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1 Le théoreme d’équivalence pour les fonctions holomorphes

Trois grands points de vue sur les fonctions complexes de la variable complexe s’averent étre équivalents : le
point de vue de la dérivation au sens complexe, celui du développement en séries entieres et enfin celui de la
formule (locale et circulaire) de Cauchy qui relie la valeur d’une fonction en un point & des intégrales curvilignes
sur des cercles entourant ledit point. Dans ce chapitre, on étudie séparément les trois aspects et on prouve
ensuite leur équivalence, qui fonde la définition et la puissance opératoire des fonctions holomorphes — dites
aussi analytiques complezes.

1.1 Dérivation au sens complexe

Dans tout ce texte, si ¢ € Z et si r > 0, on note
D(e,r)={z€C, |z—¢ <7}

le disque ouvert de centre ¢ et de rayon r et

D(c,r)={2€C, |z—c|<r}
son adhérence pour la topologie usuelle de C, qui est le disque fermé de centre c et de rayon r.

Exercice 1
A propos de la cohérence du vocabulaire : si r > 0, montrer que le disque ouvert de centre ¢ et de rayon r est
un ouvert de C dont I'adhérence est le disque fermé de centre c et de rayon 7.

1.1.1 Dériver au sens complexe

Définition (fonction dérivable au sens complexe)
Soient U un ouvert de C et f : U — C une application. Pour tout zg € U, on dit que f est dérivable au sens
compleze en zy ou dérivable (tout court) en zy lorsqu’il existe a € C tel que

f(z) = f(20) +a(z—20)+o0(z—20) (1)

lorsque z tend vers zy — le o est la notation petit o de Landau™. Lorsque f est dérivable au sens complexe en
tout point de U, on dit que f est dérivable au sens compleze sur U.

Exercice 2
Avec les notations de la définition, si f est dérivable en zp, alors il existe un unique nombre complexe a qui
vérifie (1).

Définition (fonction dérivée)

Avec les notations de la définition précédente, si f est dérivable en zg, I'unique nombre a qui vérifie (1) est
appelé nombre dérivé de f en zy ; on le note [’ (20). Lorsque f est dérivable sur U, lapplication [’ : U — C,
z — f'(2) est la fonction dérivée de f. On note aussi indifféremment

_4

= dz oF.

A noter

(i) Dans les conditions de la définition, f est dérivable en zy et admet a € C comme nombre dérivé en 2 si, et
seulement si

o ()= F ()
n o e

Autrement dit, Ve > 0, In > 0,Vz € U, z € D (20,n) = |f (2) — f(20) —a(z — 20)| < €|z — 20|

(ii) Bien str, toute fonction dérivable en un point est continue en ce point. Noter que cet énoncé, s’il est vrai, n’a
pas grand intérét : quel sens cela aurait-il de se poser la question de la dérivabilité en un point d’une application
non continue en ledit point ?

“Edmund Landau, 1877-1938
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Exemples

(i) Les regles opératoires de la dérivation des fonctions réelles de la variable réelle sont encore valides pour la
dérivation au sens complexe. Notamment, sans entrer dans le détail des notations évidentes, la dérivée d’une
fonction constante est la fonction nulle, (f +g) = f' + ¢, (f9) = fl'g+ fg', (fog) = (f'og) xg. En
particulier, toute fonction rationnelle est dérivable hors de ses poéles, avec les formules usuelles de dérivation.

(ii) Soit (fn),cn une suite de fonctions complexes dérivables sur un ouvert U de C. On suppose que A est une
partie de U sur laquelle la suite (f,), oy converge simplement vers une application g : A — C et sur laquelle la
suite (f}),cn converge uniformément. Alors g est dérivable en tout point de A et f, (z) tend vers g'(z) lorsque
n tend vers +oo.

Cette assertion s’étend bien str au cas des séries de fonctions. Dans ce cadre, on retiendra le cas des séries de
fonctions dérivables dont la série des dérivées converge normalement — donc uniformément — sur A.

Ces énoncés généralisent les théoremes standard de dérivation des limites (ou des sommes) de fonctions dérivables
de la variable réelle, dont les preuves s’adaptent immédiatement. En particulier, la convergence uniforme sur
tout compact de U de la suite des dérivées permet de conclure a la dérivabilité de la limite, puisque la dérivabilité
est une notion locale — prendre pour A n’importe quel compact de U, ou encore les éléments d’une suite de
compacts dont la réunion recouvre U.

