sur tout disque fermé D (0, r) où r < |z0|.

Preuve. Puisque la série
∑

n anz
n
0 converge, la suite (anz

n
0 )n∈N est bornée : soit M > 0 tel que |anzn0 | ≤M ,

pour tout n ∈ N. Alors, si 0 ≤ r < |z0|, pour tout z ∈ D (0, r), |anzn| ≤ M
Ä

r
|z0|

än
et
Ä

r
|z0|

än
est le terme

général d’une série géométrique convergente.

�Niels Henrik Abel, 1802–1829

N. Pouyanne, UVSQ 2026, LSMA621 19



A noter
Dans les conditions de la proposition précédente, la preuve montre qu’il suffit que la suite (anz

n
0 )n∈N soit bornée

pour que la conclusion subsiste. C’est souvent sous cette forme qu’on trouve ce lemme d’Abel dans la littérature.

Définition (rayon et disque de convergence d’une série entière)
Le rayon d’une série entière

∑
n anz

n est

ρ = sup {r ≥ 0, anr
n est le terme général d′une série absolument convergente} ∈ [0,+∞].

Le disque ouvert D (0, ρ) est le disque (ouvert) de convergence de la série entière
∑

n anz
n.

A noter
Soient

∑
n anz

n une série entière et ρ ∈ [0,+∞] son rayon. Les assertions qui suivent sont toutes (sauf (iii)) des
conséquences directes du lemme d’Abel.

(i) Pour tout z ∈ D (0, ρ), la série
∑

anz
n est absolument convergente, à vitesse au moins géométrique.

(ii) Pour tout z ∈ C \D (0, ρ), la série
∑

anz
n diverge, à vitesse au moins géométrique.

(iii) Sur le cercle {z ∈ C, |z| = ρ} que l’on appelle improprement cercle de convergence, tout peut se passer.
L’ensemble des points du cercle en lesquels la série converge peut être fini (même vide), dense, égal à tout le
cercle, etc .

(iv) Le rayon est aussi

ρ = sup
{
r ≥ 0, lim

n→∞
anr

n = 0
}
= sup {r ≥ 0, (anr

n)n est une suite bornée} .

(v) Puisque les convergences ou les divergences des séries entières hors du cercle de convergence sont à vitesse
au moins géométriques, les critères de d’Alembert� ou de Cauchy� pour la convergence des séries numériques
s’appliquent. Il fournissent les formules

1

ρ
= lim sup

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim sup
n→∞

|an|
1
n (7)

avec la convention habituelle 1
+∞ = 0 et 1

0 = +∞.

(vi) Le théorème de continuité d’une série uniformément convergente de fonctions continues assure que, sur son
disque de convergence, une série entière définit une fonction continue.

Exemples

(i) Les fonctions polynomiales sont des séries entières de rayon infini (!).

(ii) Les deux plus célèbres des séries entières sont l’exponentielle — de rayon infini — et la série géométrique
de raison 1 — de rayon 1 —, savoir :

exp(z) =

∞∑
n=0

zn

n!
et

1

1− z
=

∞∑
n=0

zn.

La série
∑

n z
n ne converge en aucun point de son cercle de convergence, puisque la suite

(
einθ

)
n
ne converge

vers 0 pour aucune valeur de θ ∈ R.

(iii) D’une manière générale, si F est une fraction rationnelle et si |an| ∼ F (n) lorsque n tend vers l’infini, le
rayon de la série entière

∑
n anz

n est 1.

C’est une conséquence directe des formules (7).

(iv) Par exemple, la série entière
∑

n
zn

n est de rayon 1 puisque son coefficient général est une fraction rationnelle
en n. Sur son cercle de convergence, elle diverge en 1 mais converge en tous les autres points.

�Jean le Rond d’Alembert, 1717–1783
�La formule du rayon avec la puissance 1/n est souvent attribuée à Jacques Hadamard qui écrit une note aux Comptes Rendus

de l’Académie des Sciences à ce sujet en 1888 — qui, par ailleurs, est la date de naissance de l’axiomatique des espaces vectoriels,
due à Guiseppe Peano —, mais Cauchy l’avait écrite en 1821 dans son cours à l’école polytechnique.
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Pour prouver cela, on peut faire appel à une très classique transformation d’Abel, version discrète de l’intégration
par parties. Voici l’argumentaire : soit z ∈ C, tel que |z| = 1 et z ̸= 1. Pour tout n ∈ N, on note Sn la somme

partielle Sn = 1+ z+ z2 + · · ·+ zn = 1−zn+1

1−z . Alors, S0 = 1 et, pour tout n ≥ 1, zn = Sn − Sn−1 ; en outre, on

a la majoration uniforme |Sn| ≤ 2
|1−z| , pour tout n ≥ 1. On calcule ainsi la somme partielle

N∑
n=1

zn

n
=

N∑
n=1

1

n
(Sn − Sn−1) =

1

N
SN − 1 +

N−1∑
n=1

Sn

Å
1

n
− 1

n+ 1

ã
.

Or,
∣∣∣Sn

Ä
1
n −

1
n+1

ä∣∣∣ ≤ 2
|1−z|

1
n(n+1) , pour tout n, et la série de terme général 1

n(n+1) converge. Ainsi, par com-

paraison des séries à termes positifs, la série
∑

n Sn

Ä
1
n −

1
n+1

ä
est absolument convergente, donc convergente.

Par ailleurs,
∣∣ 1
N SN

∣∣ ≤ 2
|1−z|

1
N tend vers 0 lorsque N tend vers l’infini. Ainsi, on a montré que la série numérique∑

n
zn

n converge pour tout z tel que |z| = 1 et z ̸= 1.

(v) Les séries entières
∑

n n!z
n et

∑
n n

nzn sont de rayon nul. C’est une application directe des formules (7).

(vi) Les séries entières
∑

n z
n2

et
∑

n z
n! sont de rayon 1.

En effet, ces deux séries convergent dès que |z| < 1 — leur terme général est majoré par le terme général d’une
série géométrique convergente. Elles divergent lorsque |z| ≥ 1 — leur terme général ne tend alors pas vers 0.

Proposition (sommes et produits de séries entières)

Soient
∑

n anz
n et

∑
n bnz

n deux séries entières de rayons respectifs ρa et ρb. Pour tout n ≥ 0, on note

sn = an + bn et pn = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0 =

n∑
k=0

akbn−k.

Alors, les séries entières
∑

n snz
n et

∑
n pnz

n ont un rayon supérieur ou égal à min {ρa, ρb}, et lorsque ces
séries convergent,

∞∑
n=0

snz
n =

( ∞∑
n=0

anz
n

)
+

( ∞∑
n=0

bnz
n

)
et

∞∑
n=0

pnz
n =

( ∞∑
n=0

anz
n

)
×

( ∞∑
n=0

bnz
n

)
.

Preuve. Exercice.

Proposition (théorème d’Abel radial)

Soient
∑

n anz
n une série entière de rayon strictement positif, et c ∈ C un point du cercle de convergence tel

que la série
∑

n anc
n converge. Alors, la série de fonctions

∑
n anz

n converge uniformément sur le segment
[0, c]. En particulier,

lim
z→c

z∈[0,c]

( ∞∑
n=0

anz
n

)
=

∞∑
n=0

anc
n.

Preuve. La convergence uniforme suffit à l’interversion de la somme et de la limite. On montre cette
convergence uniforme, en utilisant une transformation d’Abel.
On note ρ le rayon de la série entière et c = ρeiθ où θ ∈ R. Les points du segment [0, c]
sont les reiθ, 0 ≤ r ≤ ρ. Puisque la série

∑
n anc

n converge, on note Rn son ne reste :
pour tout n ≥ 0,

Rn =

∞∑
k=n

akc
k

si bien que pour tout n, on peut écrire anc
n = Rn −Rn+1.

0

c

Pour montrer la convergence uniforme de la série de fonctions
∑

n anz
n sur le segment [0, c], on montre que la

suite de ses sommes partielles y est uniformément de Cauchy. Cela revient à montrer que les paquets de Cauchy∑M
n=N+1 anz

n tendent vers 0 lorsque N tend vers l’infini, uniformément sur [0, c] et en M ≥ N + 1.
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Pour cela, dans les paquets de Cauchy, on remplace anc
n par la différence des restes comme ci-dessus, puis

on opère à une transformation d’Abel, sorte d’intégration par parties discrète. On obtient successivement : si
r ∈ [0, ρ] et si N et M sont des entiers naturels tels que N + 1 ≤M ,

M∑
n=N

an
(
reiθ

)n
=

M∑
n=N

anc
n

Å
r

ρ

ãn

=

M∑
n=N

Å
r

ρ

ãn

(Rn −Rn+1)

=

Å
r

ρ

ãN

RN −
Å
r

ρ

ãM

RM+1 +

M∑
n=N+1

Rn

ÇÅ
r

ρ

ãn

−
Å
r

ρ

ãn+1
å
.

Soit ε > 0. Puisque la série
∑

n anc
n converge, soit n0 ∈ N tel que |Rn| ≤ ε, pour tout n ≥ n0. Alors, dès que

N ≥ n0, pour tout r ∈ [0, ρ], puisque les
Ä
r
ρ

än
sont des réels positifs ou nuls et inférieurs ou égaux à 1, on a la

majoration ∣∣∣∣∣∣
M∑

n=N+1

Rn

ÇÅ
r

ρ

ãn

−
Å
r

ρ

ãn+1
å∣∣∣∣∣∣ ≤ ε

Å
r

ρ

ãN+1
Ç
1−

Å
r

ρ

ãM−N
å
≤ ε.

En outre, les deux “termes de bord” sont faciles à majorer :

∣∣∣∣Ä r
ρ

äN
RN

∣∣∣∣ ≤ ε et

∣∣∣∣Ä r
ρ

äM
RM+1

∣∣∣∣ ≤ ε, pour tout

r ∈ [0, ρ], pour tout n ≥ n0. Ainsi, on a montré que la série de fonctions
∑

n anz
n vérifie le critère de Cauchy

uniforme sur le segment [0, c], ce qui entrâıne sa convergence uniforme sur ledit segment.

A noter
Cette preuve gagne en intelligibilité si on l’écrit dans le cas particulier où c = ρ = 1, qui se généralise ensuite
sans difficulté.

Exercice 26 (Abel secteur)
Sous les hypothèses du théorème d’Abel radial, montrer que la convergence de
la série de fonctions

∑
n anz

n est uniforme sur tout compact de tout secteur
de la forme

Sθ = {c} ∪
{
z ∈ D (0, |c|) , Arg

(z
c
− 1
)
∈ [−θ, θ]

}
,

où θ ∈ [0, π
2 [.

Noter que l’on peut encore écrire Sθ =
¶
c + ρei(Arg(c)+η), |η| ≤ θ, 0 ≤ ρ < 2|c| cos η

©
.

0

c

θ

Sθ

Exemple très classique

Le théorème des séries alternées assure que la série
∑

n
(−1)n+1

n converge. En outre,
∑∞

n=1
xn

n = ln 1
1−x pour

tout x ∈ [0, 1[. Le théorème d’Abel radial assure alors que

∞∑
n=1

(−1)n+1

n
= ln 2.

Exercice 27 (en guise d’application d’Abel radial)
Soient (an)n∈N et (bn)n∈N deux suites de nombres complexes. Pour tout n ∈ N, soit cn =

∑n
k=0 akbn−k. On

suppose que les séries
∑

n an,
∑

n bn et
∑

n cn convergent. Montrer que dans ces conditions,

∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

Proposition (dérivation et primitivation des séries entières)

Soit
∑
n

anz
n une série entière de rayon ρ > 0 et soit f : z 7→

∞∑
n=0

anz
n la fonction qu’elle définit sur D (0, ρ).

Alors,
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(i) la fonction f est dérivable au sens complexe sur D (0, ρ) et se dérive terme à terme au sens où, pour tout
z ∈ D (0, ρ),

f ′(z) =

∞∑
n=0

(n+ 1)an+1z
n ;

(ii) la fonction f admet des primitives sur D (0, ρ), qui s’obtiennent par primitivation terme à terme au sens
où ces primitives sont les fonctions de la forme

z 7→ C +

∞∑
n=1

an−1

n
zn, où C ∈ C.

Preuve. Il s’agit d’abord de noter que les séries entières
∑

n(n+1)an+1z
n et

∑
n

an−1

n zn ont également ρ pour
rayon. Pour montrer (i), on applique le théorème de dérivation des séries qui assure le résultat puisque la série
de fonctions

∑
n anz

n converge simplement et que sa série des dérivées
∑

n(n+1)an+1z
n converge normalement

et donc uniformément sur tout disque fermé inclus dans D (0, ρ), en vertu du lemme d’Abel.
(ii) est une conséquence de (i) en prenant en compte le fait que le disque D (0, ρ) est connexe.

Tout petit formulaire
Les formules donnée ci-dessous sont à la fois des énoncés sur la restriction des fonctions à l’axe réel et une
définition des fonctions de la variable complexe portant le même nom. Certaines sont des redites.

(i) Pour tout a ∈ C, (1+ z)a =

∞∑
n=0

Ç
a

n

å
zn où le coefficient du binôme généralisé aux nombres complexes estÇ

a

n

å
=

a(a− 1)(a− 2) . . . (a− n+ 1)

n!
=

1

n!

n−1∏
k=0

(a− k).

Lorsque a ∈ N, le rayon de cette série entière est infini — c’est une fonction polynomiale ; dans tous les autres
cas, le rayon est 1.

[Noter que la formule
1

1 − z
=

∞∑
n=0

z
n

pour tout z (non nul) de module strictement inférieur à 1 est le cas où a = −1.]

(ii) cosh z =

∞∑
n=0

z2n

(2n)!
et sinh z =

∞∑
n=0

z2n+1

(2n+ 1)!
respectivement parties paire et impaire de l’exponentielle.

cos z =

∞∑
n=0

(−1)n z2n

(2n)!
et sin z =

∞∑
n=0

(−1)n z2n+1

(2n+ 1)!
respectivement parties paire et impaire de eiz.

Comme l’exponentielle, ces quatre séries ont un rayon infini.

(iii) arctan z =

∞∑
n=0

(−1)n

2n+ 1
z2n+1 de rayon 1.

(iv) log
1

1− z
=

∞∑
n=1

zn

n
de rayon 1.

On reviendra longuement sur les affaires de logarithme. Pour l’heure, le lien entre cette nouvelle serie entière
“logarithme” et la fonction exponentielle complexe se limite à leur restriction à l’intervalle ]− 1, 1[.

Petite mise en garde
Attention à ne pas se laisser piéger par le nom donné à ces séries entières. Si on se laisse emporter par trop
d’enthousiasme, on risque d’écrire des formules fausses ; on y reviendra. Comme toujours, il convient de
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privilégier le sens et de se méfier de l’apparente évidence provoquée par les notations — qui sont pourtant bien
commodes !

Exercice 28

(i) Montrer que, dans le disque de convergence, d
dz (1 + z)a = a(1 + z)a−1.

(ii) Montrer que, sur C, d
dz cosh z = sinh z, d

dz sinh z = cosh z, d
dz cos z = − sin z, d

dz sin z = cos z.

(iii) Montrer que, dans le disque de convergence, d
dz arctan z = 1

1+z2 .

(iv) Montrer que, dans le disque de convergence, d
dz log

1
1−z = 1

1−z .

1.3.2 Fonctions DSE

Définition (fonction DSE ou analytique)
Soient U un ouvert de C et f : U → C une application. Pour tout u ∈ U , on dit que f est développable en série
entière (DSE) en u ou encore analytique en u lorsqu’il existe r > 0 tel que

(i) D (u, r) ⊆ U ;

(ii) il existe une suite complexe (an)n∈N telle que la série entière
∑
n

anz
n ait un rayon supérieur ou égal à r ;

(iii) f(z) =

∞∑
n=0

an(z − u)n, pour tout z ∈ D (u, r).

Lorsque f est DSE en tout point de U , on dit que f est DSE sur U , ou encore analytique sur U .

Exemple
Si P (z) =

∑d
n=0 anz

n est une application polynomiale à coefficients complexes, elle est analytique sur C. En
effet, pour tout u ∈ C, la formule de Taylor-polynômes en u s’écrit

∀z ∈ C, P (z) =

d∑
n=0

P (n)(u)

n!
(z − u)n

où la série entière
∑

n
P (n)(u)

n! zn est de rayon infini puisque c’est un polynôme.

Proposition (somme et produit de fonctions analytiques)

Soient U un ouvert de C et u ∈ U . Si f et g sont DSE en u (respectivement sur U), alors f + g et fg sont
DSE en u (resp. sur U).

Preuve. Il suffit d’ajouter ou de multiplier les DSE(u), les rayons restent strictement positifs comme le
garantit la proposition sur la somme et le produit de séries entières.

Contrairement à ce que pourrait laisser penser une lecture superficielle, la proposition qui suit n’a rien d’évident.
Elle mérite d’être relue une fois établi que le développement en série entière d’une fonction en un point, lorsqu’il
existe, est nécessairement son développement de Taylor� en ledit point.

Proposition (une série entière est analytique sur son disque ouvert)

Soit f(z) =
∑∞

n=0 anz
n une fonction définie par une série entière de rayon ρ > 0. Alors, f est DSE en tout

point du disque de convergence D (0, ρ).

Preuve. Soit u ∈ D (0, ρ).
Il s’agit de trouver une série entière

∑
n bnz

n de rayon non nul telle
que, au voisinage de u, la fonction f ait un DSE de la forme

f(z) =

∞∑
n=0

bn(z − u)n.

Soit r = ρ− |u|. Alors, r > 0 et on montre que f est DSE en u avec
un rayon au moins égal à r.

u
r

ρ

�Brook Taylor, 1685–1731
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1○ On fait un premier calcul de sommations sans prendre de précaution pour intervertir ou regrouper les termes.
On justifie ces interversions ensuite. Si h ∈ D (0, r), alors u+ h ∈ D (0, ρ) et

f(u+ h) =

∞∑
n=0

an(u+ h)n =
∑

n,k∈N
0≤k≤n

an

Ç
n

k

å
hkun−k =

∞∑
k=0

hk

( ∞∑
n=k

Ç
n

k

å
anu

n−k

)

On pose — il faudra prouver que cette somme a bien un sens —

bk =

∞∑
n=k

Ç
n

k

å
anu

n−k =

∞∑
n=0

Ç
n+ k

k

å
an+ku

n.

Il suffit alors de montrer que la série entière
∑

n bnz
n a un rayon supérieur ou égal à r.

2○ On justifie les interversions, la convergence des séries qui définissent les bn et on minore par r le rayon de la
série entière

∑
n bnz

n.

Soit h ∈ D (0, r). Puisque |u| + |h| ∈ D (0, ρ), en vertu du lemme d’Abel, la série
∑

n an (|u|+ |h|)
n
est absol-

ument convergente. Comme tous les termes des séries ci-dessous sont positifs ou nuls, toutes les interversions
et tous les regroupements sont licites. Cela est par exemple justifié par le théorème de Fubini�-Tonelli� : la
famille ∑

n,k∈N
0≤k≤n

|an|
Ç
n

k

å
|h|k|u|n−k

est sommable puisque sa somme∑
n,k∈N
0≤k≤n

|an|
Ç
n

k

å
|h|k|u|n−k =

∞∑
n=0

|an| (|u|+ |h|)n

est une série convergente. Cela justifie, via le théorème de Fubini-Lebesgue, les interversions de la première
partie de la preuve. Notamment : pour tout n, la série qui définit bn converge absolument donc converge, et
la série entière

∑
n bnz

n, qui est absolument convergente en le point z = h, a un rayon supérieur ou égal à |h|.
Comme cela est valide pour tout h ∈ D (0, r), cela montre que ledit rayon est supérieur ou égal à r.

A noter

(i) La preuve en dit un peu plus que l’énoncé puisqu’elle montre que le DSE de f en un point u de D (0, ρ)
est valide au moins dans tous les disques ouverts de centre u que D (0, ρ) contient — ou au moins dans le plus
grand d’entre eux qui est D (u, ρ− |u|), on dit comme on veut.

(ii) En particulier, toute série entière de rayon infini définit une fonction analytique sur C.
(iii) Cette proposition sera une conséquence immédiate du théorème d’équivalence pour les fonctions holomor-
phes.

Théorème (unicité du DSE)

Soit
∑

n anz
n une série entière de rayon ρ > 0. On suppose qu’il existe r ∈]0, ρ[ tel que

∀z ∈ D (0, r) ,

∞∑
n=0

anz
n = 0.

Alors, an = 0, pour tout n ∈ N.

Preuve. Soit r ∈]0, ρ[ tel que f(z) =
∑∞

n=0 anz
n = 0, pour tout z ∈ C vérifiant |z| < r. On note R = r

2 .

Alors,
∮
C(0,R)

f(z)
zn+1 dz = 0, pour tout n ∈ N. En paramétrant le cercle, cela s’écrit

∀n ∈ N, 0 =

∫ 2π

0

f
(
Reit

)
eint

dt =

∫ 2π

0

( ∞∑
k=0

ak
(
Reit

)k)
e−intdt.

�Guido Fubini, 1879–1943
�Leonida Tonelli, 1885–1946
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Or, le lemme d’Abel assure que la convergence de la série de fonctions
∑

n anz
n converge normalement et donc

uniformément sur le disque fermé D (0, r), et donc sur le cercle de centre 0 et de rayon R. Ainsi le signe
∫
et le

signe
∑

peuvent-ils être intervertis. On obtient, pour tout n ∈ N, que

0 =

∞∑
k=0

akR
k

Ç∫ 2π

0

ei(k−n)tdt

å
= 2πanR

n,

et donc que an = 0, ce qu’il fallait démontrer.

A noter

(i) Cette preuve est une preuve “à la Cauchy”. Ici encore, lorsqu’on aura fait le lien entre le DSE d’une fonction
analytique en un point et sa série de Taylor en le même point, ce théorème prendra un éclairage nouveau.

(ii) On énonce un corollaire immédiat qui justifie le mot “unicité” dans le théorème précédent : si u ∈ C, si
(an)n∈N et (bn)n∈N sont deux séries entières de rayons strictement positifs et si

∞∑
n=0

an(z − u)n =

∞∑
n=0

bn(z − u)n

pour tout z dans un disque ouvert non vide centré en u, alors an = bn, pour tout n ∈ N.
Autrement dit, une fonction analytique ne peut pas avoir deux DSE différents en un point donné.

(iii) On peut encore affaiblir les hypothèses du théorème d’unicité en supposant seulement que la fonction définie
par la série entière est nulle sur un cercle de centre 0 et de rayon strictement positif.

Proposition (principe des zéros isolés pour les séries entières)

Soit (an)n∈N une suite non nulle de nombre complexes. On suppose que la série entière
∑

n anz
n a un rayon

strictement positif et que la fonction f(z) =
∑∞

n=0 anz
n, définie sur le disque ouvert de convergence, vérifie

f(0) = 0. Alors, il existe r > 0 tel que f(z) ̸= 0, pour tout z ∈ D (0, r) \ {0}.
Preuve. Puisque la suite (an)n∈N n’est pas nulle, soit N = min {n ≥ 0, an ̸= 0}. La condition f(0) = a0 = 0
impose que N ≥ 1. En mettant zN en facteur, on écrit f(z) = zNg(z) où g est la fonction définie par la série
entière g(z) =

∑∞
n=0 aN+nz

n dont le rayon de convergence est le même que celui de f . Or, g(0) = aN ̸= 0 et
g est continue en 0, puisqu’elle est définie par une série entière. Ainsi, g est non nulle sur un disque ouvert
D (0, r) où r > 0, ce qui prouve le résultat.

1.4 Le théorème d’équivalence pour les fonctions holomorphes

On démontre ici le théorème d’équivalence qui fonde la définition des fonctions holomorphes. La preuve, longue
et consistante, met en jeu un raisonnement historiquement important, qui met déjà en relation les différents
points de vue qui font la richesse de l’analyse complexe.

Théorème (d’équivalence pour les fonctions holomorphes)

Soient U un ouvert de C et f : U → C une application continue. Les assertions suivantes sont équivalentes.