Cela dit, on le verra plus bas, la dérivation des limites de fonctions dérivables au sens complexe fait 1'objet
d’énoncés dont les hypothéses sont plus faibles : il suffit que la suite de fonctions dérivables converge uni-
formément sur une partie A pour que la limite soit dérivable sur A et pour que la limite de la dérivée soit la
dérivée de la limite. L’ingrédient essentiel de cette simplification des hypotheses est la formule de Cauchy™.

(o]
(iii) Une fonction f : z — Z an 2" définie par une série entiére de rayon R > 0 est dérivable sur son disque de
n=0 -
convergence D (0, R), et la dérivation se fait terme a terme : f'(z) = Z(n—i— 1)ap+12", pour tout z € D (0, R).
n=0

En effet, la série des dérivées est une série entiere de méme rayon R. Elle converge donc normalement sur tout
disque fermé contenu dans D (0, R) : on peut appliquer le théoréme de dérivation des séries au voisinage de
chaque point de D (0, R), puisque tout point de D (0, R) est contenu dans un disque fermé D (0,7), 0 < r < R,
lui-méme contenu dans D (0, R) — on pourra se référer au mémento sur les séries entieres.

Exercice 3
Démontrer avec soin toutes les assertions ci-dessus.

Proposition (’exponentielle)
La fonction exponentielle exp : C — C, définie par la somme de la série entiére de rayon infini

o0 n

exp(z) =€ = Z %

n=0
est dérivable au sens complexe, et exp’(z) = exp(z), pour tout z € C.

PREUVE. Elle est dérivable au sens complexe en tant que fonction entiere — une fonction entiére est une
fonction définie par une série entiere de rayon infini. Sa dérivée, qui se calcule donc terme & terme, est exp’(z) =

Yoo y(n+1) (n+1)'2 = exp(z), selon le (iii) des Ezemples ci-dessus. [Lire, pour davantage de détails, les toutes
premieres pages du livre Real and complex analysis de Walter Rudin, qui sont entierement et brillamment
consacrées a I’exponentielle. | [ |
Exemples

Les fonctions trigonométriques et trigonométriques hyperboliques sont aussi dérivables sur C. Elles vérifient les
formules valides pour tout z € C :

— (oo}
z ) def ez —e z 22n+1
et sinhz = =

def e* +e >
coshz = E
'7
TL:O 2 n=0 (2n+ ]')

“ Augustin-Louis Cauchy, 1789-1857
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) » oo
cos 2 def ezz+e 1z _ (_1)nz2n ot sins def e _ n 2n+1
2 Z (2n)! Z 2n+1 ’
n=0
cosh’ = sinh, sinh’ = cosh, cos’ = —sin et sin’ = cos.

Exercice 4
Démontrer les célebres formules valables pour tous x,y € C :

cosh? z — sinh?z = 1 cos?z +sinz =1
cosh(z + y) = cosh z cosh y + sinh z sinh y cos(z +y) = cosxzcosy —sinzsiny
sinh(x 4 y) = sinh « cosh y + cosh x sinh y sin(x + y) = sinx cosy + cos x siny

En inventer d’autres — jouer sur la parité de ces fonctions, écrire coshnz en fonction de coshx et de sinhx

lorsque n € N, trouver des formules faisant intervenir tanh z = s’gfﬁz et tan z = 2%, etc. On pourra économiser
sa peine en notant que Vz € C, cos z = cosh(iz) et sinz = —isinh(iz).

1.1.2 Eléments de connexité

Exercice 5

Soient U = D (—2,1)UD (2,1) et f: U — C définie par : Vz € D(—=2,1), f(z) =0et Vz € D(2,1), f(z)=1.
Dessiner U. Montrer que f est continue et méme dérivable, et que f’(z) = 0, pour tout z € U — pourtant, f
n’est pas constante.

Définition (connexité d’une partie de C)

Soit A une partie de C. On dit que A est conneze lorsque A ne rencontre pas deux ouverts disjoints et non
vides dans la réunion desquels il est inclus. Autrement dit, A est connexe si, et seulement si pour tous U,V
ouverts non vides de C,

(AQUUVetUﬂV:(Z)):>(AgUouAgV>.

A noter

C’est la formalisation de 'idée d’une partie “en un seul morceau”. Ce que ’on dit ici sur la connexité est loin de
faire le tour de la notion. Il s’agit d’introduire le concept et d’en dégager les premiers mécanismes opératoires.
En particulier, la notion de topologie induite, qui permet pourtant de bien asseoir la connexité et de simplifier
les raisonnements, est absente du présent discours.

Exemples

(i) L’ensemble vide et C sont connexes (sans blague !).
(ii) L’union D (—2,1) U D (2,1) n’est pas connexe.
Proposition (caractérisation de la connexité)

Soit A C C. Les assertions suivantes sont équivalentes.
(i) A est connexe

(ii) Toute application continue A — {0,1} est constante.

PREUVE. Si A est vide, il n’y a pas grand chose & montrer ; on suppose que A n’est pas vide.

(i) = (i1), par contraposition : on suppose qu'une application continue f : A — {0, 1} n’est pas constante. On
note U = f~1({0}) et V = f=1({1}) ; ce sont deux parties disjointes de C dont la réunion contient A — et
méme égale A. Puisque f n’est pas constante, U et V sont non vides et A n’est inclus ni dans U ni dans V.
Par ailleurs, comme U = f~ (D (0,4)) et V.= f~1 (D (1,1)), en tant qu'images inverses d’ouverts par une
application continue, U et V sont deux ouverts de C. On a trouvé deux ouverts non vides disjoints qui, chacun,
rencontrent A : on a montré que A n’est pas connexe.

(#4) = (4) On suppose que toute application continue A — {0,1} est constante. Soient U et V' deux ouverts
disjoints non vides de C tels que A C U UV. Soit f: A — {0,1} application définie par f(a) =0sia € U
et f(a) =1sia €V ;noter que cette application n’est bien définie que parce que U et V sont disjoints. On
montre que f est continue sur A. Soit a € A. Puisque A C U UV, on suppose pour commencer que a € U.
Comme U est ouvert, soit r > 0 tel que D (a,r) C U. Alors, f(z) = 0 pour tout z € D (a,7) N A ; en particulier,
|f(2) — f(a)] = 0 < e pour tout € > 0 (!). Cela montre que f est continue en a. De la méme fagon, si a € V,
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on montre que f est continue en a : on a montré que f est continue sur A. En appliquant ’hypothése, on en
déduit que f est constante, ce qui montre que A CU ou A C V. [ |

Exercice 6
Soit F' une partie finie de C ayant au moins deux éléments. Montrer que A est connexe si, et seulement si toute
application continue A — F' est constante.

Exercice 7
Montrer que si U et V sont deux parties connexes non disjointes, alors U U V est encore connexe.

Corollaire (I’intervalle [0, 1] est connexe)
L’intervalle [0,1] est connexe.

PrREUVE. En effet, soit f : [0,1] — {0,1} une application continue. Quitte & remplacer f par 1 — f, on
peut supposer que f(0) = 0. Alors, {z € [0,1], f(z) =0} est une partie non vide de R : elle admet une borne
supérieure. On note m = sup {z € [0,1], f(z) = 0}. Puisque f est continue, f(m) = 0. On suppose que m < 1 ;
alors, f(x) = 1 pour tout « € Jm, 1] ce qui entraine, toujours par continuité de f, que f(m) = 1 empéchant
Phypotheése m < 1 de tenir. Ainsi, m = 1 et f est la fonction constante égale & 0 sur [0,1] : on a montré que
[0, 1] est connexe. [ |

Proposition (théoréme des valeurs intermédiaires)
Si A C C est connexe et si f: A — C est continue, alors f(A) est conneze.

PREUVE. Soit ¢: f(A) — {0,1} une application continue. Alors, co f : A — {0,1} est aussi continue, donc
constante puisque A est connexe. Donc c¢ est constante. |

Le slogan : [image continue d’un connexe est encore conneze.

Exercice 8
Pourquoi appeler ce théoreme “théoréeme des valeurs intermédiaires” alors qu’un théoréme du méme nom est
connu depuis le lycée, dont ’énoncé ne ressemble pas tout a fait a celui-ci 7

Définition (segment de C) Sia,b € C, le segment [a,b] est [a,b] = {(1 —t)a +tb, t € [0,1]}.

A noter

Dans le plan complexe, [a, b] est la portion de droite (réelle) comprise
entre a et b, ces deux points étant inclus. On peut voir le point
(1 —t)a+tb comme le barycentre de a et b affecté des poids respectifs

1 —t et ¢t. Considérer par exemple le milieu de [a, b], atteint lorsque
t=1. €
2

segment [e‘ST , e%]
Exercice 9
Définir, dans la méme veine, ce que seraient |a, b[, a, b] et [a, b[, lorsque a # b.

Exercice 10
Tout segment est connexe — le voir comme image continue du connexe [0, 1].

Définition (partie convexe de C)
Soit C' C C. On dit que C est convezxe lorsque Vz,y € C,

z,y € C = [x,y] C C.