(i) f vérifie la formule de Cauchy sur U ;

(ii) f est développable en séries entières sur U ;

(iii) f est dérivable au sens complexe sur U .

Preuve. (i)⇒(ii) On suppose que f vérifie la formule de Cauchy sur U . Soit z0 ∈ U . On montre que f est
DSE en z0. Soit r > 0 tel que D (z0, r) ⊆ U . Alors, pour tout z ∈ D (z0, r),

f(z) =
1

2iπ

∫
C(z0,r)

f(ζ)

ζ − z
dζ =

1

2iπ

∫
C(z0,r)

f(ζ)

(ζ − z0)− (z − z0)
dζ.
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Dans cette dernière intégrale, la variable courante ζ est sur le cercle de centre

z0 et de rayon r alors que z est dans le disque ouvert. Ainsi,
∣∣∣ z−z0
ζ−z0

∣∣∣ < 1 : le

développement en série entière

1

(ζ − z0)− (z − z0)
=

∞∑
n=0

(z − z0)
n

(ζ − z0)
n+1

est valide et sa convergence est normale et donc uniforme dans le disque fermé

D
Ä
z0,

r+|z|
2

ä
, comme le garantit le lemme d’Abel. On peut donc intervertir la

somme et l’intégrale ; on obtient

z

z0

r

f(z) =
1

2iπ

∫
C(z0,r)

( ∞∑
n=0

(z − z0)
n

(ζ − z0)
n+1

)
f(ζ)dζ =

∞∑
n=0

Ç
1

2iπ

∫
C(z0,r)

f(ζ)

(ζ − z0)
n+1 dζ

å
(z − z0)

n
,

le rayon de la série entière
∑∞

n=0

Ä
1

2iπ

∮
C(z0,r)

f(ζ)

(ζ−z0)
n+1 dζ

ä
zn étant supérieur ou égal à r puisque le calcul

ci-dessus est valide pour tout z ∈ D (z0, r). On a montré que f est DSE sur D (z0, r).

(ii)⇒(iii) C’est immédiat : si une fonction est DSE sur U , elle admet en chaque point un développement limité
d’ordre 1, ce qui signifie qu’elle y est dérivable au sens complexe.

(iii)⇒(i) Cette implication est la clef de l’équivalence. On suppose que f est dérivable sur U .
1○ On démontre d’abord l’assertion suivante : pour tout ouvert U de C, pour tout u ∈ U , pour toute fonction
f : U → C continue sur U et dérivable sur U \ {u}, pour tout triangle ∆ inclus dans U , l’intégrale de f le long
du bord du triangle ∂∆ est nulle : ∫

∂∆

f(z)dz = 0. (8)

On précise les termes de cet énoncé : soient a, b, c ∈ U tels que l’enveloppe convexe ∆ de {a, b, c} soit contenue
dans U — l’enveloppe convexe est l’ensemble {αa+ βb+ γc, α, β, γ ∈ [0, 1], α+ β + γ = 1} ; c’est l’“intérieur”
du triangle. On note alors ∂∆ le chemin formé de la concaténation des segments [a, b], [b, c] et [c, a] prise dans
le sens direct. Noter que l’invariance de l’intégrale par changement de paramétrage et le fait que ∂∆ soit un
lacet donne un sens non ambigu à la formule (8).

On prouve l’assertion 1○. On note I =
∫
∂∆

f(z)dz.

On suppose dans un premier temps que u /∈ ∆. On découpe ∆ en les quatre triangles
dont les sommets, outre les sommets de ∆, sont les milieux des arètes de ∆. Tous
ces sous-triangles ont pour périmètre la moitié du périmètre de ∆. Alors, I est la
somme des intégrales de f le long des bords des quatres triangles de la subdivision
— dans la somme, les trois intégrales aller-retours le long des segments joignant les
milieux des arêtes de ∆ sont nulles. L’inégalité triangulaire permet d’en déduire
que l’intégrale le long d’au moins un de ces quatres triangles, que l’on nommera ∆1,
vérifie

|I| ≤ 4

∣∣∣∣∫
∂∆1

f(z)dz

∣∣∣∣
— il suffit de prendre pour ∆1 l’un des triangles pour lequel le module de l’intégrale
de f est le plus grand.

∆5

En itérant ce procédé, on obtient une suite de triangles ∆ ⊇ ∆1 ⊇ ∆2 ⊇ ∆3 . . . qui vérifient : Long (∂∆n) =

2−n Long (∂∆) et |I| ≤ 4n
∣∣∣∫∂∆n

f(z)dz
∣∣∣. L’intersection de cette suite décroissante de parties fermées non vides

de l’espace complet C est encore non vide. Soit ainsi z0 ∈ ∩n≥1∆n.

Soit alors ε > 0. Puisque f est dérivable en z0, soit r > 0 tel que

∀z ∈ D (z0, r) , |f(z)− f (z0)− f ′ (z0) (z − z0)| ≤ ε |z − z0| .

Soit aussi n tel que ∆n ⊆ D (z0, r).
[Noter qu’un tel n existe. En effet, si z0 est dans un triangle uvw, max {|z0 − u| , |z0 − v| , |z0 − w|} ≤ diam(uvw) où le diamètre diam(uvw)
du triangle est la plus grande distance joignant deux points de ce triangle. On montre aisément que le diamètre d’un triangle est le plus
grand de ses côté, ce qui entrâıne que max {|z0 − u| , |z0 − v| , |z0 − w|} ≤ max {|u − v|, |v − w|, |w − u|} < π(uvw) où π(uvw) désigne le
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périmètre du triangle uvw. Ainsi, par convexité du disque, dès que le périmètre de uvw est inférieur ou égal à un réel positif r, le triangle
est tout entier dans le disque de centre z0 et de rayon r.]

Alors, puisque la fonction z 7→ f (z0) + f ′ (z0) (z − z0) admet évidemment une primitive sur D, l’intégrale de
cette fonction le long du lacet ∂∆n est nulle, si bien que

|I| ≤ 4n
∣∣∣∣∫

∂∆n

f(z)dz

∣∣∣∣ = 4n
∣∣∣∣∫

∂∆n

(f(z)− f (z0)− f ′ (z0) (z − z0)) dz

∣∣∣∣ ≤ 4nεLong (∂∆n) max
z∈∂∆n

|z − z0| .

Là encore, la distance de z0 à un point du bord de ∆n est inférieure ou égale au diamètre de ∆n qui est lui-même
inférieur ou égal au périmètre de ∆n. On obtient ainsi

|I| ≤ ε4n Long (∂∆n)
2 ≤ εLong(∂∆).

On a montré que |I| est inférieur à tout réel strictement positif, c’est-à-dire que I = 0.

Il reste à traiter le cas où u ∈ ∆. On note a, b, c les sommets de ∆, que l’on suppose distincts sans quoi l’assertion
est évidente.

a = u

b
c

β γ

Si u est un sommet de ∆, disons u = a, soient β ∈]a, b] et γ ∈]a, c]. Alors, I est la somme
des intégrales de f le long des bords des triangles aβγ, bγβ et cγb, les deux dernières
étant nulles grâce au raisonnement ci-dessus. On note ∆′ le triangle aβγ. Soit ϵ > 0.
Puisque f est continue en a, soit η > 0 tel que D (a, η) ⊆ U et tel que |f(z) − f(a)| ≤ ε
dès que z ∈ D (a, η). Alors, si β, γ ∈ D (a, η),

|I| =
∣∣∣∣∫

∂∆′
f(z)dz

∣∣∣∣ ≤ εLong (∂∆′) ≤ εLong (∂∆) .

On a montré que |I| est inférieure à tout réel strictement positif, c’est-à-dire que I = 0.

On suppose pour finir que u est à l’intérieur de ∆. On applique
ce qui précède aux trois triangles abu, bcu et cau : chacune des
intégrales de f le long de leurs bords est nulle. Comme I est la
somme de ces intégrales, cela prouve que I = 0.

a

b
c

u

2○ On montre ensuite l’assertion : pour tout ouvert U de C, pour tout u ∈ U , pour toute fonction f : U → C
continue sur U et dérivable sur U \ {u}, pour tout r > 0 et pour tout w ∈ U tels que D (w, r) ⊆ U ,∫

C(w,r)

f(z)dz = 0.

Soient r > 0 et w ∈ U tels que D (w, r) ⊆ U . Pour obtenir la formule, il suffit de montrer que f admet une
primitive sur D (w, r). Pour tout z ∈ D (w, r), le segment [w, z] est encore dans D (w, r) ; on pose alors

F (z) =

∫
S(w,z)

f(ζ)dζ.

On prouve que F est une primitive de f . Soit h ∈ C tel que z + h ∈
D (w, r). Alors, puisque le triangle w, z, z + h est dans D (w, r), le 1○
garantit que l’intégrale de f le long de ce triangle est nulle. Autrement
dit,

F (z + h)− F (z) =

∫
S(z,z+h)

f(ζ)dζ,

ou encore

F (z + h)− F (z)− hf(z) =

∫
S(z,z+h)

(f(ζ)− f(z)) dζ.

w

z

z + h
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Soit ϵ > 0. Puisque f est continue en z, soit η > 0 tel que D (z, η) ⊆ D (w, r) et tel que |f(ζ)− f(z)| ≤ ε dès
que |ζ − z| ≤ η. Alors, il suffit que |h| ≤ η pour que |F (z + h)− F (z)− hf(z)| ≤ εh, ce qui montre que F est
dérivable au sens complexe en z et que F ′(z) = f(z).

3○ Fin de la preuve de (iii)⇒(i) : soient r > 0 et w ∈ U tels que D (w, r) ⊆ U . Soit aussi z ∈ D (w, r). On
définit l’application g : U → C par

g(ζ) =


f(ζ)− f(z)

ζ − z
si ζ ̸= z

f ′(z) si ζ = z.

Puisque f est dérivable, g est continue sur U et également dérivable sur U \ {z}. On peut alors appliquer 2○ à
g, ce qui s’écrit ∫

C(w,r)

f(ζ)

ζ − z
dζ =

∫
C(w,r)

f(z)

ζ − z
dζ = f(z)× 2iπ IndC(w,r)(z) = 2iπf(z)

puisque z est dans le disque ouvert D (w, r) et puisque le chemin C(w, r) parcourt le cercle une fois dans le sens
direct.

Définition (fonction holomorphe)
Dans les conditions du théorème d’équivalence, un application qui vérifie les conditions (i), (ii) ou (iii) est dite
holomorphe sur U .

Notation

Si U est un ouvert de C, on notera O(U) l’ensemble des applications holomorphes U −→ C.

A noter

(i) L’holomorphie est à vrai dire une propriété locale des fonctions complexes de la variable complexe. Si U est
un ouvert de C et si u ∈ U , on dit que f est holomorphe en u lorsque f est dérivable au sens complexe sur un
voisinage de u. Une fonction est alors holomorphe sur U lorsqu’elle est holomorphe en tout point de U .

En revanche, la dérivabilité au sens complexe est, elle, une propriété ponctuelle en le sens suivant : une fonction
complexe de la variable complexe peut être dérivable en un point sans n’être dérivable sur aucun autre point
d’un voisinage. Prendre par exemple la fonction z 7→ |z|2, qui est dérivable au sens complexe en 0, et seulement
en 0 (exercice).

(ii) Opérations sur les fonctions holomorphes
La somme et le produit de deux fonctions holomorphes sur U y sont encore holomorphes. Si on ajoute encore
le produit par une constante (qui est le produit par une fonction constante), ces lois confèrent à O(U) une
structure de C-algèbre. En outre, une fonction holomorphe sur un ouvert U est inversible dans l’anneau O(U)

si, et seulement si elle ne s’annule pas sur U , avec la formule de dérivation ordinaire
Ä
1
f

ä′
= − f ′

f2 .

La composée de deux fonctions holomorphes est encore holomorphe, avec la formule de dérivation f ◦ g =
(f ′ ◦ g) × g′. La réciproque d’une fonction holomorphe bijective est encore holomorphe avec la formule de

dérivation ordinaire
(
f−1

)′
= 1

f ′◦f−1 .

Toutes ces propriétés se voient immédiatement en utilisant le point de vue “dérivable au sens complexe” de
l’holomorphie.

On conclut ce chapitre par un corollaire de la preuve de l’implication (i)⇒(ii) du théorème d’équivalence. Ce
résultat opératoire est souvent bien commode. Il a pour conséquence, notamment, que les rayons de tous les
développements en séries entières d’une fonction holomorphe sur C sont infinis.

Proposition (rayons des DSE d’une fonction holomorphe))

Soient U un ouvert de C, f ∈ O(U) et u ∈ U . Soit R = sup {r > 0, D(u, r) ⊆ U}. Alors, le rayon du
développement en série entière de f en u est supérieur ou égal à R.

Autrement dit, le rayon du développement en série entière de f en u est
au moins égal à la distance de u au bord de U . Relier cela au A noter
de la proposition 1.3.2.

uR U
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2 Différentiabilité, Cauchy-Riemann, prolongement analytique

2.1 Dérivées complexes d’ordres supérieurs

Définition (dérivées d’ordre supérieur au sens complexe, classe C∞)
Soient U un ouvert de C et f : U → C une application. On dit que f est de classe C1 sur U lorsqu’elle y est
dérivable au sens complexe et lorsque sa dérivée (première) f ′ est continue — on dit aussi que f est continûment
différentiable sur U . Par récurrence, pour tout entier n ≥ 2, on dit que f est de classe Cn sur U lorsque f y est
de classe Cn−1 et lorsque sa dérivée (n− 1)e est de classe C1 ; la dérivée de la dérivée (n− 1)e est alors appelée
dérivée ne et on la note comme toujours f (n). Lorsque f est de classe Cn pour tout n ≥ 1, on dit que f est de
classe C∞.

Proposition (le DSE en un point d’une fonction holomorphe est celui de Taylor)

Soient U un ouvert de C et f ∈ O(U). Alors, f est de classe C∞ sur U et, pour tout u ∈ U , le DSE de f au
voisinage de u est

f(z) =

∞∑
n=0

f (n)(u)

n!
(z − u)n.

Preuve. Soit u ∈ U . Puisque f est holomorphe, elle est DSE au voisinage de u. Soient r > 0 et (an)n∈N
une (la, à vrai dire, puisqu’on a déjà vu qu’elle est unique) suite de nombre complexes telles que pour tout
z ∈ D (u, r),

f(z) =
∑
n≥0

anz
n.

Alors, le théorème de dérivation des séries entières assure que f est dérivable sur D (u, r), que sa dérivée f ′ est
également DSE en u — avec un rayon de convergence au moins égal à celui du DSE de f — et que le DSE de
f ′ s’obtient en dérivant terme à terme le DSE de f . Cela valant pour tout u ∈ U , on en déduit que f ′ ∈ O(U).
Par récurrence, il est alors immédiat que f est de classe C∞ sur U , et que pour tout n ≥ 1, le DSE de f (n) en
u s’obtient en dérivant terme à terme et s’écrit

f (n)(z) =

∞∑
k=0

Ç
n+ k

k

å
k!an+k(z − u)k.

En particulier, en prenant la valeur en u, on obtient que f (n)(u) = n!
(
n
0

)
an = n!an, ce qu’il fallait démontrer.

A noter

(i) On peut encore écrire le DSE en u de f sous la forme

f(u+ z) =

∞∑
n=0

f (n)(u)

n!
zn.

(ii) La proposition montre que la notion de fonction de classe Cn au sens complexe n’a qu’un très faible intérêt
puisque lorsqu’un fonction est dérivable (une fois) au sens complexe, elle est automatiquement de classe C∞. La
seule motivation consiste à donner du sens à la dérivée ne qui apparâıt dans le développement de Taylor. On
aurait pu s’en passer en définissant f (n)(u) par récurrence en utilisant l’implication g ∈ O(U) =⇒ g′ ∈ O(U).

Proposition (formule intégrale pour les dérivées d’ordres supérieurs)

Soient U un ouvert de C et f ∈ O(U). Alors, pour tout z ∈ U , pour tout r > 0 tel que D (z, r) ⊆ U et pour
tout n ≥ 0,

f (n)(z) =
n!

2iπ

∫
C(z,r)

f(ζ)

(ζ − z)n+1
dζ. (9)

Preuve. La preuve du (i)⇒(ii) du théorème d’équivalence pour les fonctions holomorphes montre que, dans
les conditions de l’énoncé, le coefficient de (u − z)n dans le développement de f(u) au voisinage de z est
1

2iπ

∮
C(z,r)

f(ζ)
(ζ−z)n+1 dζ. Combinée avec le théorème d’unicité du DSE, la proposition précédente montre la formule

cherchée.
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A noter
On avait déjà vu que la valeur d’une fonction holomorphe sur un disque ouvert est déterminée par ses valeurs
sur le cercle, frontière dudit disque. Toutes les dérivées dans le disque sont donc également déterminées par les
valeurs de la fonction sur le cercle. La proposition donne des formules intégrales de ces dérivées, qui s’avèrent
souvent bien commode pour obtenir des majorations. C’est là une des manifestations de la puissance opératoire
de la formule de Cauchy.

Corollaire (inégalités de Cauchy)

Soient U un ouvert de C, f ∈ O(U). Alors, pour tout r > 0 tel que D (z, r) ⊆ U et pour tout n ∈ N, le ne

coefficient du DSE de f en z vérifie ∣∣f (n)(z)
∣∣

n!
≤

max∂D(z,r) |f |
rn

.

Preuve. On part de la formule intégrale (9) qui fournit, par majoration standard, l’inégalité∣∣f (n)(z)
∣∣

n!
≤ 1

2π

1

rn+1
max

∂D(z,r)
|f | × 2πr =

max∂D(z,r) |f |
rn

.

A noter
Avec les notations de la proposition, les inégalités de Cauchy permettent de comparer les coefficients du DSE
en un point d’une fonction holomorphe aux suites géométriques de raisons 1

r , pour tout r ∈]0, R[.

2.2 Prolongement analytique

Définition (partie discrète)
Une partie A de C est dite discrète lorsque tous ses points sont isolés. Autrement dit, lorsque pour tout a ∈ A,
il existe r > 0 tel que

A ∩D (a, r) = {a} .

Exercice 29 Une partie de C à la fois discrète et compacte est finie.
[Un conseil : utiliser la propriété de compacité sous la forme de tout recouvrement ouvert, on peut extraire un recouvrement fini.]

Théorème (les zéros d’une fonction DSE sont isolés)

Soient U un ouvert connexe de C et f : U → C une application DSE non nulle sur U . Alors, l’ensemble des
zéros de f est une partie discrète de U .

Preuve. En notant f|A la restriction de f à une partie A de U , soient N =
{
z ∈ U, ∃r > 0, f|D(z,r) = 0

}
, et

1N la fonction indicatrice de N sur U — elle vaut 1 sur N et 0 en tout autre point de U . Par définition de N ,
si 1N vaut 1 en un point z ∈ U , elle vaut 1 sur un disque ouvert centré en z. Inversement, si 1N vaut 0 en un
point z ∈ U , la fonction f n’est identiquement nulle sur aucun voisinage de z ; le principe des zéros isolés pour
les séries entières garantit donc qu’il existe r > 0 tel que f ne s’annule pas sur D (z, r) \ {z}. En particulier, 1N
vaut encore 0 sur D (z, r). On a montré que 1N : U → {0, 1} est localement constante sur le connexe U . Elle
est donc constante. Comme f n’est pas la fonction nulle, 1N ≡ 0 et donc N = ∅. On a montré que l’ensemble
des zéros de f est discret puisque, si z est un zéro de f , comme il n’est pas dans N , le principe des zéros isolés
garantit qu’il existe un voisinage de z sur lequel f ne s’annule qu’en z.

A noter

(i) Passer du principe des zéros isolés à la discrétion des zéros d’une fonction holomorphe sur un connexe ne
demande qu’à traiter l’affaire de la connexité. On a fait ici le choix d’éviter de parler de topologie induite.
Pourtant, cette dernière preuve se trouve plus intelligible lorsqu’on raisonne avec cette notion.

(ii) La connexité est essentielle, bien sûr. La fonction valant 0 sur D (1, 1) et 1 sur D (−1, 1) est analytique ;
pourtant, l’ensemble de ses zéros n’est pas discret puisque c’est D (1, 1).

Exemple
La formule cos 2z = cos2 z − sin2 z est valide pour tout z ∈ R, c’est une formule trigonométrique ordinaire. On
en déduit qu’elle est valide pour tout z ∈ C puisque R n’est pas une partie discrète de C.
[Bon, d’accord, cette formule est facile à prouver directement, mais ce que dit le raisonnement, c’est qu’une fois qu’on la connâıt sur R, elle
est vraie sur C.]
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Corollaire (cardinal des zéros d’une fonction DSE)

Soient U un ouvert connexe de C et f une fonction DSE sur U , non nulle. Alors, le cardinal de l’ensemble des
zéros de f est fini ou dénombrable.

Preuve. On note Z(f) l’ensemble des zéros de f et K = [0, 1] + i[0, 1]. Alors, C est l’union dénombrable des
compacts z +K où z ∈ Z+ iZ a une partie réelle et une partie imaginaire entières. Or, pour tout z ∈ Z+ iZ,
l’intersection de z +K et de Z(f) est à la fois discrète — Z(f) l’est — et compacte — K est compact et Z(f)
est fermé puisque f est continue ; ainsi, (z +K) ∩ Z(f) est fini.

Exercice 30
Montrer que toute partie discrète de C est finie ou dénombrable.
[Le corollaire est évidemment une conséquence immédiate de cela et du théorème qui précède.]

Corollaire (nullité d’une fonction holomorphe sur un connexe)

Soient U un ouvert connexe de C, f ∈ O(U) et u ∈ U . Alors, les assertions suivantes sont équivalentes.

(i) f est nulle sur un disque ouvert non vide contenant u

(ii) f (n)(u) = 0, pour tout n ∈ N
(iii) f est nulle sur U .

Preuve. C’est une conséquence immédiate du fait que les zéros de f sont isolés.

Exercice 31
Soit U un ouvert de C. Alors, l’anneau O(U) est intègre si, et seulement si U est connexe.

Corollaire (principe du prolongement analytique)

Soient U un ouvert connexe et f, g ∈ O(U). Si f et g cöıncident sur une partie non discrète de U , alors elles
cöıncident sur U tout entier.

Preuve. C’est une conséquence immédiate du fait que dans U , les zéros de f − g sont isolés.

Exercice 32
Si A est une partie de C et si a est dans l’adhérence de A, on dit que a est un point d’accumulation de A lorsque
∀r > 0, ∃z ∈ A ∩ (D (a, r) \ {a}). Montrer qu’une partie de C est discrète si, et seulement si elle ne contient
pas de point d’accumulation.

2.3 Le théorème de Liouville

Définition (fonction entière)
Une fonction est dite entière lorsqu’elle est holomorphe sur C (tout entier).

Théorème (de Liouville�)

Toute fonction entière et bornée est constante.

Preuve. Soit f ∈ O(C) et M > 0 tel que |f(z)| ≤ M , pour tout z ∈ C. Alors, les inégalités de Cauchy en 0
montrent que pour tout r > 0 et pour tout n ≥ 0,∣∣f (n)(0)

∣∣
n!

≤ M

rn
.

En faisant tendre r vers l’infini, cela entrâıne que les coefficients du DSE de f en 0 sont tous nuls, sauf le
coefficient constant — sur lequel les inégalités de Cauchy ne disent rien. Donc f est constante sur un disque
ouvert centré en 0. Par prolongement analytique, cela implique que f est constante.

A noter
Une série entière est analytique sur son disque de convergence. La preuve que l’on a faite page 24 de ce résultat
montre en particulier que lorsqu’une fonction est entière, le rayon de son DSE en chaque point de C est infini
— voir le (i) du A noter qui suit cette preuve. Cela permet de conclure la preuve du théorème de Liouville
présentée ci-dessus sans avoir recours au théorème du prolongement analytique : le DSE(0) de f est valide sur
C tout entier puisque son rayon est infini.