A noter

C’est I'idée d’une partie “sans concavité”. Une métaphore : A est convexe lorsque de tout point de A, on peut
voir tous les points de A. Dans les dessins sans paroles ci-dessous, un haricot n’est pas convexe, une couronne
non plus, deux disques disjoints non plus.

0RO o

N. Pouyanne, UVSQ 2026, LSMA621 5



Exercice 11
Les disques du plan complexe sont convexes.

Définition (partie étoilée de C)
Soit E C C. On dit que E est étoilée lorsqu’il existe ¢ € E tel que Vz € C,

x€FE=[c,z] CE.

A noter

Le vocabulaire parle de lui-méme : il existe un point de £ d’ou 'on voit tous les points de E. On appellera un
tel point un centre de 1’étoilé. Voici quelques dessins sans paroles d’étoilés de C. Bien str, tout convexe non
vide est étoilé.

Proposition (Les disques, les convexes et les étoilés sont connexes)
(i) Tout disque de C est conneze.
(ii) Soit C une partie conveze de C. Alors, C est connexze.

(iii) Soit E une partie étoilée de C. Alors, E est conneze.

PREUVE. Il suffit de montrer que tout étoilé est connexe, puisque les disques sont convexes et les convexes sont
étoilés. Soit ainsi F une partie étoilée et ¢ un centre de E, c’est-a-dire une point de E qui vérifie : Vo € E,
[c,z] C E. Soit aussi f : E — {0, 1} une application continue. Quitte a remplacer f par 1— f, on peut supposer
que f(c) =0. Soit x € E. La restriction de f au segment [c, z] est encore continue ; puisque [c, z] est connexe,
alors f est constante sur ce segment : f(z) = f(c) = 0. Ainsi, f(z) = 0 pour tout € E : on a montré que F
est connexe. |

Proposition (fonctions a dérivée nulle)
Soient U un ouvert connexe de C et f : U — C une application dérivable. On suppose que f'(z) =0, pour tout
z € C. Alors, f est constante sur U.

PREUVE. (1) On montre d’abord que pour tout x € U, il existe r > 0 tel que f(z) = f(z) pour tout z € D (z,r).
Soit # € U. Puisque U est ouvert, soit » > 0 tel que D (x,r) C U. Soit alors y € D (x,r). L’application
v:[0,1] = C, t — f((1 —1t)z + ty) est une fonction dérivable de la variable réelle (a valeurs complexes), bien
définie puisque D (z,r) est un convexe inclus dans U. En outre, ¢'(t) = (y — 2)f' ((1 — t)z + ty) = 0, pour tout
t €[0,1]. Alors, en tant que fonction & dérivée nulle sur un intervalle, ¢ est constante — c’est une conséquence
de la célebre inégalité des accroissements finis. En particulier, ¢(0) = (1), ce qui s’écrit encore f(z) = f(y).
On a montré que f est constante sur D (z, 7).

(@) Fin de la preuve. Si U est vide, c’est idiot. On suppose que U est non vide ; soit x € U. Soient alors
V=A{zeU, f(z)=f(x)}et W={z€U, f(2)# f(z)}. Alors, V n’est pas vide (il contient ) et U = VUW.

Comme [ est localement constante — c’est ce qu’on vient de montrer en (1) —, V est ouvert. Par ailleurs,
puisque f est continue (elle est méme dérivable), W = f=1(C\ {f(x)}) est également ouvert. Comme U est
connexe, cela impose que W = (), c’est-a-dire que f est constante, égale & f(x) sur U. [ ]
A noter

Une application f : U — C est dite localement constante lorsque pour tout u € U, il existe r > 0 tel que f
soit constante — nécessairement égale & f(u) — sur U N D (u,r). Une fagon de décrire la preuve : on montre
qu’une application de dérivée nulle est localement constante, ce qui implique qu’elle est constante puisque U
est connexe.

Exercice 12 (composantes connexes)
Soit A une partie de C. On définit sur A la relation binaire suivante : a ~ b si, et seulement s’il existe une
partie connexe de A qui contienne a la fois a et b.
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(i) Montrer que ~ est une relation d’équivalence sur A.

(ii) Les classes d’équivalences de ~ sont appelées les composantes connexes de A. Les composantes connexes
de A formalisent 'idée des “morceaux” de A. Montrer que si F est un ensemble, toute application A — F
localement constante sur A est constante sur chaque composante connexe de A.

(iii) Montrer qu’'une application A — {0, 1} est localement constante si, et seulement si elle est continue.

1.2 Formule de Cauchy
1.2.1 Chemins et lacets, support

Définition (chemin et lacet)

Un chemin est une application continue v : [a, b] — C, de classe C! par morceaux et dont la dérivée est bornée, ot
a et b sont des nombres réels, a < b. Autrement dit, une telle application « est un chemin lorsqu’elle est continue
et lorsqu’il existe un entier naturel n et des nombres réels ¢, ...cp41 telsquea =cop <1 < -+ < ¢y < g1 = b,
la restriction de 7 & chaque intervalle ey, cx41[ est continliment dérivable et il existe M > 0 tel que |y (¢)| < M,
pour tout ¢t € [a,b] \ {co,...cnr1}. Les nombres vy(a) et v(b) sont les bouts du chemin ; §’il faut détailler, on
dira que 7(a) est origine du chemin et y(b) son extrémité.

Avec ces notations, lorsque «y(a) = 7(b), on dit que le chemin est un lacet. Autrement dit, un lacet est un
chemin dont l'origine et I'extrémité sont confondues.

Le support d’un chemin est son image ; on le note Supp(vy) = v ([a, b]).

A noter

(i) L’hypothese sur le caractére borné de la dérivée d’un chemin assure qu'un chemin est un arc rectifiable, ce
qui signifie qu’il a une longueur finie. Plus précisément, avec les notations de la définition, lorsque v est de
classe C!, on définit la longueur de v comme étant le nombre

b
Long(7) = / ! (8)] dt. ()

Dans le cas général des chemins, avec les notations de la définition, la longueur de ~y est

st -3 |

Bien siir, on a toujours la majoration grossiere Long(y) < M (b — a).

Ck+1

A (1) dt.

k

(ii) De facon plus générale, un chemin de l'espace euclidien R%, d > 1, est une application continue [a,b] — R?,

b
de classe C! par morceaux et a dérivée bornée. Sa longueur est alors / 17 ()], dt.
a

Exercice 13

Montrer, en approchant un arc par des lignes polygonales et en utilisant 'intégrale au sens de Riemann®, que
Pintégrale de la formule (2) correspond bien & ce que l'on attend de la longueur d’un chemin (exercice long, &
documenter & partir d’un livre ou d’un autre texte de référence s'il le faut).

Exemples

(i) Cercles et arcs de cercles
Sice Cetsir>0,lecercle de centre ¢ et de rayon r est {z € C, |z — ¢| = r}. Un paramétrage du “cercle de
centre ¢, de rayon r, parcouru une fois dans le sens direct” est le chemin (c’est un lacet)

C(e,r)|: [0,2nr] — C

t — ¢+ ret.

(3)

De facon générale, si 61 < 0o, le chemin [01,0:] — C, t — c + re'’ est un paramétrage de I'arc de cercle de
centre ¢ et de rayon r compris entre les angles (orientés) 67 et 2, parcouru dans le sens direct.

“Bernhard Riemann, 18261866
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Les lacets suivants ont le méme support :

(a) t € [0,27] = ¢+ re~® qui est le “cercle de centre ¢, de rayon r, parcouru une fois dans le sens indirect”
(b) t € [0,47] — ¢+ re't qui est le “cercle de centre ¢, de rayon r, parcouru deux fois dans le sens direct”
(ii) Segments

Si u,v € C, le segment [u,v], on 'a vu, est {(1 —¢)u + tv, ¢ € [0,1]}. Un paramétrage du “segment d’origine u
et d’extrémité v” est le chemin

S(u,v)|: [0,1] — C
t — (lI—-thuttv=u+tv—u).

(4)

De la méme fagon, le chemin S(v,u) est un paramétrage du “segment d’origine v et d’extrémité u”.

(iil) Un paramétrage du carré unité parcouru une fois dans le sens direct est le chemin + : [0,4] — C défini par :

tsi 0<t<1
T4i(t—1) si 1<t<2

t) =
) 14i—(t—2) si 2<t<3
i—i(t—3) si 3<t<4
(iv) Sans parole.
c+re't i 1+
+
cC—7T
—)—
cHre’ 0 > 1

Exercice 14
Avec la notion (définitive) de longueur établie au (i) du A noter de la page 7, calculer le périmetre d’un disque
de rayon r.

Exercice 15

Exprimer la longueur de ’ellipse de grand axe a et de petit axe b, ol 0 < b < a, sous la forme d’une intégrale.
Cette ellipse, lorsqu’elle a l'origine pour centre et lorsque ses axes sont paralleles aux axes de coordonnées, est

2 2 . . . . .
{(x, Y), Ht+ = 1}‘ Un paramétrage de cette ellipse “parcourue une fois dans le sens direct” en est le chemin
t € [0,27] — acost + ibsint.
27 5
Une forme possible de ’écriture de cette longueur est a/ V1 —e2cos?2tdtone=4/1— 2—2 est I’excentricité de l’ellipse. Ne pas chercher,

lorsque a # b, a calculer cette intégrale en cherchant une primitive de 'intégrand qui s’exprimerait & I’aide de fonctions usuelles. Une telle
primitive n’existe pas, c’est un théoréme qui dépasse le cadre de ce cours. Dans le jargon consacré, on tombe sur une intégrale elliptique
(c’est malin !).