�Joseph Liouville, 1809–1882
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2.4 Différentiabilité en 2 variables, équations de Cauchy-Riemann

Dans tout ce paragraphe, on note z la variable complexe générique et x et y ses parties réelle et imaginaire si
bien que z = x + iy. On identifie comme d’habitude C à l’espace euclidien R2 standard, ou encore à l’espace
euclidien des vecteurs-colonneM2,1 (R) au moyen des applications R-linéaires bijectives isométriques

M2,1 (R)
∼−→ R2 ∼−→ CÅ

x
y

ã
7−→ (x, y) 7−→ z = x+ iy

Ainsi, par exemple, on notera (1, i) la base canonique de R2, qui oriente le plan euclidien R2 dans tout ce
paragraphe. Au moyen de cette identification, tout ouvert de C est aussi un ouvert de R2 et on notera de la
même façon sa version réelle dans R2 et sa version complexe dans C, par l’abus de notation

U =
{
(x, y) ∈ R2, (x, y) ∈ U

}
=
{
(x, y) ∈ R2, x+ iy ∈ U

}
= {z ∈ C, z ∈ U} .

Si U est un ouvert de C et si f : U → C est une application, on notera de façon générique P (z) = P (x, y) et
Q(x, y) = Q(z) les parties réelle et imaginaire de f(z) = f(x, y). Ainsi, P et Q sont des applications R2 → R
qui vérifient : ∀z = x+ iy ∈ U ,

f(z) = P (z) + iQ(z) ou encore f(x, y) = P (x, y) + iQ(x, y)

et aussi toute combinaison équivalente qui mélange les notations dont on convient.
[En particulier, P (x, y) = ℜ (f(x + iy)) et Q(x, y) = ℑ (f(x + iy)).]

2.4.1 Les applications C-linéaires, ou similitudes directes planes

Parmi les applications R-linéaires R2 → R2 se trouvent les très particulières applications C-linéaires C → C.
Ces dernières sont évidemment les applications de la forme z 7→ az où a ∈ C.

Proposition (matrice réelle d’une application C-linéaire)
Soit a = α+ iβ ∈ C où α, β ∈ R. Alors, la matrice de l’application R-linéaire sa : C→ C, z 7→ az dans la base
canonique C de R2 est

MatC (sa) =

Å
α −β
β α

ã
.

Preuve. Il suffit de faire le calcul : sa(z) = az = (α+ iβ)(x+ iy) = (αx− βy) + i (βx+ αy).

A noter

(i) sa est inversible (bijective) si, et seulement si a ̸= 0, son inverse étant alors s1/a.

(ii) Avec les notations de la proposition, en tant qu’application R-linéaire, le polynôme caractéristique de sa est

det (idR2 −Xsa) = X2 − 2ℜ(a)X + |a|2 = (X − a) (X − a) .

En particulier, si a /∈ R, la matrice

Å
α −β
β α

ã
est diagonalisable sur C, semblable à

Å
a 0
0 a

ã
, mais pas sur R

puisqu’elle a des valeurs propres non réelles.

(iii) Dans l’espace euclidien R2 standard, la base canonique (1, i) est orthonormée — on a choisi de la prendre

pour orienter cet espace. Par ailleurs, toute matrice orthogonale de dimension 2 est de la forme

Å
c −s
s c

ã
ouÅ

c s
s −c

ã
avec s, c ∈ R et c2 + s2 = 1, selon qu’elle a pour déterminant 1 (matrice de rotation) ou −1 (matrice

de réflexion). Le calcul montre aisément que deux matrices

Å
α −β
β α

ã
et

Å
c −s
s c

ã
commutent, ce qui entrâıne

que la matrice de sa est celle de l’énoncé de la proposition non seulement dans la base canonique de R2, mais
aussi dans n’importe quelle base orthonormée directe de R2.
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(iv) Soient α, β ∈ R, non tous les deux nuls. Soit alors θ ∈ R vérifiant α√
α2+β2

= cos θ et β√
α2+β2

= cos θ —

un tel θ existe et est unique modulo 2π�. Alors, la matrice ci-dessus est le produit d’une homothétie et de la
rotation d’angle θ, comme le montre la calcul immédiatÅ

α −β
β α

ã
=
√
α2 + β2

Å
cos θ − sin θ
sin θ cos θ

ã
.

Définition (préserver les angles orientés (de vecteurs de l’espace euclidien standard R2))
On dit qu’une application R-linéaire s : R2 → R2 préserve les angles orientés (de vecteurs de l’espace euclidien
standard R2) lorsque s est l’application nulle ou lorsque s est bijective et vérifie

∀u, v ∈ R2 \
ßÅ

0
0

ã™
, ¤�(s(u), s(v)) = ’(u, v).

A noter

(i) L’angle de deux vecteurs −→u et −→v d’affixes respectifs u et v est bien défini dans le cas où ni u ni v ne sont

nuls. Dans ce cas, la mesure principale de l’angle orienté de vecteurs ◊�(−→u ,−→v ) est’(u, v) = Arg
( v
u

)
.

où Arg z ∈]− π, π] désigne l’argument principal du complexe z.

(ii) Dans le jargon, une application linéaire R2 → R2 qui préserve les angles orientés est un similitude plane
directe.

Exercice 33
Si u, v ∈ C \ {0} et si θ ∈ R, la mesure principale de l’angle orienté de vecteurs ’(u, v) est θ si, et seulement si
θ ∈]− π, π] et

v

|v|
= eiθ

u

|u|
.

Exemples

(i) Si ρ ∈ R \ {0}, on note hρ = ρ idR2 l’homothétie de rapport ρ. Il est immédiat que les homothéties préservent

les angles orientés, puisque une homothétie hρ est bijective et vérifie Arg
hρ(v)
hρ(v)

= Arg ρv
ρu = Arg v

u .

(ii) Dans l’espace euclidien orienté R2, l’expression complexe de la rotation d’angle θ ∈ R est rθ : z 7→ eiθz. Il
est à nouveau immédiat que les rotations préservent les angles orientés, puisque toute rotation rθ est bijective

et vérifie Arg rθ(v)
rθ(u)

= Arg eiθv
eiθu

= Arg v
u .

(iii) Un calcul analogue montre que toute application C-linéaire préserve les angles orientés — noter qu’une
application C-linéaire non nulle est bijective. Noter en passant que si a ∈ C\{0} s’écrit sous forme géométrique
a = reiθ où r > 0 et θ ∈ R, alors sa = hr ◦ rθ = rθ ◦ hr.

Proposition (les applications C-linéaires préservent les angles et vice-versa)

Soit s une application R-linéaire R2 → R2. Alors, s préserve les angles orientés si, et seulement si elle est
C-linéaire.

Preuve. Le sens réciproque est montré dans les exemples qui précèdent. On suppose que s ∈ HomR
(
R2
)
est

bijective et préserve les angles orientés. On note

Å
α γ
β δ

ã
sa matrice dans la base canonique de R2. On note

aussi a = s(1) = α+ iβ et b = s(i) = γ+ iδ. Puisque s est injective, ni a ni b ne sont nuls. Alors, s(1+ i) = a+b

et la préservation des angles ‘(1, i) et ÿ�(1, 1 + i) par s s’écrit

b

|b|
= i

a

|a|
et

a+ b

|a+ b|
= ei

π
4
a

|a|
.

�Une question de fondements : d’où cela vient-il exactement ?
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On note r = |b|
|a| > 0. Alors, la première égalité s’écrit b = iar et en élevant au carré la seconde, on obtient

(1 + ir)2 = i
(
1 + r2

)
, ce qui impose que r = 1 et donc que b = ia, ou encore que

Å
γ
δ

ã
=

Å
−β
α

ã
. Avec les

notations de la proposition matrice réelle d’une application C-linéaire ci-dessus, on a montré que s = sa.

2.4.2 Les équations de Cauchy-Riemann

On reprend les notations génériques f = P + iQ =

Å
P
Q

ã
lorsque f est une fonction complexe de la variable

complexe. Soient U un ouvert de C et f ∈ O(U). Alors, f est continûment dérivable et pour tout z ∈ U ,

f(z + h) = f(z) + f ′(z)h+ o(h) (10)

lorsque le nombre complexe h tend vers 0. On note respectivement α = α(z) et β = β(z) les parties réelle et
imaginaire de f ′(z), si bien que

f ′(z) = α+ iβ

avec α, β ∈ R. Si l’on considère f selon le point de vue d’une fonction de deux variables réelles, en notant
z = x+ iy = (x, y) et h = k + iℓ = (k, ℓ) avec x, y, k, ℓ ∈ R, selon l’étude du paragraphe 2.4.1, cela s’écrit :

f(x+ k, y + ℓ) = f(x, y) +

Å
α −β
β α

ã
×
Å
k
ℓ

ã
+ o

Å
k
ℓ

ã
(11)

lorsque le vecteur

Å
k
ℓ

ã
de R2 tend vers

Å
0
0

ã
. Autrement dit, f est différentiable sur U et, pour tout (x, y) ∈ U ,

sa matrice jacobienne en (x, y) s’écrit

Jac(x,y)(f) =

á
∂P

∂x
(x, y)

∂P

∂y
(x, y)

∂Q

∂x
(x, y)

∂Q

∂y
(x, y)

ë
=

Å
α −β
β α

ã
.

On rassemble cette inégalité sous la forme des célèbres équations dites de Cauchy-Riemann.

Théorème (équations de Cauchy-Riemann)

Soient U un ouvert de C et f = P + iQ ∈ O(U) selon les notations génériques. Alors, en tout point de U ,

(i)
∂P

∂x
=

∂Q

∂y
et

∂P

∂y
= −∂Q

∂x

(ii) f ′(z) =
∂f

∂x
=

∂P

∂x
+ i

∂Q

∂x
et if ′(z) =

∂f

∂y
=

∂P

∂y
+ i

∂Q

∂y

(iii)
∂f

∂x
+ i

∂f

∂y
= 0.

Preuve. Tout le travail est fait dans l’introduction de cette section.

Corollaire (une fonction holomorphe non constante n’est pas réelle)

Soient U un ouvert connexe de C et f ∈ O(U). Si f est à valeurs réelles, alors f est constante.

Preuve. Avec les notations ci-dessus, si f est à valeurs réelles, alors Q est identiquement nulle. Les équations
de Cauchy-Riemann assurent alors que les dérivées partielles de P sont identiquement nulles, et ainsi que
f ′(z) = 0, pour tout z ∈ U . Comme U est connexe, cela entrâıne que f est constante.

A noter

(i) Les fonctions P et Q sont à valeurs réelles. A moins qu’elles ne soient constantes, cela implique qu’elle ne
sont pas holomorphes. Attention à ne pas se laisser tenter par l’écriture formelle “f ′(z) = P ′(z) + iQ′(z)” qui
n’aurait en général pas de sens.
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(ii) Les assertions (i), (ii) et (iii) du théorème sont trois formulations équivalentes des liens entre les dérivées
partielles de P et Q. Elles expriment le fait que la différentielle de f est C-linéaire.
(iii) Les équations de Cauchy-Riemann constituent aussi une condition suffisante de dérivabilité au sens com-
plexe. Cela est établi par l’équivalence immédiate entre les formules (10) et (11). On obtient ainsi l’énoncé
suivant.

Proposition (holomorphe signifie différentiable plus Cauchy-Riemann)

Soient U un ouvert de C et f : U → C une application. Alors, f est holomorphe si, et seulement si f est

différentiable (sur U , au sens des fonctions de 2 variables réelles) et vérifie
∂f

∂x
+ i

∂f

∂y
= 0 sur U .

Exercice 34
Dans la même veine que le corollaire, montrer qu’une fonction holomorphe non constante ne prend pas ses
valeurs dans une droite du plan.

2.4.3 Angles infinitésimaux

Définition (angle infinitésimal (orienté))
Soient γ0 : [a, b]→ C et γ1 : [c, d]→ C deux chemins de classe C1 de C, t0 ∈]a, b[ et t1 ∈]c, d[. On suppose que

(i) les supports de γ0 et γ1 se coupent en un point p = γ0 (t0) = γ1 (t1) ;

(ii) γ′
0 (t0) ̸= 0 et γ′

1 (t1) ̸= 0.

Alors, l’angle infinitésimal (orienté) entre γ0 et γ1 en (t0, t1) est l’angle orienté entre les vecteurs tangents
γ′
0 (t0) et γ

′
1 (t1) — en rouge sur le dessin.

γ0

γ1

p

Exemple
On considère les chemins γ0 : t ∈ [0, 2π] 7→ eit et γ1 : t ∈ [−2, 2] 7→ t+ it2

dont les supports sont respectivement le cercle unité et une portion de
la parabole d’équation y = x2. Le point d’intersection de leurs sup-
ports dans le premier quadrant est le point dont les coordonnées (x, y)
vérifient à la fois x2 + y2 = 1 et y = x2 : c’est p =

(√
ρ, ρ
)
où

ρ =
√
5−1
2 ≈ 0.61803. Sur γ1, c’est le point de paramètre t1 =

√
ρ

; sur γ0, c’est le point de paramètre t0 = arccos
√
ρ ≈ 0.66624.

On calcule les vecteurs tangents : γ′
0(t0) = ieit0 = −ρ + i

√
ρ et

γ′
1(t1) = 1 + 2i

√
ρ ≈ 1 + 1, 57230i. L’angle infinitésimal entre les

chemins γ0 et γ1 en leur point d’intersection p en les paramètres

respectifs arccos
√
ρ et

√
ρ a pour mesure principale Arg

1+2i
√
ρ

−ρ+i
√
ρ =

Arg
1+2i

√
ρ

−√
ρ+i = Arg

(
1 + 2i

√
ρ
) (
−√ρ− i

)
= Arg

(√
ρ− i(1 + 2ρ)

)
=

− arctan
Ä

1√
ρ + 2

√
ρ
ä
≈ −70◦

p

γ0

γ1

Définition (préserver les angles infinitésimaux orientés)
Soient U un ouvert de R2 et f : U → C une application de classe C1. On dit que f préserve les les angles
infinitésimaux orientés lorsque pour tout couple (γ0, γ1) de chemins de classe C1 de U , pour tout couple de
paramètres (t0, t1) tels que γ0 (t0) = γ1 (t0) et γ

′
0 (t0) γ

′
1 (t1) ̸= 0, l’angle infinitésimal (orienté) entre γ0 et γ1 en

(t0, t1) égale l’angle infinitésimal (orienté) entre les chemins f ◦ γ0 et f ◦ γ1 en (t0, t1).
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Autrement dit, lorsque ¤�(
γ′
0 (t0) , γ

′
1 (t1)

)
=

¤�(
Dfz (γ′

0 (t0)) , Dfz (γ′
1 (t1))

)
,

où z = γ0 (t0) = γ1 (t1) et Dfa(h) désigne l’image de h par la différentielle de f en a.

Proposition (les fonctions holomorphes préservent les angles infinitésimaux et vice-versa)

Soient U un ouvert de R2 et f : U → C une application de classe C1. Alors, f préserve les angles infinitésimaux
orientés si, et seulement si elle est holomorphe.

Preuve. Il suffit de faire le calcul : f préserve les angles infinitésimaux orientés si, et seulement si sa
différentielle préserve les angles orienté de vecteurs, ce qui équivaut à sa C-linéarité — autrement dit, à la
dérivabilité de f au sens complexe.

A noter
Si f est holomorphe, en reprenant les notations de la définition ci-dessus, si on note z = γ0 (t0) = γ1 (t1), la
préservation de l’angle infinitésimal entre les chemins γ0 et γ1 en (t0, t1) s’écrit¤�(

γ′
0 (t0) , γ

′
1 (t1)

)
=

¤�(
f ′(z)× γ′

0 (t0) , f
′(z)× γ′

1 (t1)
)
,

ce qui tombe sous le sens puisque la similitude directe ζ 7→ f ′(z)ζ préserve les angles orientés.

Exemples sans paroles
Les dessins ci-dessous représentent l’image — bleue — d’un carré grillagé — rouge — par les fonctions indiquées.
On y voit la préservation de l’angle infinitésimal.

z 7→ z2

2
z 7→ 1

2z2
z 7→ ez/10 z 7→

( z

140

)2
ez/140

Corollaire (une fonction holomophe de module constant est localement constante)

Soient U un ouvert connexe de C et f ∈ O(U). Si |f | est constant sur U , alors f est constante sur U .

Preuve. Puisque f est à valeur dans un cercle, les angles infinitésimaux des images de deux chemins qui se
coupent sont tous nuls. Donc f ′ est nulle sur le connexe U , ce qui entrâıne que f soit constante.

Exercice 35
Faire une preuve de ce corollaire en n’utilisant que les équations de Cauchy-Riemann.

Exercice 36
Plus généralement, montrer que si une fonction holomorphe sur un ouvert connexe est à valeur dans le support
d’un chemin (de classe C1 par morceaux), alors f est constante.

2.5 Le principe du module maximum

Si A est une partie de C, on note A son adhérence pour la topologie usuelle, et ∂A = A\A sa frontière — qu’on
appelle aussi son bord.

Théorème (principe du module maximum pour les fonctions holomorphes)

Soient U un ouvert borné de C et f : U → C une application continue, holomorphe sur U . Alors,

(i) le maximum de |f | est atteint en un point de ∂U ;
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(ii) si l’ouvert U est connexe et si le maximum de |f | est également atteint en un point de U , alors f est
constante sur U .

Preuve. Noter que puisque f est continue sur le compact U , sa borne supérieure sur U est un maximum.
Ainsi, il suffit de prouver (ii). On suppose que le maximum de |f | sur U est atteint en un point z0 ∈ U . Soit
r > 0 tel que D (z0, r) ⊆ U . On note Mr = max {|f (z0 + u)| , |u| = r} le maximum de f sur le cercle de centre
z0 et de rayon r — qui est compact. La formule intégrale de Cauchy

f (z0) =
1

2π

∫ 2π

0

f
(
z0 + reit

)
dt

montre que |f (z0)| ≤Mr avec égalité seulement si |f | est constante, égale à |f (z0)|, sur le cercle de centre z0 et
de rayon r — s’il faut, voir ou revoir l’argumentation du cas d’égalité dans la majoration standard d’une intégrale
curviligne, page 16. Or, puisque |f (z0)| est le maximum de |f | sur U tout entier, on a aussi Mr ≤ |f (z0)|. On
est dans le cas d’égalité : |f (z0)| = Mr et donc |f | est constante, égale à |f (z0)|, sur le cercle de centre z0 et
de rayon r. Puisque cela est vrai pour tout r > 0 tel que D (z0, r) ⊆ U , cela entrâıne que |f | est constante
au voisinage de z0. Autrement dit, la fonction holomorphe f est à valeur dans un cercle sur un disque ouvert
centré en z0. Par conservation des angles infinitésimaux, on en déduit que f est constante sur ce disque ouvert.
Ainsi, par prolongement analytique, puisque U est connexe, f est constante sur U .

Corollaire (principe du module maximum, version extremum local)

Soient U un ouvert connexe de C et f ∈ O(U). Si |f | a un maximum local, alors f est constante.

Preuve. Si |f | a un maximum local en z0 ∈ U , alors |f | atteint ce maximum sur un ouvert connexe et borné de
la forme D (z0, r), r > 0, à l’adhérence duquel f se prolonge en une application continue. Donc f est constante
sur D (z0, r), donc sur U tout entier par prolongement analytique.

Exercice 37
Soit f une fonction holomorphe sur un ouvert connexe. Montrer que si f ne s’annule pas et si |f | a un minimum
local, alors f est constante.

A noter
On appelle parfois “paysage” d’une fonction holomorphe f le graphe de l’application z 7→ |f(z)|, ou encore de
(x, y) 7→ |f(x, y)|. C’est une surface de R3. Ce que dit le principe du maximum, c’est que dans le paysage d’une
fonction holomorphe, les sommets sont à l’horizon — au bord de l’ouvert.

Cela est illustré sur les trois dessins qui suivent. Les fonctions dont on dessine le paysage sont mentionnées dans
les légendes. Les ouverts au dessus desquels ces paysages sont pris sont tous des carrés centrés à l’origine.

z 7→
∣∣ 4
5z

3 + z2
∣∣ z 7→

∣∣∣ 1
1+ 7

10 z
2

∣∣∣ z 7→ |sin z + sinh z|
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Proposition (lemme de Schwarz�)

On note D = D (0, 1). Soit f ∈ O(D). On suppose que f(0) = 0 et que |f(z)| ≤ 1, pour tout z ∈ D. Alors,

(i) |f(z)| ≤ |z|, pour tout z ∈ D ;

(ii) s’il existe z0 ∈ D \ {0} tel que |f (z0)| = |z0|, alors f est une rotation : il existe θ ∈ R tel que f(z) = eiθz,
pour tout z ∈ D.

Preuve. (i) Puisque f(0) = 0, l’application g : z 7→ f(z)
z se prolonge en 0 en une fonction holomorphe sur D.

Pour tout r ∈]0, 1[, le principe du module maximum appliqué à g sur D (0, r) assure que le maximum de |g| sur
le compact D (0, r) est atteint sur son bord ; ainsi, |g(z)| ≤ 1

r , pour tout z ∈ D (0, r). On en déduit que ∀z ∈ D,
∀r ∈]|z|, 1[, |g(z)| ≤ 1

r . En passant à la limite r → 1, on obtient que ∀z ∈ D, |f(z)| ≤ |z|.
(ii) Si un tel z0 existe, le module de la fonction g ∈ O(D) ci-dessus atteint son maximum en un point intérieur
au connexe D. Ainsi, g est constante, égale à u ∈ C, comme le garantit le principe du module maximum. Sa
valeur en z0 assure que |u| = 1.

2.6 Suites de fonctions holomorphes, intégrales à paramètres

Proposition (convergence uniforme de fonctions holomorphes)

Soient U un ouvert de C et (fn)n∈N une suite de fonctions holomorphes sur U .

(i) Si la suite de fonctions (fn)n∈N converge uniformément sur tout compact de U vers f : U → C, alors la
suite des dérivées (f ′

n)n∈N converge aussi uniformément sur tout compact de U , f ∈ O(U) et

f ′ = lim
n→∞

f ′
n.

(ii) Si la série de fonctions
∑
n

fn converge uniformément sur tout compact de U , alors la série des dérivées∑
n

f ′
n converge uniformément sur tout compact de U ,

∑
n∈N

fn ∈ O(U) et

(∑
n∈N

fn

)′
=
∑
n∈N

f ′
n.

Preuve. C’est la formule de Cauchy. Il suffit de montrer (i) puisque (ii) en est une conséquence directe en
raisonnant sur les sommes partielles. Puisque f est limite uniforme de fonctions continues, elle est continue
sur U . Les intégrales curvilignes qui suivent ont donc un sens. Soit u ∈ U . Soit r > 0 tel que D (u, r) ⊆ U .
Alors,

∀n ∈ N, ∀z ∈ D (u, r) , fn(z) =
1

2iπ

∫
C(u,r)

fn(ζ)

ζ − z
dζ.

On passe à la limite n → ∞, l’interversion de la limite et de l’intégrale étant garantie par la convergence

uniforme de la suite de fonctions ζ 7→ fn(ζ)
ζ−z sur le cercle de centre u et de rayon r. On obtient ainsi

∀z ∈ D (u, r) , f(z) =
1

2iπ

∫
C(u,r)

f(ζ)

ζ − z
dζ,

ce qui entrâıne l’holomorphie de f sur D (u, r). On a montré que f est holomorphe sur U . De la même façon,
le passage à la limite dans l’égalité

∀n ∈ N, ∀z ∈ D (u, r) , f ′
n(z) =

1

2iπ

∫
C(u,r)

fn(ζ)

(ζ − z)2
dζ

montre que f ′ est la limite simple des f ′
n. Enfin, si K est un compact de D (u, r) et si δ est la distance de K

au cercle de centre u et de rayon r, alors δ > 0 et |ζ − z| ≥ δ, pour tout z ∈ K et pour tout ζ sur le cercle de
centre u et de rayon r. Par conséquent, la majoration standard fournit l’inégalité

∀n ∈ N, ∀z ∈ K, |f ′(z)− f ′
n(z)| =

1

2π

∣∣∣∣∣
∫
C(u,r)

f(ζ)− fn(ζ)

(ζ − z)2

∣∣∣∣∣ dζ ≤ r

δ2
sup

D(u,r)

|f − fn|

�Hermann Amandus Schwarz, 1843–1921
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qui montre le convergence uniforme des dérivées sur K. Comme les disques ouverts D (u, r) ⊆ U , u ∈ U , r > 0
forment un recouvrement ouvert de U , cela suffit à prouver la convergence uniforme sur tout compact de la
suite des dérivées.

A noter

(i) Par récurrence sur m, sous les hypothèses de la proposition, pour tout m ∈ N, on a respectivement

f (m) = lim
n

f (m)
n et

(∑
n∈N

fn

)(m)

=
∑
n∈N

f (m)
n .

(ii) Les hypothèses relatives à la dérivation complexe sont plus faibles que celles relatives à la dérivation réelle
ordinaire : on n’a pas besoin de faire d’hypothèse sur la convergence uniforme des dérivées pour conclure à la
dérivabilité de la limite.

(iii) On peut aussi énoncer une variante plus opératoire de cette proposition. La preuve est laissée en exercice
— on peut par exemple adapter la preuve ci-dessus, ou encore déduire ce résultat de la proposition précédente.

Proposition (convergence uniforme de fonctions holomorphes, version disques)

Soient U un ouvert de C et (fn)n∈N une suite de fonctions holomorphes sur U .

(i) Si la suite de fonctions (fn)n∈N converge uniformément sur tout disque fermé inclus dans U vers f : U → C,
alors la suite des dérivées (f ′

n)n∈N converge aussi uniformément sur tout disque fermé inclus dans U , f ∈ O(U)
et

f ′ = lim
n→∞

f ′
n.

(ii) Si la série de fonctions
∑
n

fn converge uniformément sur tout disque fermé inclus dans U , alors la série

des dérivées
∑
n

f ′
n converge uniformément sur tout disque fermé inclus dans U ,

∑
n∈N

fn ∈ O(U) et

(∑
n∈N

fn

)′
=
∑
n∈N

f ′
n.

Exemple ultra classique
On note P le demi-plan ouvert P = {z ∈ C, ℜ(z) > 1}. Pour tout z ∈ P et pour tout entier naturel non nul n,∣∣∣∣ 1nz

∣∣∣∣ = 1

nℜ(z)

si bien que la série numérique
∑

n
1
nz est absolument convergente, donc convergente. La fonction ζ de Riemann

est alors définie par

∀z ∈ P, ζ(z) =

∞∑
n=1

1

nz

Si K est un compact de P, il existe α > 1 tel que K ⊆ {z ∈ C, ℜ(z) ≥ α}, si bien que

∀z ∈ K, ∀n ≥ 1,

∣∣∣∣ 1nz

∣∣∣∣ ≤ 1

nα
.

Comme n−α est le terme général d’une série numérique convergente, la série
∑

n
1
nz de fonctions de z converge

normalement et donc uniformément sur tout compact de P. On en déduit que

la fonction ζ est holomorphe sur P = {z ∈ C, ℜ(z) > 1}
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En outre, pour tout entier naturel m et pour tout z ∈ P, la dérivée me de ζ s’écrit

ζ(m)(z) = (−1)m
∞∑

n=1

(log n)m

nz
.

Proposition (intégrales à paramètres holomorphes)

Soient U un ouvert de C et (X,F , µ) une espace mesuré. Soit f : U ×X → C. On suppose que :

(H1) pour presque tout x ∈ X, l’application z ∈ U 7→ f(z, x) est holomorphe ;

(H2) pour tout z ∈ U , l’application x ∈ X 7→ f(z, x) est mesurable ;

(H3) il existe g ∈ L1(X,µ) telle que |f(z, x)| ≤ g(x) pour tout z ∈ U et pour presque tout x ∈ X.
Alors,

(i) l’application F : z →
∫
X

f(z, x)dµ(x) est holomorphe sur U ;

(ii) pour tout z ∈ U , pour tout n ∈ N, la dérivée partielle x 7→ ∂nf

∂zn
(z, x) est intégrable ;

(iii) ∀z ∈ U,∀n ∈ N, F (n)(z) =

∫
X

∂nf

∂zn
(z, x)dµ(x).

Preuve. C’est encore la formule de Cauchy. L’hypothèse (H3) assure la définition de F . Soit u ∈ U . Soit
r > 0 tel que D (u, r) ⊆ U . Alors, pour presque tout x ∈ X et pour tout z ∈ D (u, r),

f(z, x) =
1

2iπ

∫
C(u,r)

f(ζ, x)

ζ − z
dζ.

On s’apprête à intégrer en x. Or, pour tout ζ ∈ SuppC(u, r) et pour presque tout x ∈ X,∣∣∣∣f(ζ, x)ζ − z

∣∣∣∣ ≤ g(x)

|ζ − z|
.

En paramétrant le chemin circulaire, le théorème de Fubini-Tonelli assure donc que∫
X

∫ 2π

0

∣∣∣∣∣f
(
u+ reit, x

)
ireit

u+ reit − z

∣∣∣∣∣ dµ(x)dt ≤
∫
X

∫ 2π

0

g(x)r

|u+ reit − z|
dµ(x)dt ≤ ∥g∥1 ×

2πr

dist (z, ∂D (u, r))

(notation évidente pour la distance). Alors, le théorème de Fubini tout court implique que

F (z) =
1

2iπ

∫
X

Ç∫
C(u,r)

f(ζ, x)

ζ − z
dζ

å
dµ(x) =

1

2iπ

∫
C(u,r)

∫
X
f(ζ, x)dµ(x)

ζ − z
dζ =

1

2iπ

∫
C(u,r)

F (ζ)

ζ − z
dζ

si bien que F est holomorphe sur D (u, r). On a ainsi montré que F est holomorphe sur U . L’inégalité de
Cauchy assure alors une inégalité de domination (locale) sur les dérivées partielles : pour presque tout x ∈ X
et pour tout z ∈ D (u, r), ∣∣∣∣∂nf

∂zn
(z, x)

∣∣∣∣ ≤ n!g(x)

rn
.

Le raisonnement mené ci-dessus sur f appliqué aux dérivées partielles

∂nf

∂zn
(z, x) =

1

2iπ

∫
C(u,r)

∂nf
∂zn (ζ, x)

(ζ − z)n+1
dζ

montre à la fois (ii) — conséquence de Fubini-Tonelli — et (iii).

Exemple ultra classique
On note Q le demi-plan ouvert Q = {z ∈ C, ℜ(z) > 0}. Pour tout z ∈ Q et pour tout t > 0,∣∣tz−1e−t

∣∣ = tℜ(z)−1e−t

ce qui montre que t 7→ tz−1e−t est intégrable sur R+ — différentier l’étude en 0 et l’étude en +∞. La fonction
Gamma d’Euler� est alors définie par

�Leonhard Euler, 1707–1783
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∀z ∈ Q, Γ(z) =

∫ +∞

0

tz−1e−tdt

Pour tous α, β réels vérifiant 0 < α < β, on note Bα,β la bande verticale fermée

Bα,β = {z ∈ C, α ≤ ℜ(z) ≤ β} .

Soit alors z0 ∈ Q. On choisit α, β tels que z0 ∈ Bα,β — il en existe, prendre par exemple α = 1
2ℜ (z0) et

β = 3
2ℜ (z0). Soit alors t ≥ 0 et z ∈ Bα,β . D’un côté, si 0 ≤ t ≤ 1, alors

∣∣tz−1e−t
∣∣ ≤ tα−1e−t. De l’autre côté, si

t ≥ 1, alors
∣∣tz−1e−t

∣∣ ≤ tβ−1e−t. Dans tous les cas, pour tout z ∈ Bα,β et pour tout t ≥ 0,∣∣tz−1e−t
∣∣ ≤ e−t max

{
tα−1, tβ−1

}
.

Comme t 7→ e−t max
{
tα−1, tβ−1

}
est intégrable sur R+, cette inégalité est une inégalité de domination de

(z, t) 7→ tz−1e−t sur la bande Bα,β . Le théorème des intégrales à paramètres holomorphes montre ainsi que Γ
est holomorphe sur cette bande, donc en z0. On a montré que

la fonction Γ est holomorphe sur Q = {z ∈ C, ℜ(z) > 0}

En outre, pour tout n ≥ 0 et pour tout z ∈ Q, la dérivée ne de Γ s’obtient en dérivant sous le signe somme :
elle s’écrit

Γ(n)(z) =

∫ +∞

0

tz−1(log t)ne−tdt.
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3 Le théorème de Cauchy global

Proposition (existence locale de primitives pour une fonction holomorphe)

Soient U un ouvert de C et f ∈ O(U). Alors, pour tout u ∈ U et pour tout r > 0 tel que D (u, r) ⊆ U , la
fonction f admet une primitive sur D (u, r).

Preuve. On a déjà vu cela dans la preuve du (iii)⇒(i) du théorème d’équivalence. En effet, en reprenant cette
preuve, on a montré d’abord que si f ∈ O(U), son intégrale le long de tout triangle dont l’enveloppe convexe
est incluse dans U est nulle — c’est l’assertion 1○. Soient alors u ∈ U et r > 0 tel que D (u, r) ⊆ U . Comme
dans le 2○ de la preuve du théorème d’équivalence, l’application F : D (u, r)→ C définie par la formule

F (z) =

∫
S(u,z)

f(ζ)dζ

est bien définie puisque le segment [u, z] est inclus dans D (u, r) qui est lui-même inclus dans U . En outre,
puisque son intégrale le long de tout triangle {u, z, z + h} inclus dans D (u, r) est nulle, la continuité f entrâıne
que F (z+ h)−F (z) = hf(z) + o(h), ce qui montre que F est dérivable en z et que F ′(z) = f(z), ce qu’il fallait
démontrer.

A noter

(i) Retenir la forme d’une primitive locale d’une fonction holomorphe, donné par une simple intégrale curviligne
le long d’un segment — comparer par ailleurs ce résultat au théorème fondamental de l’analyse.

(ii) En utilisant le même raisonnement, on montre que si V est un ouvert étoilé de centre u contenu dans U , la
même intégrale curviligne est bien définie et définit une primitive de f sur V tout entier.

Théorème (invariance des intégrales de fonctions holomorphes par homotopie des chemins)

Soient U un ouvert de C et f ∈ O(U). Soient γ0 et γ1 deux chemins U -homotopes. Alors,∫
γ0

f(z)dz =

∫
γ1

f(z)dz.

Preuve. Soit H : [0, 1]2 → U une U -homotopie entre les chemins γ0 et γ1, conformément aux notations de la
section 1.2.2.

Puisque H
(
[0, 1]2

)
⊆ U est compact — c’est l’image continue d’un compact —, sa distance au fermé C\U qu’il

ne rencontre pas est strictement positive. [C’est un résultat général de topologie métrique : d’abord, si F est fermé et si k /∈ F ,
alors la distance de k à F , savoir d(k, F ) = inf {d(k, f), f ∈ F} est strictement positive. En effet, puisque C \ F est ouvert, soit r > 0 tel
que D (x, r) ⊆ C \F ; alors, d(k, F ) ≥ r > 0. Ensuite, si F est fermé , si K est compact et si K ∩F = ∅, alors la distance de K à F , savoir
d(K,F ) = inf {d(k, f), k ∈ K, f ∈ F}, est encore strictement positive. En effet, l’application x ∈ C 7→ d(x, F ) est continue (exercice) sur
le compact K. Elle y atteint donc sa borne inférieure : soit k ∈ K tel que d(K,F ) = d(k, F ). D’après ce qui précède, d(k, F ) > 0 et voilà.]

Soit δ = d
(
H
(
[0, 1]2

)
,C \ U

)
> 0 cette distance. Alors, D (z, δ) ⊆ U , pour tout z ∈ H

(
[0, 1]2

)
. En particulier,

le théorème d’existence locale de primitives assure que f admet une primitive sur tous les disques ouvertsD (z, δ)
où z ∈ H

(
[0, 1]2

)
.

Pour chaque entier naturel non nul n, on découpe l’intervalle
[0, 1] en les n intervalles Ik = [ak, ak+1], 0 ≤ k ≤ n − 1, où
ak = k

n — à vrai dire, on devrait noter Ik avec un double
indice mentionnant n, mais on choisira un n plus bas ; ainsi,
pour alléger, on s’abstient. Alors, le carré [0, 1]2 est découpé
en les n2 sous-carrés Ck,ℓ = Ik × Iℓ, 0 ≤ k, ℓ ≤ n− 1 qui ont
tous 1

n pour longueur d’arête.
C1,0

C2,3

(0, 0)

(1, 1)

I1 I2

I3

Les Ck,ℓ dans le cas n = 5

On note aussi ck,ℓ le centre du sous-carré Ck,ℓ. Comme la fonction H est uniformément continue — elle est
continue sur le compact [0, 1]2 —, on choisit n de sorte que H (Ck,ℓ) soit dans le disque ouvert D (H (ck,ℓ) , δ),

pour tout (k, ℓ) ∈ {0, . . . n− 1}2. [Dans le jargon, 1
n
√

2
est un module de continuité uniforme de H pour δ.]
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C1,0

C2,3

H

b

a
H (C1,0)

H (c2,3)

D (H (c2,3) , δ)

D (H (c1,0) , δ)

γ0

γ1

Alors, la fonction f admet des primitives sur chacun des disques ouvertsD (H (ck,ℓ) , δ), c’est une conséquence du
choix de δ. On note Fk,ℓ une primitive (holomorphe) de f sur l’ouvert D (H (ck,ℓ) , δ), pour tous 0 ≤ k, ℓ ≤ n−1.
En particulier, en notant γ0|Iℓ la restriction de γ0 à l’intervalle Ik — c’est encore un chemin —,

∫
γ0

f(z)dz =

n−1∑
ℓ=0

∫
γ0|Iℓ

f(z)dz =

n−1∑
ℓ=0

∫ aℓ+1

aℓ

f (γ0(t)) γ
′
0(t)dt.

Or, pour tout t ∈ Iℓ, γ0(t) = H(0, t) ∈ H (C0,ℓ) ; ainsi γ0 (Iℓ) est dans le domaine de définition de F0,ℓ, de sorte
que f (γ0(t)) = F ′

0,ℓ (γ0(t)). Alors, le théorème fondamental de l’analyse assure que

∫
γ0

f(z)dz =

n−1∑
ℓ=0

∫ aℓ+1

aℓ

F ′
0,ℓ (γ0(t)) γ

′
0(t)dt

=

n−1∑
ℓ=0

[F0,ℓ (γ0 (aℓ+1))− F0,ℓ (γ0 (aℓ))]

=

n−1∑
ℓ=0

[F0,ℓ ◦H (a0, aℓ+1)− F0,ℓ ◦H (a0, aℓ)]

(12)

puisque a0 = 0. De même, puisque an = 1,∫
γ1

f(z)dz =

n−1∑
ℓ=0

[Fn−1,ℓ ◦H (an, aℓ+1)− Fn−1,ℓ ◦H (an, aℓ)] . (13)

[Noter qu’on a fait ici comme si γ0 et γ1 étaient de classe C1. S’ils ne sont que de classe C1 par morceaux, il faut raffiner ces sommes en
ajoutant une subdivision des Ik qui tienne compte des sauts de dérivée de γ0 et γ1. Quoi qu’il en soit, les formules (12) et (13) restent
valides telles qu’elles sont écrites.]

L’idée qui suit consiste à calculer les intégrales de f le long de tous les t 7→ H (ak, t) qui prendront la même
forme que dans les formules (12) et (13), d’utiliser que deux primitives diffèrent d’une constante sur un connexe
et de faire jouer le fait que tous les t 7→ H (ak, t) prennent la même valeur en 0 et la même valeur en 1 puisque
qu’ils sont tous homotopes. Hélas, on n’a fait aucune hypothèse de différentiabilité sur l’homotopie H, de sorte
que les t 7→ H (ak, t) ne sont pas des chemins sur lesquels on peut intégrer f . Il n’empêche, on mime ces
intégrales en les remplaçant par les sommes Ik qui suivent. [Ensuite, comme on dirait dans le jargon, il n’y a plus qu’à écrire
les “relations de cobord”, qui sont une manière de nommer les annulations dans les sommes ci-dessous et qu’on rencontre dans d’autres
situations mathématiques, notamment dans le calcul (co)homologique.]

Pour chaque k ∈ {0, . . . , n− 1}, on note

Ik =

n−1∑
ℓ=0

[Fk,ℓ ◦H (ak, aℓ+1)− Fk,ℓ ◦H (ak, aℓ)]
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— que l’on gagne à penser comme “l’intégrale de f le long du “chemin” t ∈ [0, 1] 7→ H (ak, t)”. Bien sûr,

I0 =

∫
γ0

f(z)dz,

c’est la formule (12). Alors, on montre que

∀k ∈ {0, . . . n− 1} , Ik = Ik+1.

En effet,

Ik − Ik+1 =

n−1∑
ℓ=0

[
Fk,ℓ ◦H (ak, aℓ+1)− Fk,ℓ ◦H (ak, aℓ)− Fk+1,ℓ ◦H (ak+1, aℓ+1) + Fk+1,ℓ ◦H (ak+1, aℓ)

]
.

Or, l’intersection des disques D (H (ck,ℓ) , δ)
et D (H (ck+1,ℓ) , δ) est convexe donc con-
nexe ; ainsi, puisque les fonctions Fk+1,ℓ

et Fk,ℓ sont deux primitives de f , leur
différence Fk+1,ℓ − Fk,ℓ est constante sur ce
connexe. Puisque l’image par H du segment
[(ak+1, aℓ) , (ak+1, aℓ+1)] est dans ce connexe,
on en déduit que

(ak+1, aℓ)

(ak+1, aℓ+1)

ck,ℓ
ck+1,ℓ

H

D (H (ck,ℓ) , δ)

Fk+1,ℓ ◦H (ak+1, aℓ+1)− Fk+1,ℓ ◦H (ak+1, aℓ) = Fk,ℓ ◦H (ak+1, aℓ+1)− Fk,ℓ ◦H (ak+1, aℓ)

— dans les deux derniers termes du crochet, on peut remplacer Fk+1,ℓ par Fk,ℓ. Ainsi, en intervertissant aussi
les deux termes centraux du crochet,

Ik − Ik+1 =

n−1∑
ℓ=0

[
Fk,ℓ ◦H (ak, aℓ+1)− Fk,ℓ ◦H (ak+1, aℓ+1)− Fk,ℓ ◦H (ak, aℓ) + Fk,ℓ ◦H (ak+1, aℓ)

]
.

(ak, aℓ+1) (ak+1, aℓ+1)
ck,ℓ

ck,ℓ+1

H

A nouveau, l’intersection des disques
D (H (ck,ℓ) , δ) et D (H (ck,ℓ+1) , δ) est
convexe donc connexe ; ainsi, puisque les
fonctions Fk,ℓ et Fk,ℓ+1 sont deux primitives
de f , leur différence Fk,ℓ+1 − Fk,ℓ est cons-
tante sur ce connexe. Puisque l’image par
H du segment [(ak, aℓ+1) , (ak+1, aℓ+1)] est
dans ce connexe, on en déduit que

Fk,ℓ ◦H (ak, aℓ+1)− Fk,ℓ ◦H (ak+1, aℓ+1) = Fk,ℓ+1 ◦H (ak, aℓ+1)− Fk,ℓ+1 ◦H (ak+1, aℓ+1)

— dans les deux premiers termes du crochet, on peut remplacer Fk,ℓ par Fk,ℓ+1. On obtient alors

Ik − Ik+1 =

n−1∑
ℓ=0

([
Fk,ℓ+1 ◦H (ak, aℓ+1)− Fk,ℓ+1 ◦H (ak+1, aℓ+1)

]− [
Fk,ℓ ◦H (ak, aℓ)− Fk,ℓ ◦H (ak+1, aℓ)

])
où l’on voit que, à k fixé, les deux crochets sont tous de la forme αℓ+1 −αℓ. Leur sommation ne laisse plus que
la différence des termes de bords, savoir

Ik − Ik+1 =
[
Fk,n ◦H (ak, 1)− Fk,n ◦H (ak+1, 1)

]
−
[
Fk,0 ◦H (ak, 0)− Fk,0 ◦H (ak+1, 0)

]
=

[
Fk,n(b)− Fk,n(b)

]
−
[
Fk,0(a)− Fk,0(a)

]
= 0

puisque, par définition de l’homotopie, tous les H(s, 0) valent a et tous les H(s, 1) valent b. Ainsi, on a montré
que ∫

γ0

f(z)dz = I0 = In−1.
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Il ne reste plus qu’à montrer que

In−1 =

∫
γ1

f(z)dz,

ce qui se fait encore par le même raisonnement qui conduisit plus haut à I0 =
∫
γ0

f(z)dz = I1 : on a encore
successivement

In−1 =

n−1∑
ℓ=0

[Fn−1,ℓ ◦H (an−1, aℓ+1)− Fn−1,ℓ ◦H (an−1, aℓ)]

=

n−1∑
ℓ=0

[Fn−1,ℓ ◦H (an, aℓ+1)− Fn−1,ℓ ◦H (an, aℓ)] =

∫
γ1

f(z)dz.

A noter
L’idée globale de cette preuve consiste à utiliser l’existence locale de primitives de f pour montrer que les
intégrales de f le long de tous les chemins déformés t 7→ H(s, t) sont toutes les mêmes. Cette idée trouve une
réalisation technique au prix du contournement d’écueils que l’on décrit dans la preuve. D’autres méthodes
de contournement sont possibles, que l’on laisse ici de côté — approcher les faux chemins t 7→ H(s, t) par des
vrais chemins de classe C1 par morceaux, par exemple, ou encore prendre un peu de hauteur théorique et traiter
préalablement l’intégration de formes différentielles.

Corollaire (intégration d’une fonction holomorphe le long d’un lacet homotope à zéro)

Soient U un ouvert de C et f ∈ O(U). Soit aussi γ un lacet de U , homotope à zéro dans U . Alors,∫
γ

f(z)dz = 0.

Preuve. C’est une conséquence immédiate du théorème d’invariance par homotopie des chemins, puisque
l’intégrale le long d’un lacet de longueur nulle est nulle.

Corollaire (l’indice est un invariant d’homotopie)

Soit U un ouvert de C et γ0 et γ1 deux lacets de U . On suppose que γ0 et γ1 sont U -homotopes. Alors,

∀z ∈ C \ U, Indγ0
(z) = Indγ1

(z).

Preuve. Si z ∈ C \ U , la fonction ζ 7→ 1
ζ−z est holomorphe sur U . On applique le théorème d’invariance des

intégrales de fonctions holomorphes le long de lacets homotopes.

A noter
En particulier, si z ∈ C et si γ0 et γ1 sont deux lacets homotopes dans C \ {z}, alors Indγ0

(z) = Indγ1
(z).

Exercice 38
Un cercle parcouru une fois dans le sens direct et le même cercle parcouru deux fois dans le sens direct ne sont
pas homotopes dans le plan complexe privé du centre du cercle.

Théorème (formule globale de Cauchy)

Soient U un ouvert de C et f ∈ O(U). Soit γ un lacet de U , homotope à zéro dans U . Alors,

Indγ(z)× f(z) =
1

2iπ

∫
γ

f(ζ)

ζ − z
dζ (14)

pour tout z ∈ C \ Supp(γ).
Preuve. On note g l’application définie sur U × U par

g(z, ζ) =


f(z)− f(ζ)

z − ζ
si z ̸= ζ

f ′(z) si z = ζ.
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Puisque f est holomorphe, g est continue — pour le voir simplement, écrire par exemple g sous forme intégrale :

g(z, ζ) =
∫ 1

0
f ′(ζ + t(z − ζ))dt, dès lors que [ζ, z] ⊆ U . En outre, pour tout z ∈ U , l’application gz : ζ 7→ g(z, ζ)

est holomorphe sur U . En effet, elle est évidemment dérivable au sens complexe sur U \ {z} et par ailleurs,

gz(ζ)− gz(z)

ζ − z
=

f(ζ)− f(z)− (ζ − z)f ′(z)

(ζ − z)2
−→
ζ→z

1

2
f ′′(z)

ce qui montre que gz est dérivable en z et que sa dérivée en z est 1
2f

′′(z) — noter que puisque f est holomorphe,
elle est dérivable à tout ordre au sens complexe. Ainsi, puisque γ est homotope à zéro,

∀z ∈ D,

∫
γ

g(z, ζ)dζ = 0.