Exercice 16

Si r > 0, calculer la longueur de la portion de parabole d’équation y = x
0 et  (petit exercice de calcul de primitives).

2 comprise entre les points d’abscisses
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Exercice 17

Calculer la longueur de la célebre chainette, graphe de ’application
[—a,a] - R,  — rcosh (%) ou a,r > 0. La chalnette est, selon
le modele étudié dans le courant du XVII® et devenu standard, la
courbe que suit un cable pendu par ses extrémités et soumis a son
seul propre poids — le parametre r est une constante qui dépend
des caractéristiques physiques du cable, on voit ce que représente a.
Dans le dessin ci-contre, a = 4 et r = 2. En pointillés, est dessiné
le graphe de la parabole passant par les bouts et le sommet de
la chainette. On a pu croire un temps, a tort, dans ’histoire des
sciences, avant d’avoir développé le calcul infinitésimal, que le cable
prenait la forme de cette parabole. 4 0 !

Définition (chemins équivalents, changement de paramétrage)

Soient g : [a,b] = C et 77 : [¢,d] = C deux chemins. On dit que 7o et 1 sont équivalents (on ajoute parfois et
de méme orientation) lorsqu’il existe un C*-difféomorphisme ¢ : [a,b] — [c,d] croissant tel que 79 = 71 0 . On
dit parfois que ¢ est un changement (croissant) de parametre dans le chemin 7.

A noter

(i) Un C!-diffSomorphisme entre [a, b] et [c, d] est une application de classe C!, bijective, dont la réciproque est
également de classe C1. Une application ¢ : [a,b] — [c, d] surjective, strictement croissante et de classe C! est
un Cl-difféomorphisme entre [a,b] et [c,d] des lors que sa dérivée est strictement positive sur [a,b]. Dans le
contexte de la définition précédente, sa réciproque peut étre vue comme un changement de parametre dans ~g.

(i) Cela définit une relation d’équivalence sur I’ensemble des chemins de C.

(iii) Deux chemins équivalents ont le méme support. Mieux que cela, en termes cinématiques, deux chemins
équivalents parcourent leur support commun en passant et repassant par les mémes endroits et dans le méme
sens, mais a des vitesses éventuellement différentes.

(iv) Dans la définition, la croissance sert seulement & assurer que 7 et v; ont la méme origine et la méme
extrémité, tout en n’écrivant les intervalles de départ des chemins que sous le forme [a,b] avec a < b. Par
exemple, les chemins 7 : [a,b] — C et ¢t € [a,b] — 7 (a+b—1t) ne sont en général pas équivalents puisqu’ils
échangent leurs origines et leurs extrémités.

Définition (chemin standard)
Un chemin standard est un chemin dont I'intervalle de départ est [0, 1].

Définition (version standard d’un chemin)

On suppose a < b. En composant un chemin v : [a, b] — C par la paramétrisation standard S(a, b) : [0,1] — [a, b],
t — (1 —t)a + tb du segment [a,b] qui est un C!-difféomorphisme croissant, on obtient le chemin v o S(a,b)
paramétré par [0, 1] qui est la version standard de ~.

Définition (concaténation des chemins)

(i) (les intervalles de définitions s’aboutent)
Soient 7 : [a,b] = C et 41 = [b,¢] = C deux chemins. On suppose que l'extrémité de vy égale l'origine de 1,
assavoir vo(b) = v1(b). Le chemin concaténé de vy et 1 est le chemin

Yoy1: [a, ] — C

; Y() st a<t<b
m(t) st b<t<ec

(ii) (situation générale)

Soient 7 : [a,b] = C et 71 = [¢,d] = C deux chemins. On suppose que l'extrémité de vy égale l'origine de vy,
savoir vo(b) = v1(c). La concaténation de o et 1 est le chemin concaténé de 7o et du chemin [b,b+d—c] — C,
t— v (t+c—0b) ; on note encore Y71 .