Lorsque z /∈ Supp(γ), cela s’écrit ∫
γ

f(z)

ζ − z
dζ =

∫
γ

f(ζ)

ζ − z
dζ

ce qui permet de conclure, puisque le membre de gauche de cette égalité est 2iπ Indγ(z)f(z).

A noter

(i) La formule (14) est souvent appelée formule (globale) de Cauchy.

(ii) Le cas où l’indice de z par rapport à γ vaut 1 revêt une importance opératoire particulière.
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4 La question des primitives et du relèvement de l’exponentielle

4.1 Primitives d’une fonction holomorphe sur un ouvert simplement connexe

Le section précédente commence par une preuve de l’existence locale de primitives pour une fonction holomorphe.
On a vu, par exemple avec la fonction z 7→ 1/z sur le disque ouvert épointé D (0, 1) \ {0}, qu’une fonction
holomorphe sur un ouvert n’a généralement pas de primitive globale sur cet ouvert. Ce paragraphe traite d’une
condition suffisante sur un ouvert pour qu’une fonction qui y est holomorphe y admette une primitive.

Proposition (tout ouvert connexe de C est connexe par arcs)

Soit U un ouvert connexe de C. Alors, pour tous u, v ∈ U , il existe un chemin de U (de classe C1 par morceaux)
dont l’origine est u et l’extrémité v.

Preuve. Soit u ∈ U . Pour tout z ∈ U , on dira que z est relié à u lorsqu’il existe un chemin de U (de classe
C1 par morceaux) dont l’origine est u et l’extrémité z. Soit f : U → {0, 1} l’application définie par : f(z) = 1 si
z est relié à u et f(z) = 0 sinon. On montre que f est localement constante. Puisque U est connexe et puisque
f(u) = 1, cela montre que f ≡ 1, ce qu’il fallait démontrer.
Soit z ∈ U tel que f(z) = 1. Soit alors γ un chemin de U reliant u à z. Puisque U est ouvert, soit r > 0 tel
que D (z, r) ⊆ U . Alors, pour tout w ∈ D (z, r), la concaténation de γ et du segment S(z, w) est un chemin
qui relie u à w. Cela montre que f est constante, égale à 1 sur D (z, r). Le même raisonnement montre que si
f(z) = 0 et si D (z, r) ⊆ U , aucun point de D (z, r) n’est relié à u ; ainsi, f est nulle sur D (z, r). On a montré
que f est localement constante

A noter
Une partie U de C est dite connexe par arcs lorsque ∀u, v ∈ U , ∃γ : [0, 1]→ U , continue, telle que γ(0) = u et
γ(1) = v. La proposition qui précède montre en particulier que tout ouvert connexe de C est connexe par arcs.

Exercice 39 Tout connexe par arcs est connexe.

Définition (simplement connexe)
Une partie A de C est dite simplement connexe lorsqu’elle est non vide et lorsque tout lacet de A est A-homotope
à zéro.

A noter
Certains auteurs ajoutent la connexité à la définition de la simple connexité, en disant qu’une partie de C est
simplement connexe lorsqu’elle est connexe et lorsque tout lacet y est homotope à zéro.

Exercice 40
Montrer que A est simplement connexe si, et seulement si toutes les composantes connexes de A le sont.

Exemples

(i) Proposition Tout étoilé est simplement connexe.

Preuve. Soient A une partie étoilée de C, a un centre de A et γ un lacet standard de A d’origine a. Alors,
l’application

(s, t) 7→ sa+ (1− s)γ(t)

est une A-homotopie entre γ et le lacet constant égal à a. Soit maintenant un lacet γ d’origine quelconque
u ∈ A, et soit c un chemin standard d’origine u et d’extrémité a. On note c−1 : t 7→ c(1− t) le chemin inverse
de c. Alors, le lacet c−1γc a pour origine a. Selon ce qui précède, il est donc homotope à zéro. On conclut en
utilisant le dernier exercice de la section 1.2.2 et l’exemple qui le précède : d’abord, le lacet γcc−1 ne diffère de
c−1γc que par un changement d’origine ; puisque ce dernier, est homotope à zéro, γcc−1 l’est aussi. Enfin, γ
est homotope à zéro puisque γcc−1 l’est.

(ii) Proposition Tout convexe est simplement connexe.

Preuve. Tout convexe est étoilé.

(iii) Proposition (union de deux simplement connexes, vers van Kampen�)
Si U et V sont deux ouverts simplement connexes de C et si U ∩ V est connexe, alors U ∪ V est simplement
connexe.

�Egbert van Kampen, 1908–1942
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Preuve. Soient u ∈ U ∩ V et γ un lacet standard de U ∪ V d’origine u. Puisque γ est continu, γ−1(U) et
γ−1(V ) sont des ouverts de l’intervalle [0, 1]. On écrit chacun de ces deux ouverts comme unions d’intervalles
disjoints Ia, a ∈ A ouverts dans [0, 1]. Les intervalles ouverts Ia recouvrent le compact [0, 1] ; on extrait de ce
recouvrement un recouvrement fini

[0, 1] =

n+1⋃
k=0

Jk

où

• J0 est de la forme [0, b0[, 0 < b0 < 1 ;

• Jn+1 est de la forme ]an+1, 1], 0 < an+1 < 1 ;

• Jk = ]ak, bk[ est un intervalle ouvert non vide, pour tout k ∈ {1, . . . n} ;
• 0 < a1 < b0 < a2 < b1 < a3 < b2 < · · · < an−1 < bn−2 < an < bn−1 < an+1 < bn < 1 ;

• J0, J2, J4 · · · ⊆ γ−1(U) et J1, J3, J5 · · · ⊆ γ−1(V ) — quitte à échanger U et V .

Pour chaque k ∈ {1, . . . , n+ 1}, on choisit un nombre
ck ∈ Jk ∩ Jk+1. On note aussi c0 = 0 et cn+2 = 1 de
sorte que

[0, 1] =

n+1⋃
k=0

[ck, ck+1]

où

(a) 0 = c0 < c1 < c2 < · · · < cn+1 < cn+2 = 1 ;

(b) ∀k ∈ {0, . . . , n+ 2}, γ (ck) ∈ U ∩ V ;

(c) γ ([c0, c1]) , γ ([c2, c3]) · · · ⊆ U

(d) γ ([c1, c2]) , γ ([c3, c4]) · · · ⊆ V .

En notant γk la restriction de γ à l’intervalle [ck, ck+1],
cela entrâıne que γ est le concaténé γ = γ0γ1 . . . γn+1.
Puisque tous les points γ (ck) sont dans U∩V , et puisque
U ∩ V est connexe, on note δk un chemin standard de
U ∩V joignant γ (ck) à u et δ−1

k : t 7→ δk(1−t) le chemin
inverse. Dans ces conditions, chaque δ−1

k γkδk+1 est un
lacet de U ou un lacet de V , tous d’origine u ; comme
U et V sont simplement connexes, tous les δ−1

k γkδk+1

sont homotopes à zéro dans U ∪ V .

U V

γ

u

U V

γ0
γ1

γ2
u

Par ailleurs, ajouter un aller-retour ne modifie pas la classe d’homotopie de sorte que γ = γ0γ1 . . . γn+1 et
(δ0γ0δ1)

(
δ−1
1 γ1δ2

) (
δ−1
2 γ3δ3

)
. . .
(
δ−1
n−1γn−1δn

) (
δ−1
n γnδ

−1
n+1

)
(δn+1γn+1δn+2) ont le même classe d’homotopie —

noter qu’on peut choisir les lacets γ0 et γn+2 comme étant le lacet constant égal à u. Comme ce long concaténé
est un concaténé de lacets homotopes à zéro, γ est homotope à zéro.
Enfin, si γ est un lacet de U ∪ V dont l’origine n’est pas dans U ∩ V , si son support est dans U ou dans V , il
est homotope à zéro dans U ∪ V puisque U et V sont simplement connexes ; si son support rencontre U ∩ V , il
est aussi homotope à zéro dans U ∪ V d’après ce qui précède, puisqu’un décalage de son origine en un point de
U ∩ V est homotope à zéro.

Exemples

Simplement connexe Non simplement connexe
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A noter
On peut considérer ce résultat comme un prélude au magnifique théorème de van Kampen, dont l’énoncé seul
nous emmènerait sur des rivages de la topologie algébrique, trop éloignés du présent propos.

Proposition (une fonction holomorphe a des primitives sur les ouverts simplement connexes)

Soient U un ouvert connexe et simplement connexe de C, et f ∈ O(U). Alors, f admet une primitive sur U .

Preuve. Soient u, z ∈ U . Soient également γ0 et γ1 : [a, b]→ U deux chemins de U d’origine u et d’extrémité z.
On note γ−1

1 : t 7→ γ1(a + b − t) le chemin inverse de γ1. Alors, le chemin concaténé γ0γ
−1
1 est un lacet de U .

Il est donc U -homotope à zéro, ce qui entrâıne, par invariance des intégrales de fonctions holomorphes par
homotopie des chemins, que

∮
γ0γ

−1
1

f(ζ)dζ = 0, ou autrement dit que
∮
γ0

f(ζ)dζ =
∮
γ1

f(ζ)dζ. Cela montre que

l’intégrale de f le long d’un chemin reliant u à z ne dépend pas du chemin, mais seulement de ses bouts u et z.
Or, puisque U est connexe, tout point de U est relié à u par un chemin ; on peut ainsi définir l’application
F : U → C par

F (z) =

∫
γz

f(ζ)dζ

où γz est n’importe quel chemin d’origine u et d’extrémité z. Il reste à montrer que F est une primitive de f
— mieux, puisque U est connexe, que F est la primitive de f qui s’annule en u.
Soit z ∈ U . Soit r > 0 tel que D (z, r) ⊆ U . Alors, comme on l’a vu dans le théorème d’existence locale de
primitives pour une fonction holomorphe, pour tout w ∈ D (z, r), l’intégrale de f le long du segment S(z, w)
est une primitive de f ; or, F (w) = F (z) +

∮
S(z,w)

f(ζ)dζ, ce qui montre que F est holomorphe sur D (z, r) et

que c’est une primitive de f sur ce disque. On a montré que F est holomorphe sur U et que c’est une primitve
de f sur U .

A noter

(i) Dans les conditions de l’énoncé, puisque U est connexe, toutes le primitives de f diffèrent d’une constante.

(ii) Retenir que, dans les conditions de l’énoncé, pour tout u ∈ U , l’application F (z) =
∮
u;z

f(ζ)dζ — où la
notation u ; z désigne n’importe quel chemin d’origine u et d’extrémité z — est d’une part bien définie, d’autre
part est une primitive de f .

4.2 Relèvement de l’exponentielle, logarithmes

Proposition (l’exponentielle se relève sur les simplement connexes)

Soient U un ouvert simplement connexe de C et f ∈ O(U). On suppose que f ne s’annule pas. Alors, il existe
g ∈ O(U) telle que f = exp(g).

Preuve. La fonction f ′

f est holomorphe sur le simplement connexe U : soit g0 une primitive de f ′

f sur U .

Alors, la fonction holomorphe fe−g0 a une dérivée nulle sur U : elle est localement constante, donc constante
sur chaque composante connexe de U . Soit V une composante connexe de U et KV ∈ C tel que fe−g0 ≡ KV

sur V . Puisque f ne s’annule pas, KV ̸= 0 ; soit donc CV ∈ C tel que KV = eCV . Alors, f = exp (g0 + CV )
sur V . La fonction g : U → C dont la restriction à chaque composante connexe V est g0 + CV convient : elle
est holomorphe sur U et vérifie f = eg.

A noter

(i) Dans les conditions de la proposition précédente, on dit que la fonction
g est un relèvement holomorphe de f par l’exponentielle. On illustre parfois
cette situation par le diagramme commutatif ci-contre. U C \ {0}

C

f

g exp

(ii) Dans les conditions de l’énoncé, lorsque U est connexe, deux relèvements de f diffèrent d’un multiple entier
de 2iπ.
En effet, si f = eg1 = eg2 où g1 et g2 sont holomorphes sur U , alors eg1−g2 ≡ 1 et g1 − g2 est continue sur le connexe U . Donc g1 − g2,
qui prend ses valeurs dans 2iπZ, est constante, égale à un multiple de 2iπ.

Définition (déterminations du logarithme)
Soit A une partie de C. Une détermination (continue) du logarithme est une application continue L : A → C
telle que eL(z) = z, pour tout z ∈ A.
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A noter

(i) Puisque l’exponentielle ne s’annule pas, une détermination du logarithme ne peut être définie sur aucune
partie de C contenant 0.

(ii) Si w ∈ C \ {0}, en écrivant w sous forme géométrique w = reiθ où r > 0 et où θ ∈ R, l’ensemble des
solutions complexes de l’équation ez = w est ln r + i (θ + 2πZ). Autrement dit, tout logarithme de w est de la
forme ln |w| + i argw où argw est n’importe quel argument de w. Ainsi, chercher une détermination continue
du logarithme sur une partie de C \ {0} revient à chercher une détermination continue de l’argument.

Proposition (déterminations du logarithme sur un ouvert simplement connexe)

Soit U un ouvert connexe et simplement connexe de C \ {0}.
(i) Il existe des déterminations continues du logarithme sur U .

(ii) Toute détermination continue du logarithme sur U est holomorphe.

(iii) Si L et M sont deux déterminations du logarithme sur U , alors l’application L−M est constante sur U ,
égale à un multiple de 2iπ.

Preuve. (i) Par définition, les déterminations du logarithme sur U sont les relèvements de la fonction holo-
morphe idU : z 7→ z par l’exponentielle. On applique le théorème de relèvement qui précède.
(ii) et (iii) Soit L une détermination holomorphe du logarithme sur U , et M une détermination continue
du logarithme sur U . Alors, l’application continue eL−M est la fonction constante égale à 1 sur U . Ainsi,
l’application continue L −M , continue sur le connexe U , est à valeur dans la partie discrète 2iπZ de C : elle
est constante. Donc M est holomorphe.

A noter

(i) Si L est une détermination du logarithme sur un ouvert simplement connexe U , la dérivation de la relation
exp ◦L(z) = z montre que d

dzL(z) =
1
z , pour tout z ∈ U . Autrement dit, toute détermination du logarithme est

une primitive de z 7→ 1
z .

(ii) Il n’existe pas de détermination du logarithme sur un ouvert “entourant 0” : si V est un ouvert de C
contenant 0 et si U = V \ {0}, il n’y a pas pas détermination du logarithme sur U .

En effet, on l’a vu, z 7→ 1
z n’a pas de primitive U — on redonne une raison “à la Cauchy” : l’intégrale de 1

z sur
un lacet de U dont l’indice par rapport à l’origine est 0 n’est pas nul n’est pas nulle.

Définition (logarithme principal)
La fonction logarithme principal est la détermination continue du logarithme sur l’ouvert connexe et simplement
connexe C \ R− qui vaut 0 en 1 ; on le note Log, ou encore log. On l’appelle aussi détermination principale du
logarithme, ou encore logarithme (tout court).

Autrement dit, Log est l’unique application holomorphe C \ R− → C qui vérifie

(i) eLog z = z, pour tout z ∈ C \ R− ;

(ii) Log 1 = 0.

A noter

(i) L’ouvert C \ R− est souvent appelé plan coupé principal, ou même parfois plan coupé (tout court).

(ii) Le logarithme principal est la primitive de z 7→ 1
z sur C \ R− qui s’annule en 1.

(iii) La restriction de Log à ]0,+∞[ est le logarithme népérien, réciproque de la restriction de l’exponentielle à
l’axe réel, comme l’assure (ii). On le notera ln selon l’usage.

(iv) L’argument principal d’un nombre complexe non nul est son unique argument contenu dans l’intervalle
] − π, π]. On prolonge usuellement le logarithme principal en un application Log : C \ {0} → C en utilisant
l’argument principal — ce prolongement est discontinu en tout point de R<0. Le lien entre le logarithme
principal et l’argument principal est ainsi

∀z ∈ C \ {0} , Log z = ln |z|+ iArg z

(v) La relation exp ◦Log = idC\R− montre que le logarithme principal est injectif. Le point (iv) entrâıne
immédiatement que son image est la bande B = {z ∈ C, − π < ℑz < π}. Ainsi, le logarithme principal est une
bijection holomorphe C \ R− → B dont la réciproque, qui est l’exponentielle, est également holomorphe.
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0
−1 Log

exp
∼

iπ

−iπ

Log

exp

(vi) Attention à ne pas abusivement prolonger au logarithme principal les formules usuelles valides pour le
logarithme népérien. Par exemple, sans autres formes de commentaires,

(a) Log
Ä
e

3iπ
2

ä
= − iπ

2

(b) Log [i× (−1 + i)] = Log i+ Log(−1 + i) + 2iπ

(c) Log(−1 + i)2 = 2Log(−1 + i)− 2iπ

Exercice 41
Trouver tous les nombres complexes z pour lesquels les formules suivantes sont valides et dessiner leur ensemble.

(a) Log (ez) = z

(b) Log (ez) = z + 6iπ

(c) Log(xz) = Log x+ Log z, où x ∈ C \ {0} est donné
(d) Log(xz) = Log x+ Log z − 2iπ, où x ∈ C \ {0} est donné
(vii) Soit r > 0. Puisque

∮
C(0,r)

dz
z ̸= 0, il n’existe de détermination continue du logarithme sur aucun ouvert

contenant D (0, r) \ {0}.
(viii) Si Dθ =

{
reiθ, r > 0

}
est n’importe quelle demi-droite du plan issue de l’origine, alors C \Dθ est étoilé,

donc connexe et simplement connexe. Par conséquent, les déterminations continues du logarithme sur l’ouvert
C \Dθ forment une famille de fonctions indexée par Z. Par exemple, il existe une unique fonction holomorphe
L sur C \ R+ qui vérifie L(−1) = 0 et eL(z) = z, pour tout z ∈ C \ R+.

4.3 Relèvement des puissances, fonctions racines carrées, cubiques, etc

Proposition (les puissances se relèvent sur les simplement connexes)

Soient n un entier naturel non nul, U un ouvert simplement connexe de C et f ∈ O(U). On suppose que f ne
s’annule pas. Alors, il existe g ∈ O(U) telle que f = gn.

Preuve. Par le théorème de relèvement de l’exponentielle, soit h ∈ O(U) telle que f = eh. La fonction
g = exp

(
1
nh
)
convient.
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Définition (ordre d’une fonction holomorphe en un point)
Soient U un ouvert de C, u ∈ U et f ∈ O(U). Si f n’est pas constante au voisinage de u, l’ordre de f en u est
l’entier naturel

ordu(f) = min
¶
n ≥ 1, f (n)(u) ̸= 0

©
;

Autrement dit, f est d’ordre m ≥ 1 en u lorsque le DSE de f en u est de la forme

f(z) = f(u) +

∞∑
n=m

an(z − u)n

avec am ̸= 0. Par extension, lorsque f est constante sur la composante connexe de U contenant u, on dit que f
est d’ordre 0 en u.

A noter
Selon le contexte, l’ordre de f en u s’appelle aussi valuation de f en u, ou encore multiplicité de f en u.

Exemples
z 7→ sin z2 est d’ordre 2 en 0 et z 7→ cos z2 est d’ordre 4 en 0.

Proposition (forme locale d’une fonction holomorphe, lemme de revêtement version 1)

Soient U un ouvert connexe de C et f ∈ O(U), non constante. Soit m ≥ 1 l’ordre de f en u. Alors, il existe
un ouvert V de C et h ∈ O(V ) telles que u ∈ V ⊆ U , h(u) ̸= 0 et

∀z ∈ V, f(z) = f(u) + [(z − u)h(z)]
m
. (15)

Preuve. Puisque f n’est pas constante et puisque U est connexe, le DSE de f en u n’est pas constant : soient∑
n an la série entière de rayon non nul et R > 0 tels que a0 ̸= 0 et

∀z ∈ D (u,R) , f(z) = f(u) + (z − u)m
∞∑

n=0

an(z − u)n.

On note g l’application holomorphe définie sur D (u,R) par la formule g(z) =
∑∞

n=0 an(z−u)n. Puisque a0 ̸= 0,
soit r ∈]0, R[ tel que g ne s’annule pas sur D (u, r). Comme D (u, r) est simplement connexe, en appliquant
le théorème de relèvement par la puissance me, soit h, holomorphe sur D (u, r), telle que g = hm. Alors, h
convient.

Définition (déterminations de la racine ne)
Soient n un entier naturel non nul et A une partie de C. Une détermination de la racine ne sur A est une
application f holomorphe sur A qui vérifie f(z)n = z, pour tout z ∈ A.

A noter

(i) Puisqu’une détermination f de la racine ne vérifie nfn−1f ′ ≡ 1, d’une part, une détermination de la racine
ne ne s’annule sur aucun ouvert et, d’autre part, il n’existe de détermination de la racine ne sur aucun ouvert
contenant 0.

(ii) Une détermination de la racine ne sur un ouvert U est un relèvement sur U de l’application identique z 7→ z
par la fonction z 7→ zn.

Proposition (déterminations de la racine ne sur un ouvert simplement connexe)

Soit U un ouvert connexe et simplement connexe de C \ {0}.
(i) Si L : U → C est une détermination du logarithme sur U , alors l’application R : U → C, z 7→ exp

(
1
nL(z)

)
est une détermination de la racine ne sur U .

(ii) Les déterminations de la racine ne sur U sont exactement les n applications ωR où ω est une racine ne

arbitraire de l’unité et R n’importe quelle détermination de la racine ne sur U .

Preuve. (i) L’application R est holomorphe et il suffit de calculer :
[
exp

(
1
nL(z)

)]n
= exp ◦L(z) = z.

(ii) Si S est une autre détermination de la racine ne sur U , elle ne s’annule pas sur U et l’application (R/S)
n
est

constante égale à 1 sur U . Le quotient R/S, qui est par conséquent à valeur dans l’ensemble fini des racines ne

de l’unité, est donc constant sur le connexe U .

N. Pouyanne, UVSQ 2026, LSMA621 53



Définition (détermination principale de la racine ne)
Soit n un entier naturel non nul. L’application holomorphe C\R− → C, z 7→ exp

(
1
n Log z

)
est la détermination

principale de la racine ne. On la prolonge par la même formule en une application définie sur C\{0}, discontinue
en tout point de R<0. Pour tout z ∈ C \ {0}, on note

n
√
z = z

1
n = exp

Å
1

n
Log z

ã
.

Exemples√
1 + i = 4

√
2e

iπ
8 , 4
√
−1 = e

iπ
4 ,
√

(−1 + i)2 = 1 − i,
3
√
i3 = e−iπ

6 = j2i, où j = e
2iπ
3 . [Attention, là encore, à ne pas

inventer de formules fausses qui sembleraient prolonger naturellement celles, bien connues, qui concernent les fonction racines ne réelles.]

A noter
Puisque z

1
n = |z| 1n e

Arg(z)
n où Arg désigne l’argument principal, l’image de la racine principale ne est le secteur

Sn =
{
z ∈ C \ {0} , − π

n < Arg z ≤ π
n

}
et l’application z 7→ z

1
n établit une bijection biholomorphe

C \ R−
∼−→

{
z ∈ C \ {0} , − π

n
< Arg z <

π

n

}
entre le plan coupé et l’intérieur de Sn, dont la réciproque est bien sûr z 7→ zn.

0

z 7→ z
1
n

z ←[ zn
∼ 0

π
n

∼
z 7→

√
z

∼
z 7→ 3

√
z

∼
z 7→ 4

√
z

∼
z 7→ 5

√
z

4.4 Inversion locale holomorphe, théorème de l’application ouverte

En un point où sa dérivée ne s’annule pas, une fonction holomorphe est localement inversible au sens où elle
établit une bijection biholomorphe au voisinage du point — on définit plus bas le sens de biholomorphe, qui
tombe sous le sens. L’énoncé suivant précise cela.

Théorème (d’inversion locale holomorphe)

Soient U un ouvert de C, f ∈ O(U) et u ∈ U tel que f ′(u) ̸= 0. Alors, il existe un ouvert V de C tel que

(i) u ∈ V ⊆ U

(ii) f est injective sur V

(iii) L’image W = f(V ) de V par f est un ouvert de C
(iv) l’application réciproque f−1

|V : W → V de la restriction de f à V est également holomorphe.

Preuve. On note g l’application définie sur U × U par

g(x, y) =


f(x)− f(y)

x− y
si x ̸= y

f ′(x) si x = y.
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Puisque f est holomorphe, g est continue — et même holomorphe, on a déjà utilisée cette fonction auxiliaire
dans la preuve du théorème global de Cauchy, page 46. Puisque g(u, u) = f ′(u) ̸= 0, soit V un voisinage ouvert
de u tel que

∀(x, y) ∈ V 2, |g(x, y)| ≥ 1

2
|f ′(u)| .

En particulier,

∀(x, y) ∈ V 2, |f(x)− f(y)| ≥ 1

2
|f ′(u)| × |x− y|, (16)

ce qui montre que f est injective sur V .

(iii) Pour montrer que f(V ) est ouvert, il s’agit de montrer que pour tout v ∈ V , il existe δ > 0 tel que pour
tout w ∈ D (f(v), δ), l’équation f(z)− w a au moins une solution dans V .

Soit v ∈ V . Soit r > 0 tel que D (v, r) ⊆ V . On note ∂D (v, r) le cercle de centre v et de rayon r. Alors, en
vertue de (16), |f(z)− f(v)| ≥ r

2 |f
′(u)|, pour tout z ∈ ∂D (v, r). On note δ = r

4 |f
′(u)| ; ce réel est strictement

positif. On montre que ce δ convient. Soit w ∈ D (f(v), δ). Alors, pour tout z ∈ ∂D (v, r), la seconde inégalité
triangulaire assure que |w − f(z)| ≥ |f(z)− f(v)|− |f(v)− w| > δ. Par conséquent, si la fonction z 7→ f(z)−w
ne s’annulait pas sur D (v, r), le principe du module maximum entrâınerait que le maximum sur D (v, r) de
z 7→ 1

|f(z)−w| serait atteint sur ∂D (v, r), et donc que le minimum sur D (v, r) de z 7→ |f(z)− w|, qui serait
atteint sur ∂D (v, r), serait strictement supérieur à δ ; en particulier, on aurait |f(v)− w| > δ, ce qui entre en
contradiction avec le fait que w ∈ D (f(v), δ) : on a montré que la fonction z 7→ f(z)−w a une solution dans V
— et même dans D (v, r) —, ce qui finit de montrer que f(V ) est ouvert.

(iv) En notant W = f(V ), on a montré que f établit une bijection entre V et W . On note f−1 sa réciproque —

au lieu de
(
f|V
)−1

. On déduit de l’inégalité (16) que f ′ ne s’annule pas sur V . Soient w0 ∈W et w ∈W \{w0}.
Alors,

f−1(w)− f−1 (w0)

w − w0
=

f−1(w)− f−1 (w0)

f [f−1(w)]− f [f−1 (w0)]
−→ 1

f ′ (f−1 (w0))

lorsque w tend vers w0, puisque f ′ ne s’annule pas sur V . Cela montre que f−1 est holomorphe.

Définition (difféomorphisme analytique)
Soient U et V deux ouverts de C. Une application f : U → V est un difféomorphisme analytique lorsqu’elle est
holomorphe, bijective, et lorsque sa réciproque f−1 : V → U est également holomorphe. On dit aussi parfois
que f est une transformation holomorphe (de U sur V ), ou une application biholomorphe.

A noter

(i) Le théorème d’inversion locale holomorphe peut se dire ainsi : toute fonction holomorphe f dont la dérivée
ne s’annule pas est un difféomorphisme analytique local.

Cela signifie que si U est un ouvert de C, si f ∈ O(U) et si f ′(z) ̸= 0 pour tout z ∈ U , alors pour tout u ∈ U ,
il existe un voisinage ouvert V de u contenu dans U tel que la restriction de f à V soit un difféomorphisme
analytique de V sur l’ouvert f(V ).

(ii) On peut aussi prouver les théorème d’inversion locale holomorphe en utilisant le théorème ordinaire d’inversion
locale pour les fonctions complexes de deux variables réelles, en utilisant les équations de Cauchy-Riemann et
le fait que l’inverse d’une similitude directe est encore une similitude directe.

Proposition (une bijection holomorphe est un difféomorphisme analytique)

Soient U un ouvert de C et f ∈ O(U).

(i) Si f est injective, alors f ′ ne s’annule pas.

(ii) Si f est une bijection holomorphe, alors f est un difféomorphisme analytique de U sur f(U).

Preuve. (i) On suppose que f ′(u) = 0 où u ∈ U . Soit alors m ≥ 2 l’ordre de f en u. On applique le lemme de
revêtement : soient V un voisinage ouvert de u et h ∈ O(V ) telles que h(u) ̸= 0 et f(z) = f(u)+ [(z − u)h(z)]

m

pour tout z ∈ V . Alors, si g : V → C désigne l’application définie par la formule g(z) = (z − u)h(z), elle vérifie
simultanément

∀z ∈ V, f(z) = f(u) + g(z)m (17)

g(u) = 0 et et g′(u) ̸= 0. On applique le théorème d’inversion locale holomorphe à g en u : soit W , voisinage
ouvert de u contenu dans V , tel que le restriction de g à W soit un difféomorphisme analytique de W sur g(W ).
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Puisque g(W ) est un voisinage ouvert de 0, soit R > 0 tel que D (0, R) ⊆ g(W ). Puisque g−1 (D (0, R)) est
un voisinage ouvert de u, soit alors r > 0 tel que D (u, r) ⊆ g−1 (D (0, R)). Dans ces conditions, pour tout
z ∈ D (u, r) et pour toute racine me de l’unité ω, on a ωg(z) ∈ D (0, R) d’une part, et, d’autre part, grâce à (17),
f(z) = f

[
g−1 (ωg(z))

]
. Comme m ≥ 2, cela entrâıne que f n’est pas injective. Ainsi, l’hypothèse f ′(u) = 0 ne

tient pas. On a montré que la dérivée de f ne s’annule pas sur U dès lors que f est injective.

(ii) Puisque f est injective, f ′ ne s’annule pas. Le théorème d’inversion locale holomorphe montre alors que
f−1 est holomorphe — et que sa dérivée vaut 1

f ′◦f−1 .

Définition (application ouverte)
Soient U un ouvert de C et f : U → C une application. On dit que f est ouverte lorsque l’image de tout ouvert
de C contenu dans U est un ouvert de C.

A noter

(i) C’est une notion topologique plus générale, qui ne se limite pas au cadre des applications complexes de la
variable complexe. Une application f : X → Y entre deux espaces topologiques est dite ouverte lorsque l’image
par f de tout ouvert de X est un ouvert de Y .

(ii) Une application continue et bijective n’a pas forcément une réciproque continue. Par exemple, l’application
[0, 2π[→ {z ∈ C, |z| = 1}, θ 7→ eiθ est continue et bijective, mais n’est pas un homéomorphisme puisque [0, 2π[
n’est pas compact alors que {z ∈ C, |z| = 1} l’est. En revanche, une application continue, bijective et ouverte
est un homéomorphisme — sa réciproque est continue puisque l’image inverse d’un ouvert par ladite réciproque,
qui est l’image directe dudit ouvert, est ouverte.

(iii) La composée de deux applications ouvertes est ouverte, c’est immédiat.

Exercice 42 (de topologie générale)
Montrer qu’une application f : X → Y est ouverte si, et seulement si tout point de l’ensemble de départ a un
voisinage dont l’image est ouverte.

Exemple
Pour tout entier naturel non nul n, l’application C→ C, z 7→ zn est ouverte.

En effet, on note pn : z 7→ zn. D’abord, si r > 0, alors pn (D (0, r)) = D (0, rn). Ensuite, si V est un ouvert
qui ne contient pas 0, alors p′n ne s’annule pas sur V et le théorème d’inversion locale holomorphe montre que
pn(V ) est un ouvert de C. Ces deux dernières assertions suffisent à montrer que pn est ouverte.

Images presque sans paroles
On regarde l’image par z 7→ z3 de cercles de centre 1

2 et de rayons R divers et croissants.

−→

R = 0, 2

−→

R = 0, 3

−→

R = 0, 42

−→

R = 0, 435
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−→

R = 0, 48

−→

R = 0, 5 (tout pile)

−→

R = 0, 55

−→

R = 1

−→

R = 2

−→

R = 5

−→

R = 10

−→

R = 20

Proposition (théorème de l’application ouverte)

Soient U un ouvert connexe de C et f ∈ O(U), non constante. Alors, f est ouverte.

Preuve. Soit u ∈ U et m l’ordre de f en u. Puisque f n’est pas constante et puisque U est connexe, m n’est
pas nul. Alors, en appliquant le lemme de revêtement, soient V1 un voisinage ouvert de u et h ∈ O (V1) tels que
h(u) ̸= 0 et

∀z ∈ V1, f(z) = f(u) + [(z − u)h(z)]
m
.

On note alors pm : C → C, z 7→ zm et t la translation t : C → C, z 7→ z + f(u). En notant g : V1 → C,
z 7→ (z − u)h(z), la formule précédente s’écrit encore f(z) = t ◦ pm ◦ g(z), pour tout z ∈ V1. Or, on a vu
plus haut que pm est ouverte et t, qui est holomorphe, bijective et dont la réciproque est z 7→ z − f(u), est
également ouverte. En outre, g est holomorphe et g′(u) = h(u) ̸= 0. En appliquent le théorème d’inversion
locale holomorphe, on en déduit qu’il existe un voisinage ouvert V de u contenu dans V1 dont l’image par g est
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ouverte. Par composition d’applications ouvertes, cela entrâıne que f(V ) est ouvert. Puisque u est arbitraire
dans U , on a montré que f est ouverte.

A noter
En reprenant les conditions et les notations de la première version du lemme de revêtement qui décrit la
forme locale d’une fonction holomorphe au voisinage d’un point d’ordre m via la formule (15), si on note k
la fonction k : z 7→ (z − u)h(z) définie au voisinage de u, alors k est holomorphe au voisinage de u et vérifie
k′(u) = h(u) ̸= 0. Ainsi, par le théorème d(inversion locale holomorphe, k est un difféomorphisme analytique
local et on peut énoncer le lemme de revêtement sous sa seconde version.

Proposition (lemme de revêtement, seconde version)

Soient U un ouvert connexe de C et f ∈ O(U), non constante. Soit m ≥ 1 l’ordre de f en u. Alors, il existe
un voisinage ouvert V de u contenu dans U et k ∈ O(V ) telles que :

(i) k est un difféomorphisme analytique k : V
∼−→ k(V )

(ii) ∀z ∈ V, f(z) = f(u) + k(z)m.
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4.5 Automorphismes du disque et du demi-plan

Définition (automorphisme analytique d’un ouvert de C)
Soit U un ouvert de C. Un automorphisme analytique de U est un difféomorphisme analytique de U sur U .

A noter

(i) Puisque les bijections holomorphes sont automatiquement biholomorphes, un automorphisme analytique de
U est une application U → U holomorphe et bijective.

(ii) Muni de la composition des applications, l’ensemble des automorphismes d’un ouvert U est un groupe
(exercice), que l’on note parfois Aut(U).

Définition (fonction homographique)
Une fonction homographique est une fonction C → C de la forme z 7→ az+b

cz+d où a, b, c et d sont des nombres
complexes qui vérifient ad− bc ̸= 0.

A noter

(i) A vrai dire, sans qu’il ne soit ici question de définir proprement ces notions pourtant simples et fondatrices,
une homographie est une transformation de la droite projective complexe, que l’on peut voir comme le plan
complexe auquel on a ajouté un point à l’infini, noté∞— en termes topologiques, la droite projective complexe
est la sphère de dimension 2. La fonction homographique f : z 7→ az+b

cz+d se trouve alors prolongée à un application

de la droite projective complexe sur elle-même par les formules f(∞) = a
c et f

(
−d

c

)
= ∞, étant entendu que

α
0 =∞ dès lors que α ̸= 0.
[Pour définir proprement la droite projective complexe, définir sur C2 \{(0, 0)} la relation d’équivalence (x, y) ∼ (z, t) ⇔ xt = yz. La droite
projective P1

C est alors l’ensemble quotient de cette relation d’équivalence, la classe du couple (x, y) étant le plus souvent notée (x : y).

Alors, l’application z ∈ C 7→ (z : 1) ∈ P1
C est injective et c’est le complémentaire de l’image dans P1

C, savoir (0 : 1), que l’on note ∞.
L’application homographique vu ci-dessus s’écrit naturellement (x : y) 7→ (ax+ by : cx+dy). Pour aller plus loin, voir n’importe quel cours
de géométrie projective.]

(ii) Pourquoi avoir demandé que le déterminant ad− bc soit non nul ? Si ad− bc = 0 et si c ̸= 0, l’application
z 7→ az+b

cz+d est constante sur le connexe C \
{
−d

c

}
puisque elle est holomorphe et puisque sa dérivée, qui vaut

ad−bc
(cz+d)2 , est nulle — retrouver cet fait en calculant la décomposition en éléments simples de la fraction. Enfin,

si ad− bc = 0 et si c = 0, il ne reste plus grand chose : d est nécessairement non nul et la fonction est constante,
égale à b

d .

Exercice 43
On note D = D (0, 1).

(i) Soit z un nombre complexe de module 1. Montrer que ∀z0 ∈ D,

∣∣∣∣ z + z0
1 + z0z

∣∣∣∣ = 1.

(ii) Soit z0 ∈ D. Montrer, en utilisant le principe du maximum, que ∀z ∈ D,
z + z0
1 + z0z

∈ D.

(iii) Si z0 ∈ D, on note hz0 l’application homographique D → D définie par la formule hz0(z) =
z + z0
1 + zz0

.

Montrer que l’ensemble {hz0 , z0 ∈ D} est un sous-groupe de Aut(D).
[En particulier, la réciproque de hz0

est h−z0
.]

Proposition (automorphismes du disque)

Le groupe des automorphismes analytiques du disque D (0, 1) est le groupe des homographies

z 7→ λ
z + z0
1 + zz0

où z0 ∈ D (0, 1) et |λ| = 1.

Preuve. On note D = D (0, 1). L’ensemble de ces homographies forme un sous-groupe de Aut(D) ; voir
l’exercice précédent : c’est le sous-groupe de Aut(D) engendré par les homographies de l’exercice et les rotations
de centre 0. Il s’agit de montrer que ce groupe est le groupe Aut(D) tout entier. Soit f ∈ Aut(D). On note
z0 = −f−1(0) ∈ D et g l’homographie de Aut(D) définie par la formule g(z) = z+z0

1+zz0
, qui envoie f−1(0) sur 0.

Alors, f ◦g−1 est un automorphisme du disque qui fixe 0. Par le lemme de Schwarz,
∣∣f ◦ g−1(z)

∣∣ ≤ |z| pour tout
z ∈ D. En raisonnant de même sur la réciproque g ◦ f−1, on obtient que

∣∣f ◦ g−1(z)
∣∣ = |z| pour tout z ∈ D.
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Toujours grâce au lemme de Schwarz, cela implique que f ◦ g−1 est une rotation r : z 7→ λz, où |λ| = 1. Ainsi,
f = r ◦ g, ce qu’il fallait démontrer.

Définition (demi-plan de Poincaré�)

Le demi-plan de Poincaré est l’ouvert

H = {z ∈ C, ℑz > 0} .
H

Proposition (le disque et le demi-plan sont conformément équivalents)

L’homographie h : z 7→ i z−i
z+i définit un difféomorphisme analytique du demi-plan de Poincaré H sur le disque

unité D (0, 1).

Preuve. On note D = D (0, 1). Si z ∈ C, alors, |z − i|2 = |z + i|2 − 4ℑz. En particulier, si z ̸= −i,
|h(z)|2 = 1 − 4ℑz

|z+i|2 , ce qui montre que h (H) ⊆ D. En outre, h est une bijection C \ {−i} ∼−→ C \ {i}, dont
la réciproque s’écrit h−1(z) = −i z+i

z−i — le calcul est immédiat puisque h est une homographie. Si z ̸= i, alors

ℑh−1(z) = −ℜ
Ä
z+i
z−i

ä
= 1−|z|2

|z−i|2 , ce qui montre que h−1(D) ⊆ H, ou encore que D ⊆ h(H). Ainsi, h (H) = D, ce

qu’il fallait démontrer puisque les homographies sont holomorphes.

⋆

∼
z 7→ i z−i

z+i

⋆

A noter
On aurait pu choisir bien d’autres homographies. L’homographie h de l’énoncé est la seule qui envoie 0 sur −i,
i sur 0 et ∞ sur i.

Exercice 44
Trouver toutes les homographies qui définissent des difféomorphismes analytiques de H sur D (0, 1).

Exercice 45
Montrer que tout difféomorphisme analytique de H sur D (0, 1) est homographique — autrement dit, que c’est
la restriction à H d’une homographie.

Proposition (automorphismes du demi-plan)

Les automorphismes analytiques du demi-plan de Poincaré H sont les homographies

z 7→ az + c

bz + d

où

Å
a c
b d

ã
∈ SL (2,R).

Preuve. D’abord, si

Å
a c
b d

ã
∈ SL (2,R) et si z ∈ H,

ℑ
Å
az + c

bz + d

ã
=
ℑ(az + c)(bz + d)

|bz + d|2
=
ℑ(adz + bcz)

|bz + d|2
=

ℑ(z)
|bz + d|2

�Henri Poincaré, 1854–1912
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la dernière égalité venant du fait que ad − bc = 1. Cela montre que l’homographie associée à

Å
a c
b d

ã
, dont la

réciproque est associée à la matrice inverse

Å
d −c
−b a

ã
, est un automorphisme de H. Par ailleurs, en notant

D = D (0, 1) et h l’homographie de la proposition précédente, l’application

Aut (D) −→ Aut (H)

α 7−→ h−1 ◦ α ◦ h

est une bijection de Aut (D) sur Aut (H) — c’est un isomorphisme de groupes. [En particulier, tout automorphisme

de H est une homographie, puisque c’est une composée d’homographies.] Si α (λ, z0) désigne l’automorphisme de D générique
α (λ, z0) : z 7→ λ z+z0

1+zz0
, où |λ| = 1 et |z0| < 1, l’automorphisme α (λ, z0) est la composée de l’automorphisme

α (1, z0) et de la rotation α (λ, 0). Il suffit donc de montrer que h−1 ◦ α (1, z0) ◦ h et h−1 ◦ α (λ, 0) ◦ h sont des
homographies associées à des matrices du groupe SL (2,R) pour conclure. On calcule näıvement : en notant
d’une part x0 et y0 les parties réelle et imaginaire de z0 ∈ D (0, 1),

h−1 ◦ α (1, z0) ◦ h(z) =
(1 + y0) z + x0

x0z + (1− y0)
=

1+y0√
1−|z0|2

z + x0√
1−|z0|2

x0√
1−|z0|2

z + 1−y0√
1−|z0|2

et, d’autre part, si λ = e2iθ où θ ∈ R,

h−1 ◦ α (λ, 0) ◦ h(z) = i(1 + λ)z + λ− 1

(1− λ)z + i(1 + λ)
=

z cos θ − sin θ

z sin θ + cos θ
.

Ainsi, h−1 ◦ α (1, z0) ◦ h est associé à la matrice 1√
1−|z0|2

Å
1 + y0 x0

x0 1− y0

ã
∈ SL (2,R) et h−1 ◦ α (λ, 0) ◦ h est

associé à la matrice

Å
cos θ − sin θ
sin θ cos θ

ã
∈ SL (2,R), ce qu’il fallait démontrer.
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5 Séries de Laurent, formule des résidus

5.1 Séries de Laurent, fonctions analytiques dans une couronne

Définition (série de Laurent)
Une série de Laurent� est une série de fonctions de la variable complexe z de la forme

∑
n anz

n où (an)n∈Z est
une suite de nombres complexes indexée par Z.

Définition (convergence d’une série de Laurent)
Si (an)n∈Z est une suite de nombres complexes indexée par Z, on dit que la série de Laurent

∑
n anz

n converge
lorsque les deux séries ∑

n≥0

anz
n et

∑
n≥0

a−n

Å
1

z

ãn

convergent. Dans ces conditions, on note∑
n∈Z

anz
n =

∑
n≥0

anz
n +

∑
n≥1

a−nz
−n.

Dans le cas contraire, on dit que la série diverge. Dans cette définition, le mot converge peut être pris dans
n’importe quel sens usuel relatif à la convergence des séries de fonctions : simple ou absolue en un point z0 ∈ C,
uniforme ou normale sur une partie de C, etc.

Définition (couronne)

Soient r ≥ 0, R ∈]0,+∞] et c ∈ C. La couronne ouverte
(ou couronne tout court) de centre c et de rayons r et
R est

Cour (c, r, R) = {z ∈ C, r < |z − c| < R} .

c
rR

A noter

(i) Si r ≥ R, la couronne Cour (c, r, R) est vide (!).

(ii) La couronne Cour (c, 0, R) est le disque épointé D (c,R) \ {c}.
(iii) La couronne Cour (0, 0,+∞) égale C \ {0}.
(iv) Soit

∑
n anz

n une série de Laurent. Elle converge simplement en un point z0 ∈ C \ {0} si, et seulement si
la série entière

∑
n anz

n converge en z0 et la série entière
∑

n a−nz
n converge en 1

z0
.

On note ρ′ ∈ [0,+∞] le rayon de la série entière
∑

n anz
n et ρ′′ ∈ [0,+∞] le rayon de la série entière

∑
n a−nz

n.
Alors, la convergence des ces deux séries entières est normale sur tout compact contenu dans la couronne ouverte¶
z ∈ C, 1

ρ′′ < |z| < ρ′
©
, avec les conventions usuelles sur les rayons : 1

+∞ = 0 et 1
0 = +∞. Par conséquent,

la fonction z 7→
∑
n∈Z

anz
n est holomorphe dans la couronne ouverte

¶
z ∈ C, 1

ρ′′ < |z| < ρ′
©
.

Exemples

(i) Les fonctions ez

zn où n ≥ 0, exp 1
z , e

z+e
1
z sont définies par des séries de Laurent sur C\{0} = Cour (0, 0,+∞).

(ii) Pour tout z ∈ Cour (0, 1,+∞),
1

1− 1
z

=
∑
n≥0

z−n

Exercice 46 Soit w ∈ C \ {0}.

(i) Si |z| < |w|, alors 1

w − z
=

∞∑
n=0

zn

wn+1
.

�Pierre Laurent, 1813–1854
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(ii) Si |z| > |w|, alors 1

w − z
= −

∞∑
n=0

wn

zn+1
.

Théorème (les fonctions holomorphes dans les couronnes sont les séries de Laurent)

Soient R′, R′′ tels que 0 ≤ R′ < R′′ ≤ +∞ et f une fonction holomorphe dans la couronne Cour (0, R′, R′′).
Alors,

(i) il existe une unique série de Laurent
∑
n

anz
n dont la somme soit égale à f sur Cour (0, R′, R′′) :

∀z ∈ Cour (0, R′, R′′) , f(z) =

+∞∑
n=−∞

anz
n ;

(ii) pour tout n ∈ Z,

an =
1

2iπ

∫
C(0,r)

f(z)dz

zn+1
(18)

où r est n’importe quel réel vérifiant R′ < r < R′′.