Exercice 18 L’application 7y, est bien un chemin de C.
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A noter
(i) Le chemin ~y7y; est la formalisation de 'idée : on parcourt vy, puis 1, dans cet ordre.
(ii) Si 79, 71 et y2 sont des chemins dont les bouts sont compatibles — dans un sens évident —, on a

I’“associativité” (vo71)v2 = Yo (7172). On note alors yoy1y2 ce chemin, que l'on pourrait aussi définir di-
rectement, sur le mode de la définition de g1, en faisant une disjonction de trois cas selon la valeur de ¢.

Exercice 19

Ecrire explicitement une paramétrisation de la concaténation vpy; de deux chemins 7g : [a,b] — C et ;1 :
[e,d] = C tels que vo(b) = ~1(c).

Lemme (version standard du concaténé de deux chemins standard)

Soient v et v1 deux chemins standard, tels que yo(1) = v1(0). Alors, la version standard du concaténé ~voy1 est
Uapplication
v: [0,1] — C

Y (2t) si0<t <4
t —

v (2t —1) siz <t<L

1
2

PrREUVE. Il s’agit de concaténer le chemin ~, : [0,1] — C et le chemin 77 : [1,2] = C, ¢t — 1 (¢t — 1), puis de
standardiser y977 : [0,2] — C. Cette derniére standardisation revient & composer par S(0,2) : t — 2t. ]

1.2.2 Homotopie des chemins

C’est une notion importante pour les affaires de fonctions holomorphes, qui ne sont pas encore définies a ce
point mais qui font 'objet de tout le chapitre. Ce que la définition formalise, c’est que deux chemins dans une
partie de C sont homotopes lorsqu’on peut déformer contintiment I'un sur 'autre en restant dans la partie et
en gardant les bouts fixes.

Définition (chemins homotopes)

(i) (Chemins standard)

Soient A une partie de C et vp,71 : [0, 1] = A deux chemins dont le support est dans A et ayant les mémes bouts
— autrement dit, v9(0) = v1(0) et v9(1) = 71(1). On dit que vy et 71 sont A-homotopes ou encore homotopes
dans A lorsqu’il existe une application continue H : [0,1]? — A telle que :

1) vt €10,1], H(0,t) = v (t) — le chemin de départ H(0, ) est v

2) Vt € [0,1], H(1,t) = v1(¢t) — le chemin d’arrivée H(1,-) est v1

3) Vs € [0,1], H(s,0) = v(0) = 1(0) et H(s,1) = (1) = 71(1) — tous les “chemins” H(s,.) ont la méme
origine et la méme extrémité.

(i) (Cas général)

Deux chemins quelconques de A sont dits A-homotopes lorsque leurs versions standard le sont.

A noter

(i) Lorsqu’elle existe, une telle application H est une (A-)homotopie entre les chemins vy et ;.

(ii) Les guillemets autour du mot chemin dans le 3) de la définition viennent du fait qu’on ne suppose pas que
les applications t — H(s,t), s €]0, 1] soient de classe C' par morceaux.

(iii) On peut se représenter les chemins H(s,-) comme des déformations continues de vy. A ce titre, dans la
notation H(s,t), on peut voir s comme étant la variable de déformation (des chemins), la variable ¢ étant la
variable de paramétrisation (des chemins déformés).

Exemples

(i) Dans C, on considere les deux chemins vy et y; respectivement définis sur [0, 1] par : pour tout ¢ € [0, 1],

(t) = e et y(t) ="
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Leurs supports sont respectivement I'hémicercle (unité) nord et ’hémicercle

sud. Les chemins v et 7, ont tous les deux 1 pour origine et —1 = e~ " Jo
pour extrémité. En outre,.ils sont C-homotopes. Par exemple, 'application 1 1
H(s,t) = (1 — s)e™ + se~ " est une C-homotopie entre les chemins o et v,
— pour la construire, on a simplement pris pour H (s, t) le barycentre de ~yo(¢) o
et de 1 (t) affecté des poids respectifs 1 — s et s.

En revanche, H ainsi définie n’est pas une C\ {0}-homotopie entre les chemins ~, et 1, puisque H (%, %) =0:
le chemin H (3,-) passe par lorigine. A vrai dire, les chemins 7o et 71 ne sont pas homotopes dans C\ {0}. On
aura une argumentation tres simple de cela une fois I'intégration des fonctions holomorphes le long de chemins
mise en place. Cette non-homotopie formalise 'idée que pour déformer contintiment le demi-cercle nord sur le

demi-cercle sud en fixant ’est et 'ouest, on doit passer par 'origine a un moment.