Preuve. On note C = Cour (0, R′, R′′).

Unicité On suppose que f est la somme d’une série de Laurent sur C : soit (an)n∈Z telle que

∀z ∈ C, f(z) =
∑
n∈Z

anz
n.

En particulier, la série entière
∑

n anz
n a un rayon supérieur ou égal à R′′ et la série entière

∑
n a−nz

n a un
rayon supérieur ou égal à 1/R′. Soient r ∈ ]R′, R′′[ et N ∈ Z. Les séries de fonctions

1

zN+1

∑
n

anz
n et

1

zN+1

∑
n

a−nz
−n

convergent normalement sur le cercle de centre 0 et de rayon r, si bien qu’on peut intervertir somme et intégrale
(curviligne) dans l’égalité∫

C(0,r)

f(z)dz

zN+1
=

∫
C(0,r)

1

zN+1

(∑
n∈Z

anz
n

)
dz =

∑
n∈Z

an

∫
C(0,r)

dz

zN−n+1
= 2iπaN .

Cela montre à la fois l’unicité et le (ii).

Existence Soit z ∈ C. Soient r1 et r2 deux réels tels que R′ < r1 < |z| < r2 < R′′.

On note γ le concaténé dans cet ordre des lacets C−1 (0, r1), S (r1, r2), C (0, r2)
et S (r2, r1), où C−1 (0, r1) désigne le lacet inverse du lacet C (0, r1) — c’est le
cercle de centre 0 et de rayon r1 parcouru une fois dans le sens indirect à partir
du point r1. L’indice de z par rapport à γ est 1 et γ est homotope à zéro dans

C, si bien que f(z) = 1
2iπ

∮
γ

f(ζ)
ζ−z dζ, selon la formule de Cauchy. Or, la somme

des intégrales le long des deux segments est nulle ; en outre, l’intégrale le long
de C−1 (0, r1) est l’opposée de l’intégrale le long de C (0, r1). Cela montre que

f(z) =
1

2iπ

∫
C(0,r2)

f(ζ)

ζ − z
dζ − 1

2iπ

∫
C(0,r1)

f(ζ)

ζ − z
dζ.

0

z

r1 r2

En utilisant les développements de l’exercice précédent, on obtient les convergences normales sur les cercles de
centre 0 et de rayons respectifs r2 et r1 des séries

1

ζ − z
=

∞∑
n=0

zn

ζn+1
et

1

ζ − z
= −

∞∑
n=0

ζn

zn+1
,
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ce qui légitime l’interversion des sommes et des intégrales dans l’égalité

f(z) =
1

2iπ

∫
C(0,r2)

f(ζ)

( ∞∑
n=0

zn

ζn+1

)
dζ +

1

2iπ

∫
C(0,r1)

f(ζ)

( ∞∑
n=0

ζn

zn+1

)
dζ

=

+∞∑
n=0

Ç
1

2iπ

∫
C(0,r2)

f(ζ)dζ

ζn+1

å
zn +

+∞∑
n=1

Ç
1

2iπ

∫
C(0,r1)

f(ζ)dζ

ζn+1

å
z−n.

Enfin, puisque la fonction ζ 7→ f(ζ)
ζn+1 est holomorphe dans la couronne ouverte C, le théorème d’homotopie

montre que pour tout n ∈ Z, l’intégrale
∮
C(0,r)

f(ζ)dζ
ζn+1 ne dépend pas de r pourvu que R′ < r < R′′. Ainsi, en

notant an =
∮
C(0,r)

f(ζ)dζ
ζn+1 pour n’importe lequel de ces r, on a montré que

f(z) =
∑
n∈Z

anz
n,

ce qu’il fallait démontrer.

A noter

(i) L’indépendance de la formule (18) en le nombre r, redémontrée dans la partie unicité de la preuve ci-dessus,
est une conséquence du théorème d’homotopie puisque tous les lacets C(0, r), r ∈ ]R′, R′′[, sont (évidemment)
homotopes dans la couronne ouverte Cour (0, R′, R′′). On utilise également cela dans la partie existence de
ladite preuve.

(ii) Le théorème montre en particulier que deux séries de Laurent qui définissent une même fonction au voisinage
épointé d’un point ont les mêmes coefficients.

Corollaire (décomposition d’une fonction holomorphe dans une couronne)

Soient R′, R′′ deux réels tels que 0 ≤ R′ < R′′ ≤ +∞ et f une fonction holomorphe dans la couronne
Cour (0, R′, R′′). Alors, il existe f1 ∈ O (D (0, R′′)) et f2 ∈ O

(
C \D (0, R′)

)
, uniques, telles que

(i) ∀z ∈ Cour (0, R′, R′′) , f(z) = f1(z)− f2(z) ;

(ii) lim
|z|→∞

f2(z) = 0.

Preuve. L’existence de f1 et f2 est garantie par le théorème précédent, en prenant

∀z ∈ D (0, R′′) , ∀r ∈]0, |z|[, f1(z) =

+∞∑
n=0

anz
n =

1

2iπ

∫
C(0,r)

f(ζ)

ζ − z
dζ

et

∀z ∈ C \D (0, R′) , ∀r ∈]|z|,+∞[, f2(z) =

−1∑
n=−∞

anz
n =

1

2iπ

∫
C(0,r)

f(ζ)

ζ − z
dζ.

En particulier, la condition sur la limite de f2(z) lorsque |z| tend vers 0 est assurée par la forme intégrale de f2
puisque l’intervalle d’intégration est compact — ce qui légitime l’interversion de l’intégrale et de la limite. Pour
l’unicité, il suffit d’étudier le cas où f est la fonction nulle sur la couronne ouverte. On suppose ainsi que f1 est
holomorphe dans le disque ouvert D (0, R′′), que f2 est holomorphe dans la couronne ouverte {z, |z| > R′}, que
f2(z) tend vers 0 lorsque |z| tend vers l’infini, et que f1(z) = f2(z), pour tout z vérifiant R′ < |z| < R′′. Alors,
la fonction g définie par f1 sur {z, |z| < R′′} et par f2 sur {z, |z| > R′} est entière et tend vers 0 lorsque |z|
tend vers l’infini. Elle est donc bornée, ce qui entrâıne, par le théorème de Liouville, que g est la fonction nulle.
Donc les fonctions f1 et f2 sont nulles, ce qu’il fallait démontrer.

Exercice 47

Pour tout z /∈ {0, 1}, 1

z(1− z)
=

1

z
+

1

1− z
. Montrer qu’on peut développer cette fonction sur les couronnes

suivantes.

(i)
1

z(1− z)
=

1

z
+

∞∑
n=0

zn pour tout z ∈ Cour (0, 0, 1), i.e. pour 0 < |z| < 1
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(ii)
1

z(1− z)
=
−1
z − 1

+

∞∑
n=0

(−1)n(z − 1)n pour tout z ∈ Cour (1, 0, 1), i.e. pour 0 < |z − 1| < 1

(iii)
1

z(1− z)
=

−1
z2
(
1− 1

z

) = −
∞∑

n=2

1

zn
pour tout z ∈ Cour (0, 1,∞), i.e. pour |z| > 1

(iv)
1

z(1− z)
=

−1
(z − 1)2

Ä
1 + 1

z−1

ä =

∞∑
n=2

(−1)n+1

(z − 1)n
pour tout z ∈ Cour (1, 1,∞), i.e. pour |z − 1| > 1

0 1 0 1 0 1 0 1

Définition (DSL)
Soient U un ouvert de C et u ∈ U . On dit qu’une application f : U \ {u} est développable en série de Laurent
(DLS) en u lorsqu’il existe r > 0 tel que D (u, r) \ {u} ⊆ U et une série de Laurent

∑
n anz

n telles que

∀z ∈ C, 0 < |z − u| < r =⇒ f(z) =

+∞∑
n=−∞

an(z − u)n. (19)

A noter

(i) Le théorème précédent assure que, lorsqu’une fonction f est DSL en u, il existe une unique série de Laurent
qui vérifie les conditions de la définition. On dit que la relation (19) est le développement en série de Laurent
de f en u.

(ii) Lorsqu’une fonction f est holomorphe sur un disque épointé D (u, r) \ {u} = Cour (u, 0, r) où r > 0, elle est
développable en série de Laurent en u. En outre, si son développement en série de Laurent est

f(z) =

+∞∑
n=−∞

an(z − u)n,

le rayon de la série entière
∑

n a−nz
n est infini.

Définition (résidu d’une fonction DSL)
Soient U un ouvert de C, u ∈ U et f : U \ {u} → C une fonction DSL en u. Avec les notations de la définition
précédente, on appelle le nombre complexe a−1 le résidu de f en u. On le notera Res (f, u).

A noter
Dans les conditions de la définition précédente, le résidu de f en u est écrit en rouge dans le DSL de f en u :

f(z) = · · ·+ a−3

(z − u)3
+

a−2

(z − u)2
+

a−1

z − u
+ a0 + a1(z − u) + a2(z − u)2 + . . .

Exercice 48
Si une fonction f est holomorphe dans un ouvert épointé U \{u}, le résidu de f en u s’écrit sous forme intégrale

Res (f, u) =
1

2iπ

∫
C(u,r)

f(z)dz

pour tout réel strictement positif r suffisamment petit [pour que D (u, r) soit contenu dans U ]

.
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5.2 Points singuliers, fonctions méromorphes

Définition (point singulier, point régulier)
Soient U un ouvert de C, u ∈ U et f ∈ O (U \ {u}). Soit (an)n∈Z la suite de complexes indexée par Z telle que
le développement en série de Laurent de f en u soit

f(z) =

+∞∑
n=−∞

an(z − u)n.

On dit que u est un point singulier pour f lorsqu’au moins un des an, n ≤ −1, est non nul. Dans le cas contraire,
on dit que u est un point régulier pour f .

A noter

(i) Dans la situation de la définition, si u est un point régulier pour f , alors f se prolonge de manière unique,
par continuité, en une fonction holomorphe sur U .

(ii) Certains auteurs parlent de singularité plutôt que de point singulier. Le choix fait ici consiste à réserver le
nom de singularité à la situation — bien différente – suivante : un point s du cercle de convergence d’une série
entière en est une singularité lorsque la fonction définie par la série entière sur son disque ouvert de convergence
ne se prolonge analytiquement sur aucun disque ouvert non vide centré en s.

Exemples
L’origine est un point singulier pour la fonction z 7→ ez

z et pour la fonction z 7→ ez−1
z2 , alors que c’est un point

régulier pour les fonctions z 7→ ez−1
z et z 7→ z

ez−1 si on prolonge ces dernières par 1 en 0.

Définition (pôle, point singulier essentiel)
Soient U un ouvert de C, u ∈ U et f ∈ O (U \ {u}). Soit (an)n∈Z la suite de nombres complexes indexée par Z
telle que le développement en série de Laurent de f en u soit

f(z) =

+∞∑
n=−∞

an(z − u)n.

Lorsque {n ≤ −1, an ̸= 0} est fini et non vide, on dit que u est un pôle de f , ou encore que f présente un pôle
en u. Lorsqu’au contraire {n ≤ −1, an ̸= 0} est infini, on dit que u est un point singulier essentiel de f , ou
encore que f présente un point singulier essentiel en u.

A noter
Il résulte immédiatement de cette définition qu’un point singulier d’une fonction holomorphe sur un ouvert
épointé est ou bien un pôle, ou bien un point singulier essentiel.

Exemples

(i) La fonction c = z 7→ cos
1

z2
=

0∑
n=−∞

1

(2n)!

1

z2n
présente un point singulier essentiel en 0, et un résidu nul.

(ii) La fonction z 7→ cos z2

(z2 − π2)4
presente un pôle en π et un autre en −π — exercice : écrire les DSL en π et en

−π de cette fonction paire.

Proposition (caractérisation du résidu en terme de primitives)

Soient U un ouvert de C, u ∈ U et f ∈ O (U \ {u}). On suppose que u est un point singulier de f . Alors,
Res (f, u) est l’unique nombre complexe tel que la fonction

z 7→ f(z)− Res (f, u)

z − u

ait une primitive sur un disque épointé D (u, r) \ {u} où r > 0.

Preuve. On développe f en série de Laurent sur un disque épointé D (u, r) \ {u} où r > 0 : soit (an)n∈Z telle
que

∀z ∈ D (u, r) \ {u} , f(z) =
∑
n∈Z

an(z − u)n.

N. Pouyanne, UVSQ 2026, LSMA621 66



Si a est n’importe quel nombre complexe, la fonction z 7→ a−Res(f,u)
z−u admet une primitive sur D (u, r) \ {u} si,

et seulement si a = Res (f, u). Comme la fonction

z 7→
∑
n∈Z
n ̸=−1

an(z − u)n

admet
z 7→

∑
n∈Z
n ̸=−1

an
n+ 1

(z − u)n+1

pour primitive sur D (u, r) \ {u}, le résultat en découle aussitôt.

5.2.1 Points réguliers

Proposition (théorème du faux point singulier)

Soient U un ouvert de C, u ∈ U et f ∈ O (U \ {u}). Alors, u est un point régulier de f si, et seulement si f
est bornée au voisinage épointé de u.

A noter
Dire que f est bornée au voisinage épointé de u signifie qu’il existe r > 0 tel que |f | est borné sur D (u, r) \ {u}.
Preuve. Il s’agit de montrer que f est bornée au voisinage épointé de u si, et seulement si f se prolonge en
une fonction holomorphe sur U tout entier. Si f se prolonge ainsi, ce prolongement est continu sur un disque
fermé de centre u et de rayon non nul, donc borné au voisinage de u. Réciproquement, on suppose que r > 0
est tel que |f | soit une fonction bornée sur D (u, r) \ {u}. On définit la fonction g : D (u, r) → C par g(u) = 0

et g(z) = (z − u)2f(z) pour tout z ∈ D (u, r) \ {u}. Puisque f est bornée sur D (u, r) \ {u}, la limite de g(z)
z−u

lorsque z tend vers u dans D (u, r) \ {u} est nulle, ce qui implique que g est dérivable au sens complexe en u et
que g′(u) = 0. Par ailleurs, g est évidemment holomorphe sur D (u, r) \ {u}, si bien que g ∈ O (D (u, r)). On
écrit le développement en série entière de g en u : soit ρ > 0 et (an)n∈N ∈ CN telles que a0 = a1 = 0 et

∀z ∈ D (u, ρ) , g(z) =

∞∑
n=2

an(z − u)n.

Alors,

∀z ∈ D (u, ρ) , f(z) =

∞∑
n=0

an+2(z − u)n,

ce qui prouve que f est DSE en u.

5.2.2 Pôles, fonctions méromorphes

Proposition (caractérisation des pôles)

Soient U un ouvert de C, u ∈ U et f ∈ O (U \ {u}). On suppose que u est un pôle de f . Alors, les assertions
suivantes sont équivalentes.

(i) f présente un pôle en u

(ii) Il existe un entier naturel (non nul) m et des nombres complexes r1, . . . , rm tels que la fonction

z 7→ f(z)−
m∑

k=1

rk
(z − u)k

soit bornée au voisinage de u

(iii) Il existe un entier naturel (non nul) m tel que z 7→ (z − u)mf(z) soit bornée au voisinage de u

(iv) Il existe un entier naturel (non nul) m et g ∈ O(U) telles que

∀z ∈ U \ {u} , f(z) =
g(z)

(z − u)m
.
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Preuve. (i)→(ii) Ecrire le DSL de f en u et soustraire la série des puissances négatives de z−u — qui est un
polynôme en 1

z−u . (ii)→(iii) (z−u)mf(z) est la somme d’une fonction polynomiale et d’une fonction bornée au
voisinage de u. (iii)→(iv) Appliquer le théorème du faux point singulier à z 7→ (z − u)mf(z). (iv)→(i) Ecrire
le DSL de f en u à partir du DSE de g en u.

Définition (ordre d’un pôle)
Soient U un ouvert de C, u ∈ U et f ∈ O (U \ {u}). On suppose que u est un pôle de f . Le degré m de la
partie négative du DSL de f en u — qui est une fonction polynomiale en 1

z−u — est l’ordre du pôle u de f .
On dit aussi que f présente un pôle d’ordre m en u. Un pôle d’ordre 1 est dit simple, un pôle d’ordre 2 est dit
double, etc.

A noter
Dans les conditions de la définition, f présente un pôle d’ordre m en u si, et seulement si l’une des assertions
suivantes est vérifiée.

(i) Le DSL de f en u s’écrit

f(z) =

+∞∑
n=−m

an(z − u)n

avec a−m ̸= 0.

(ii) L’application g : z 7→ (z − u)mf(z) se prolonge en une fonction holomorphe sur U qui vérifie g(u) ̸= 0.

Définition (partie principale d’une fonction en un de ses pôles)
Soient U un ouvert de C, u ∈ U et f ∈ O (U \ {u}). On suppose que u est un pôle d’ordre m de f et que le
DSL de f en u est

f(z) =

m∑
n=1

a−n

(z − u)n
+

+∞∑
n=0

an(z − u)n.

La partie principale de f en u est la fonction rationnelle

z 7→
m∑

n=1

a−n

(z − u)n
.

A noter
Si F est la partie principale de f en un pôle u, alors |F (z)| tend vers +∞ lorsque |z| tend vers u.

Définition (fonction méromorphe)
Soit U un ouvert connexe de C. Une fonction f est dite méromorphe sur U s’il existe g, h ∈ O(U) telles que

(i) h n’est pas la fonction nulle sur U ;

(ii) si Z(h) désigne l’ensemble des zéros de h, alors

∀z ∈ U \ Z(h), f(z) =
g(z)

h(z)
.

A noter

(i) L’ensemble des zéros d’une fonction holomorphe non nulle sur un ouvert connexe U étant discret, toute
fonction méromorphe est holomorphe hors d’une partie discrète (l’ensemble des zéros de son dénominateur), en
chaque point de laquelle elle présente un point régulier ou un pôle.

(ii) A vrai dire, si U est un ouvert connexe de C et si Z est une partie discrète de U , toute fonction holomorphe
sur U \ Z qui présente un pôle en tout point de Z est méromorphe sur U . C’est un théorème de Weierstrass�,
pas si simple, dont on n’apporte pas ici de preuve.
[Cela revient essentiellement à trouver une fonction holomorphe sur un ouvert connexe dont l’ensemble — discret — des zéros est prescrit.]

(iii) Si U est un ouvert connexe de C, l’ensemble M(U) des fonctions méromorphes sur U est un corps pour
l’addition et la multiplication usuelles. C’est le corps des fractions de l’anneau O(U), qui est intègre grâce au
théorème de prolongement analytique.

�Karl Weierstraß, 1815–1897.
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Proposition (calcul du résidu en un pôle simple)

Soient U un ouvert de C, f et g deux fonctions méromorphes sur U , non nulles.

(i) Si u ∈ U est un pôle simple de f , alors

Res (f, u) = lim
z→u

(z − u)f(z).

(ii) Si u ∈ U est un pôle simple de la fonction méromorphe f
g avec f(u) ̸= 0, alors g′(u) ̸= 0 et

Res

Å
f

g
, u

ã
=

f(u)

g′(u)
.

Preuve. (i) Développer f en série de Laurent au voisinage épointé de u, multiplier par z− u, puis passer à la

limite en u. (ii) Puisque g(u) = 0, le quotient (z−u)f(z)
g(z) = (z−u)f(z)

g(z)−g(u) tend vers f(u)
g′(u) lorsque z tend vers u.

Exemple Res
Ä

eiz

z2+1 , i
ä
= 1

2ie .

Exercice 49
Dans les conditions de la proposition précédente, si u ∈ U est un pôle d’ordre m de f , alors

Res (f, u) =
h(m−1)(u)

(m− 1)!

où h est la fonction z 7→ (z − u)mf(z).

Exemple d’application

Pour calculer le résidu de z 7→ eiz

(z2+1)2
en i, calculer le début du DSE de z 7→ eiz

(z+i)2
en i, en extraire le coefficient

de z − i, c’est le résidu cherché. A vrai dire, il suffit de calculer le développement limité à l’ordre 1 en i de la

fonction eiz

(z+i)2
. On trouve Res

Ä
eiz

(z2+1)2
, i
ä
= −i

2e .

Définition (valuation en un point d’une fonction méromorphe)
Soient U un ouvert de C, f une fonction méromorphe sur U et u ∈ U . La valuation de f en u est le nombre
entier — que l’on notera vu(f) — défini par :

(i) vu(f) = 0 si f est holomorphe en u et si f(u) ̸= 0 ;

(ii) vu(f) = n si f est holomorphe en u a un zéro d’ordre n en u ;

(iii) vu(f) = −n si f présente un pôle d’ordre n en u.

Autrement dit, vu(f) est l’unique entier relatif tel que, dans un voisinage épointé V \ {u} de u, f s’écrive sous
la forme

f(z) = (z − u)vu(f)g(z)

où g est holomorphe sur V et vérifie g(u) ̸= 0.

5.2.3 Points singuliers essentiels

Une notion de topologie générale : une partie A de C est dense — ou encore partout dense — lorsque son
adhérence A pour la topologie usuelle de C est C tout entier.

Exercice 50 (de topologie)
Soit A ⊆ C. Les assertions suivantes sont équivalentes.
(i) A est dense dans C
(ii) ∀z ∈ C, ∀ε > 0, ∃a ∈ A, |z − a| ≤ ε

(iii) Pour tout z ∈ C, il existe une suite (an)n∈N de points de A telle que z = lim
n→+∞

an.

Exercice 51
Les sous-ensembles Q+ iQ, C \ {−1, 0, 1}, C \ iR, C \ ∂D (2 + i, 3) sont denses dans C.
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Théorème (densité de l’image autour d’un point singulier essentiel)

Soient u ∈ C, r > 0 et f une fonction holomorphe sur D (u, r) \ {u}. On suppose que u est un point singulier
essentiel de f . Alors, f (D (u, r) \ {u}) est une partie dense de C.

Preuve. On suppose que f (D (u, r) \ {u}) n’est pas dense. Soient alors z ∈ C et η > 0 tels que ∀ζ ∈
D (u, r) \ {u}, |f(ζ)− z| ≥ η. Alors, la fonction g : ζ ∈ D (u, r) \ {u} 7→ 1

f(ζ)−z est holomorphe, et |g(ζ)| ≤ 1
η ,

pour tout ζ ∈ D (u, r) \ {u}. Ainsi, g et bornée sur D (u, r) \ {u}, ce qui entrâıne que g se prolonge en une
fonction holomorphe sur D (u, r). Alors, f = z + 1

g est méromorphe sur D (u, r) : en u, elle est régulière ou a
un pôle, ce qu’il fallait démontrer.

A noter

(i) Ce théorème est dû à Weierstrass, encore lui.

(ii) En particulier, si u est un point singulier essentiel de f , alors |f(z)| n’a aucune limite lorsque z tend vers u.

(iii) A vrai dire, l’important grand théorème de Picard� en dit bien davantage : l’image d’une fonction holo-
morphe au voisinage d’un point singulier essentiel est soit C, soit C privé d’un unique point ; en outre, les fibres
non vides sont infinies. On ne démontre pas ce théorème ici. Se contenter de se faire les dents en calculant
l’image de n’importe quelle couronne Cour (0, 0, R), R > 0 par la fonction z 7→ exp 1

z .

5.3 Le théorème des résidus

Théorème (théorème des résidus, dit aussi formule des résidus)

Soient U un ouvert de C, n ∈ N∗ et P une partie finie de U . Soient aussi f une fonction holomorphe sur U \P
et γ un lacet de U , homotope à zéro dans U , dont le support ne rencontre pas P. Alors,

1

2iπ

∫
γ

f(z)dz =
∑
p∈P

Res (f, p)× Indγ(p).

Preuve. Pour chaque p ∈ P, on écrit le développement en série de Laurent de f en p :

f(z) =
∑
n∈Z

ap,n(z − p)n

et on note
φp : z 7→

∑
n≤−1

ap,n(z − p)n,

qui est encore holomorphe sur U \ P. En outre, la fonction

f −
∑
p∈P

φp

se prolonge par continuité en une fonction holomorphe sur U tout entier, puisque son DSL en chaque point de
P est un DSE. Comme le lacet γ est homotope à zéro dans U , cela entrâıne que∫

γ

f(z)dz =
∑
p∈P

∫
γ

φp(z)dz

Puisque les fonctions z 7→ ap,−k

(z−p)k
admettent des primitives sur U \ P lorsque k ̸= 1 et puisque les convergences

des séries de Laurent sont normales sur tout compact de C \ P, garantissant l’interversion des sommes et des
intégrales — le support de γ est compact —, on obtient que∫

γ

f(z)dz =
∑
p∈P

∫
γ

Res (f, p)

z − p
dz =

∑
p∈P

Res (f, p)× 2iπ Indγ(p),

ce qu’il fallait démontrer.

�Emile Picard, 1856–1941
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Corollaire (résidu et changement de variable)

Soient U un ouvert de C, u ∈ U et φ ∈ O(U) telle que φ′(u) ̸= 0. Soit f une fonction holomorphe sur
φ(U) \ {φ(u)}. Alors, f ◦ φ est DSL en u et

Res (f ◦ φ× φ′, u) = Res (f, φ(u)) .

Preuve. Quitte à restreindre U , grâce au caractère local du résidu qui ne dépend que du DSL, le théorème
d’inversion locale holomorphe permet de supposer que U est connexe et que φ est un difféomorphisme holomor-
phe U → φ(U). On note v = φ(u) et V l’ouvert connexe V = φ(U). Soit r > 0 tel que D (u, r) ⊆ U . On note
γ le lacet γ = C(u, r). Alors, par changement de variable,∫

γ

f ◦ φ(z)× φ′(z)dz =

∫
φ◦γ

f(z)dz. (20)

En particulier, en divisant par 2iπ, le théorème des résidus permet de ré-écrire cette formule en

Res (f ◦ φ× φ′, u) = Res (f, v)× Indφ◦γ(v).

Il suffit donc, pour conclure, de montrer que l’indice en v du lacet φ ◦ γ est 1. On applique la formule (20) à la
fonction z 7→ 1

z−v . Cela fournit la relation

Indφ◦γ(v) =
1

2iπ

∫
φ◦γ

dz

z − v
=

1

2iπ

∫
γ

φ′(z)

φ(z)− v
dz.

Or, puisque φ est un difféomorphisme holomorphe, u est un zéro simple de v, si bien que la fonction méromorphe
φ′

φ−v présente un pôle simple en u, dont le résidu est φ′(u)
φ′(u) = 1, ce qu’il fallait démontrer.

Exemple

Si w ̸= 0, alors Res

Å
ewz

ewz − 1
, 0

ã
=

1

w
Res

Å
1

z − 1
, 1

ã
=

1

w
.

On conclut cette section par trois énoncés relatifs au calcul du nombre de zéros et de pôles d’une fonction
méromorphe.

Proposition (intégrale curviligne de la dérivée logarithmique)

Soient U un ouvert de C et f une fonction méromorphe sur U et γ un lacet de U homotope à zéro. On suppose
que l’ensemble P des zéros et des pôles de f dans U est fini. Alors,

1

2iπ

∫
γ

f ′(z)

f(z)
dz =

∑
p∈P

vp(f)× Indγ(p).

Preuve. Grâce à la formule des résidus, il suffit de calculer le résidu de f ′/f en un point quelconque p ∈ P
puisque f ′/f est méromorphe sur U et a tous ses pôles dans P. Comme f(z) = (z − p)vp(f)g(z) où g est
holomorphe au voisinage de p et ne s’annule pas en p, la dérivée logarithmique f ′/f s’écrit

f ′(z)

f(z)
=

vp(f)

z − p
+

g′(z)

g(z)

au voisinage épointé de p. Comme g′/g est holomorphe au voisinage de p cela montre que Res
Ä
f ′

f , p
ä
= vp(f),

ce qu’il fallait démontrer.

Corollaire (nombres de zéros et de pôles d’une fonction méromorphe)

Soient U un ouvert de C et f une fonction méromorphe sur U et γ un lacet de U homotope à zéro. On suppose
que l’ensemble P des zéros et des pôles de f dans U est fini et que l’indice de γ par rapport à tout point de P
égale 1. Alors,

1

2iπ

∫
γ

f ′(z)

f(z)
dz =

∑
p∈P

vp(f).
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Preuve. C’est une application immédiate de la proposition précédente.

A noter
Dans l’énoncé précédent, la somme

∑
p∈P vp(f) s’interprète comme le nombre de zéros de f comptés avec leurs

multiplicités à laquelle on retranche nombre de pôles de f comptés avec leurs ordres.

Théorème (de Rouché�)

Soient U un ouvert de C et f, g ∈ O(U). On suppose que D (u, r) ⊆ U et que

∀z ∈ C, |z − u| = r =⇒ |f(z)− g(z)| < |g(z)| .

Alors, f et g ont le même nombre de zéros dans D (u, r), comptés avec leurs multiplicités.

Preuve. L’hypothèse implique que ni f ni g ne s’annulent sur le cercle ∂D (u, r). En outre, puisque D (u, r) est
compact, le nombre de zéros de f dans D (u, r) est fini, et idem pour g. Ainsi, le quotient h = f

g est holomorphe

dans une couronne C = Cour (u, r1, r2) ⊆ U où r1 < r < r2. Quitte à rapprocher r1 et r2 de r, on peut supposer
que l’inégalité |h(z)− 1| < 1 est valide sur la couronne C. Ainsi, h envoie C dans le disque ouvert D (1, 1) qui
est inclus dans le plan coupé C \ R−. Alors, la fonction Log ◦h est holomorphe sur Cour (u, r1, r2) et a pour
dérivée le quotient h′/h. En particulier, ∫

C(u,r)

h′(z)

h(z)
dz = 0.

On conclut en remarquant que h′

h = f ′

f −
g′

g et en appliquant le corollaire sur le nombre de zéros et de pôles
d’une fonction méromorphe — noter que ni f ni g n’ont de pôles dans U .

A noter

(i) Si Z(f) désigne l’ensemble des zéros de f , la conclusion du théorème de Rouché signifie précisément que∑
z∈Z(f)

vz(f) =
∑

z∈Z(g)

vz(g).

(ii) Le théorème de Rouché se généralise en remplaçant le disque D (u, r) par un compact dont le bord est le
support d’un arc simple — la preuve ci-dessus s’adapte sans histoire à cette situation plus large.

Exemple classique d’application : le théorème de d’Alembert-Gauss�

Soit P un polynôme à coefficients complexes, unitaire, non constant, de degré d. Alors, la limite de P (z)
zd est 1

lorsque |z| tend vers l’infini. Ainsi, il existe R > 0 tel que
∣∣P (z)− zd

∣∣ < ∣∣zd∣∣ pour tout z dans le cercle de
centre 0 et de rayon R. Le théorème de Rouché assure alors que P a autant de zéro dans D (0, R) que zd, à
savoir d, en comptant les multiplicités. En particulier, P a au moins un zéro dans D (0, R), ce qui prouve le
théorème de d’Alembert-Gauss : le corps C est algébriquement clos.

5.4 Exemples de calculs d’intégrales par la méthode des résidus

Les applications de la formule des résidus au calcul d’intégrales sont innombrables. On n’en présente ici qu’un
tout petit aperçu.

Exemple 1
On montre que ∫ +∞

−∞

dt

1 + t4
=

π√
2
.

Bien sûr, on peut calculer une primitive de 1
1+t4 en décomposant cette fraction rationnelle en éléments simples

et se ramener ainsi à un calcul de limite. La formule des résidus fournit un autre mode de calcul, bien moins
fastidieux, comme suit.

�Eugène Rouché, 1832–1910.
�Karl Friedrich Gauß, 1777–1855
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Puisque l’intégrale convergente
∫ +∞
−∞

dt
1+t4 est la limite de

∫ R

−R
dt

1+t4

lorsque R tend vers +∞, on considère le lacet γR formé de la con-
caténation du demi-cercle de centre 0 et de rayon R > 1, d’origine
R et d’extrémité −R, suivi du segment S(−R,R). La fonction
z 7→ 1

1+z4 est méromorphe sur C et admet les deux pôles ω et

ω3 dans le demi-disque dont le support de γR est le bord, où
ω = ei

π
4 = 1+i√

2
. En outre, l’indice de γR par rapport à ces deux

pôles vaut 1.

R−R

ωω3

γR

La formule des résidus assure alors que, pour tout R > 1,

1

2iπ

∫
γR

dz

1 + z4
= Res

Å
1

1 + z4
, ω

ã
+Res

Å
1

1 + z4
, ω3

ã
.

D’une part, ∫
γR

dz

1 + z4
=

∫
δR

dz

1 + z4
+

∫ R

−R

dt

1 + t4

où δR est le lacet [0, π] → C, t 7→ Reit. Comme
∣∣∣ 1
1+z4

∣∣∣ ≤ 1
|z|4−1 = 1

R4−1 , l’intégrale le long de δR vérifie, par

majoration standard, ∣∣∣∣∫
δR

dz

1 + z4

∣∣∣∣ ≤ πR

R4 − 1
−→

R→+∞
0,

si bien que, pour tout R > 1,∫ +∞

−∞

dt

1 + t4
= lim

R→0

∫
γR

dz

1 + z4
=

∫
γR

dz

1 + z4
= 2iπ

Å
Res

Å
1

1 + z4
, ω

ã
+Res

Å
1

1 + z4
, ω3

ãã
.

Comme la fonction z 7→ 1
1+z4 admet des pôles simples en ω et ω3, le calcul de ces résidus lorsque R > 1 est

immédiat :

Res

Å
1

1 + z4
, ω

ã
=

1

4ω3
= −ω

4
et Res

Å
1

1 + z4
, ω

ã
=

ω

4

dont il résulte que ∫ +∞

−∞

dt

1 + t4
=

iπ

2
(−ω + ω) = − iπ

2
× 2iℑ(ω) = π√

2
.

Exemple 2

On généralise l’exemple précédent pour calculer la transformée de Fourier� x ∈ R 7→
∫ +∞

−∞

eitxdt

1 + t4
. On intègre

sur le même lacet : la formule des résidus fournit, sachant que ω8 = 1,

1

2iπ

∫
γR

eizxdz

1 + z4
= Res

Å
eizx

1 + z4
, ω

ã
+Res

Å
eizx

1 + z4
, ω3

ã
=

eiωx

4ω3
+

eiω
3x

4ω
= −i

√
2

4
e
− x√

2

Å
sin

x√
2
+ cos

x√
2

ã
.

Par ailleurs, si z est un complexe dont la partie imaginaire est positive ou nulle et si x ≥ 0,
∣∣eizx∣∣ = eℜ(izx) =

e−xℑz ≤ 1. Ainsi, lorsque x ≥ 0, l’intégrale le long du demi cercle δR tend vers 0 lorsque R tend vers +∞,
puisque, par majoration standard, lorsque R > 1,∣∣∣∣∫

δR

eizxdz

1 + z4

∣∣∣∣ ≤ πR

R4 − 1
.

On en déduit que

∀x ≥ 0,

∫ +∞

−∞

eitxdt

1 + t4
=

π√
2
e
− x√

2

Å
sin

x√
2
+ cos

x√
2

ã
.

�Joseph Fourier, 1786–1830

N. Pouyanne, UVSQ 2026, LSMA621 73



Enfin, un changement de variable t ; −t montre immédiatement que x ∈ R 7→
∫ +∞

−∞

eitxdt

1 + t4
est une fonction

paire. On en conclut que

∀x ∈ R,
∫ +∞

−∞

eitxdt

1 + t4
=

π√
2
e
− |x|√

2

Å
sin
|x|√
2
+ cos

x√
2

ã
.

Exemple 3

Il s’agit de calculer la transformée de Fourier (-Plancherel�)

∫ +∞

−∞

sin t

t
eitxdt de la fonction t 7→ sin t

t en tout point

x ∈ R\{±1}. Cette intégrale est (semi-)convergente, comme le montre classiquement une intégration par parties
sur un intervalle compact de la forme [−a, b] où a, b > 0 suivi d’un passage à la limite (a, b)→ (+∞, ,+∞).
[Pour intégrer par parties, calculer une primitive de eitx sin t et dériver 1

t , ce qui permet de se ramener à une fonction intégrable sur R.]
Inutile, ici, de chercher une primitive de l’intégrand en termes de fonctions usuelles, il n’y en a pas — c’est un
théorème qui ressort de la théorie de Galois� différentielle, hors de portée du présent discours.

En x = ±1, cette intégrale diverge. En revanche, pour x = 1 et pour x = −1, l’intégrale
∫ R

−R
sin t
t eixtdt a quand

même une limite lorsque R tend vers +∞.

On montre que

lim
R→+∞

Ç∫ R

−R

sin t

t
eitxdt

å
=


π si |x| < 1

π
2 si x = ±1
0 si |x| > 1.

(21)

La fonction z 7→ sin z
z présente à l’origine un point régulier : elle se prolonge par continuité en une fonction

entière valant 1 en 0. En revanche, les fonctions z 7→ eiwz

z présentent un pôle simple en 0. Pour éloigner ce pôle
de l’intervalle d’intégration lors de la décomposition 2i sin t = eit − e−it, on change de chemin.

Soit R > 0. On note γR le concaténé du segment S(−R,−1), du
demi-cercle dans le demi-plan {z, ℑ(z) ≤ 0} parcouru une fois dans
le sens direct de −1 à 1 dont un paramétrage est par exemple t ∈
[0, π]→ −eit, puis enfin du segment S(1, R). Le segment S(−R,R)
et γR sont évidemment homotopes dans C. En particulier, pour
tout x ∈ R, ∫ R

−R

sin t

t
eitxdt =

∫
γR

sin z

z
eizxdz.

−R R−1 1

γR

Pour tous R > 0 et w ∈ R, on note — cela a du sens puisque le chemin γR évite l’origine —

f(R,w) =

∫
γR

eiwz

z
dz,

si bien que notre intégrale s’écrit ∫ R

−R

sin t

t
eitxdt =

f(R, x+ 1)− f(R, x− 1)

2i
. (22)

On complète le chemin γR pour en faire un lacet, de deux façons — pour une illustration, voir le dessin ci-
dessous. On note ℓ+R le lacet formé de la concaténation de γR et du demi-cercle t ∈ [0, π] → Reit dans le
demi-plan ℑz ≥ 0 et ℓ−R le lacet formé de la concaténation de γR et du demi-cercle t ∈ [0, π] → Re−it dans
le demi-plan ℑz ≤ 0. La fonction z 7→ eiwz/z étant méromorphe sur C et ne présentant qu’un unique pôle —
simple, en 0 —, la formule des résidus montre que, pour tout w ∈ R et pour tout R > 0,∫

ℓ+R

eiwz

z
dz = 2iπRes

Å
eiwz

z
, 0

ã
= 2iπ et

∫
ℓ−R

eiwz

z
dz = 0.

�Michel Plancherel, 1885–1967
�Evariste Galois, 1811–1832
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−R R−1 1

ℓ+R

ℓ−R

En paramétrant les deux demi-cercles, ces formules montrent que f(R,w) s’écrit de deux façons : pour tous
R > 0 et w ∈ R,

f(R,w) = 2iπ − i

∫ π

0

exp
(
iwReit

)
dt = i

∫ π

0

exp
(
iwRe−it

)
dt.

Une fois ces expressions acquises, on s’occupe de l’asymptotique, lorsque R tend vers l’infini, de f(R,w). Pour
tous w, t ∈ R et R > 0,

∣∣exp (iwReit
)∣∣ = expℜ

(
iwReit

)
= exp (−wR sin t). En particulier, lorsque R tend

vers +∞, exp
(
iwReit

)
tend vers 0 dès lors que w et sin t ont le même signe. On applique alors le théorème de

convergence dominée de Lebesgue aux intégrales ci-dessus, ce qui entrâıne que

lim
R→+∞

f(R,w) =


2iπ si w > 0

iπ si w = 0

0 si w < 0.

En combinant cette disjonction des cas avec la formule (22), on a démontré les égalités (21) attendues.

5.5 Un exemple de transformation conforme

Le théorème de transformation conforme de Riemann assure que tout ouvert connexe et simplement connexe
de C, qui ne soit ni vide ni C tout entier, est analytiquement difféomorphe (on dit aussi conforme) au disque
unité. Cerise sur le gâteau, on peut écrire des preuves constructives de cet éblouissant résultat. On en donne
ici un petit aperçu, sous la forme de l’étude d’une intégrale de Schwarz-Christoffel très particulière.

On note D le disque unité ouvert et D son adhérence topologique. On note aussi T l’enveloppe convexe du
triplet

{
1, j, j2

}
où j = exp

(
2iπ
3

)
, et T son intérieur topologique. L’objet de ce paragraphe consiste à donner

un difféomorphisme analytique explicite entre D et T .

La fonction S
Si le symbole 3

√
· désigne la racine cubique principale, la fonction z 7→ 1

3
√

(1−z3)2
est définie et holomorphe sur

l’ouvert U = C \ R où R est la réunion des trois demi-droites R = ([1,+∞[) ∪ (j[1,+∞[) ∪
(
j2[1,+∞[

)
.

1

U

On note S la fonction définie sur U par l’intégrale curviligne

S(z) =

∫
[0;z]

dz

3
»
(1− z3)

2
,

où le symbole [0 ; z] désigne n’importe quel chemin de U dont
l’origine est 0 et l’extrémité z. Puisque U est simplement connexe,
la fonction S est bien définie, l’intégrale curviligne ne dépendant pas
du chemin choisi. En outre, S est holomorphe : sur le connexe U ,

c’est l’unique primitive de z 7→
(
1− z3

)− 2
3 qui s’annule en 0.
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L’ouvert U est étoilé par rapport à l’origine. Pour tout z ∈ U , le calcul de S en utilisant la paramétrisation
standard du segment [0, z] — inclus dans U — mène à l’écriture

S(z) = z

∫ 1

0

dt

3
»
(1− t3z3)

2
, (23)

qui montre immédiatement que
∀z ∈ U, S(jz) = jS(z). (24)

En outre,

∀t ∈ [0, 1[, ∀z ∈ D,

∣∣∣∣∣ 1

(1− t3z3)
2
3

∣∣∣∣∣ = 1

|1− t3z3|
2
3

≤ 1

(1− t3)
2
3

;

puisque le dernier membre de cette inégalité est intégrable sur [0, 1], cette inégalité de domination montre que

lim
z→1
|z|≤1

S(z) =

∫ 1

0

dt

3
»

(1− t3)
2
=

1

3

∫ 1

0

t−
2
3 (1− t)−2/3dt =

1

3
B

Å
1

3
,
1

3

ã
≈ 1, 77

où B désigne la fonction Beta d’Euler� — changer de variable sous l’intégrale pour obtenir la deuxième égalité.
On note B cette limite. La formule (24) montre alors que S se prolonge par continuité à D par les formules

S(1) = B, S(j) = jB, S
(
j2
)
= j2B.

Comment S transforme le cercle unité
On note encore S le prolongement par continuité de S à U ∪

{
1, j, j2

}
qui vient d’ etre établi. On calcule l’image

par S du cercle unité ∂D.

Pour tout θ ∈
]
0, 2π

3

[
, on calcule l’angle au point S(1)

entre le point S
(
eiθ
)
et l’origine S(0) = 0, c’est-à-dire

l’argument du nombre complexe
S(eiθ)−S(1)

0−S(1) . Puisque

S(1) est un réel strictement positif, cet angle orienté de
vecteurs est aussi arg

(
S(1)− S

(
eiθ
))
.

0
1

eiθj

j2

−→
S

S(0) = 0
B = S(1)

S
(
eiθ
)

−π
6

On calcule S(1)−S
(
eiθ
)
. Puisque S(z) est aussi l’intégrale curviligne le long du segment [0, 1] suivi de l’arc de

cercle unité joignant 1 à eiθ, on obtient :

S(1)− S
(
eiθ
)
= −

∫ θ

0

ieitdt

(1− e3it)
2
3

.

Or, lorsque 0 < t ≤ θ < 2π
3 , il vient 1−e3it = −2ie 3it

2 sin 3t
2 = 2 sin 3t

2 e
i( 3t

2 −π
2 ), si bien que, puisque sin 3t

2 > 0, la

détermination principale de la racine cubique s’écrit
(
1− e3it

)− 2
3 = 1

3
√

2 sin 3t
2

ei(−t+π
3 ). En reportant cela dans

l’intégrale, on obtient

S(1)− S
(
eiθ
)
= e−

iπ
6

∫ θ

0

dt

3

»
2 sin 3t

2

.

Cette dernière intégrale étant un nombre réel strictement positif lorsque 0 < θ < 2π
3 , cela montre que l’angle

orienté entre les vecteurs S(0) − S(1) et S
(
eiθ
)
− S(1) a une mesure principale constante, égale à −π

6 — voir
une illustration sur le dessin ci-dessus.

�Célébrissime, B est la fonction B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)
.
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j

−→∼
S

jB
Si on ajoute à cela le fait que

∫ θ

0

dt

3

»
2 sin 3t

2

est une fonction stricte-

ment croissante de θ, on obtient que S induit un homéomorphisme
de l’arc de cercle (compact)

{
eiθ, 0 ≤ θ ≤ 2π

3

}
sur le segment

[B, jB]. La formule (24) permet de “faire tourner” ce résultat.
On obtient ainsi que, par restriction,

S induit un homéomorphisme du cercle ∂D
sur le triangle équilatéral ∂T .

Comment S transforme le disque unité
Il résulte du corollaire page 71 sur le nombre de zéros et de pôles d’une fonction méromorphe que, puisque S est
continue sur D et holomorphe dans D, pour tout w ∈ C, le nombre de solutions dans D de l’équation S(z) = w
égale

1

2iπ

∫
γ

S′(z)dz

S(z)− w

où le chemin γ : [0, 2π] → C, t 7→ eit est une paramétrisation du cercle unité parcouru une fois dans le sens
direct — a vrai dire, pour obtenir cela, il est prudent d’écrire la formule en intégrant sur des cercles de rayons
strictement inférieurs à 1, puis de passer à la limite en faisant tendre ces rayons vers 1. Or, il ressort de l’étude
ci-dessus que la composée S ◦γ est continue sur [0, 2π] et de classe C1 sur chacun des intervalles

]
0, 2π

3

[
,
]
2π
3 , 4π

3

[
et
]
4π
3 , 2π

[
. Autrement dit, S ◦ γ est encore un chemin de C. Toujours en vertu de ce qui précède, son support

est ∂T — parcouru une fois dans le sens direct. Il suffit alors d’écrire le changement de variable et de reconnâıtre
la formule de l’indice :

1

2iπ

∫
γ

S′(z)dz

S(z)− w
=

1

2iπ

∫ 2π

0

(S ◦ γ)′ (t)dt
S ◦ γ(t)− w

=
1

2iπ

∫
S◦γ

dz

z − w
= IndS◦γ(w).

Cela permet de montrer que S est injective sur D et que l’image de D par S est T tout entier. En effet, si
z0 ∈ D, alors le nombre de solutions dans D de l’équation f(z) = f (z0) est l’indice de S ◦ γ qui est 0 ou 1
puisque S ◦γ est un lacet simple qui parcourt le triangle ∂T dans le sens direct. Cela montre l’injectivité. Enfin,
si w ∈ T , le nombre de solutions dans D de l’équation f(z) = w est l’indice de w par rapport à S ◦ γ, qui
est 1 : cela démontre que T ⊆ S(D). L’inclusion inverse peut se faire par un argument de connexité comme
suit. L’image de D par S est un connexe de C qui contient 0 et est contenu dans le complémentaire de ∂T :
cette image est dans T . Ainsi, on a montré la surjectivité.

On a montré que S est une application holomorphe et bijective D → T . C’est donc un difféomorphisme
analytique entre D et T , comme le garantit la proposition de la page 55.

Conclusion

L’application de Schwarz-Christoffel S induit un difféomorphisme analytique entre D et T .

−→∼
S
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