(ii) On note Q(0, 1) le lacet standard qui paramétrise le carré {z € C, |Rz|+ |Sz| = 1} parcouru une fois dans
le sens direct & partir de 1, en concaténant les segments S(1,4), S(i, —1), S(—1,—i) et S(—i,1) dans cet ordre
— notation (4). On note aussi C'S(0,1) le chemin standardisé du cercle C'(0,1). Autrement dit, pour tout
t €10,1],

1+4t(i—1) si 0<t<1/4

i+4(t—1)(-1—i) si 1/4<t<1/2

—1+4(t—3)(—i+1) si 1/2<t<3/4 1
—i+4(t—3)(1+4) si 3/4<t<1

Q(0,1)(t) =

et CS(0,1)(t) = e,
Alors, Papplication H = [0,1]?> — C définie par

V(s t), H(s,t) = (1 — 5)Q(0,1)(t) + sC'S(0,1)

est une C-homotopie entre le carré Q(0, 1) et le cercle C'S(0, 1).

Dans le jargon ordinaire, lorsqu’il n’y a pas d’ambiguité, on dira abusivement que le cercle et le carré sont
homotopes, sans expliciter les détails techniques ci-dessus qui, tout a la fois, apportent un sens précis et une
preuve a l'assertion.

Par ailleurs, si D est n’importe que sous-ensemble de I’ “intérieur” du carré {z € C, |Rz|+ |Sz| < 1}, le raison-
nement ci-dessus montre que le cercle et le carré sont aussi C \ D-homotopes.

Exercice 20

Montrer que le graphe de n’importe quelle fonction f : [a,b] — R de classe C! par morceaux et vérifiant
f(a) = f(b) = 0 est homotope dans C (ou dans R?) au segment [a, b] — noter, dans cet énoncé, qu’en 1’absence
d’ambiguité du contexte, on étend abusivement la notion d’homotopie de deux chemins a celle de leurs supports.

Proposition (les chemins constants sont homotopiquement neutres pour la concaténation)
Soient A une partie de C et v un chemin d’origine u et d’extrémité v. On note ¢, : [0,1] = A, t — u le lacet
(standard) constant égal & u. Alors, les chemins v et les concaténés ¢,y et yc, sont tous homotopes.

PREUVE. On peut supposer que 7 est un chemin standard. Alors, la version standard du concaténé ¢,y est
application [0,1] — A, ¢t — usi0 <t < 1 outrs y(2t—1)si 3 <t <1 et on vérifie aisément que 'application
t

A

F: [0,1]? — A

usiOStS%

(s,t) +—

y(&2) sig<t<1

est une A-homotopie de v vers ¢,y. Dans la zone grisée
du dessin, ’homotopie F' est constante égale a u. s

Le fait que v et 7y¢, soient homotopes est du méme acabit. [ ]
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Proposition (un aller-retour est homotope & zéro)

Soient A une partie de C et 7y : [a,b] = A un chemin de A, d’origine u = y(a) et d’extrémité v = ~y(b). On note
v~ Dapplication t € [a,b] — y(a +b—t). Alors,

(i) v~ est un chemin de A d’origine v et d’extrémité u, que I’'on nomme chemin inverse de v ;

1

(ii) le concaténé vy~ est un lacet homotope au lacet (standard) constant ¢, : [0,1] = A, t — u ;

(iii) le concaténé vy~ 17 est un lacet homotope au lacet (standard) constant c, : [0,1] — A, t > v.
PREUVE. (i) est immédiat. Pour (ii) et (iii), on peut supposer que v est standard, c’est-a-dire que [a, b] =
Alors, y71(t) = y(1 — t), pour tout ¢t € [0,1]. La version standard de yy~1 est ¢t — ~(2t) si 0 < t <
t— (2 —2t) si % <t <1 et on vérifie aisément que I’application

)
o =
[=Hra

F: [0,1]? — A

(s,t) +— y(1—s)si iz <t < fs

est une A-homotopie de yy~! vers c,,. > S

Le fait que v~ !+ soit homotope & ¢, est du méme acabit. u

Exercice 21

Soit A une partie de C et soient u et v dans A. Dans ’ensemble de chemins (standards) de A d’origine u et
d’extrémité v, montrer que la relation de A-homotopie est une relation d’équivalence. Pour cette relation, la
classe d’un chemin est la classe d’homotopie dudit chemin.

Proposition (I’homotopie est compatible avec la concaténation)

Soient yo, Y4, 71 €t ¥y quatre chemins standard d’une partie A de C. On suppose que
(i) Yo et v, sont A-homotopes et que y1 et vy sont A-homotopes ;

(i) Vextrémité commune de o et | égale lorigine commune de 1 et 7}.

Alors, les concaténés ~oy1 et vy sont A-homotopes.

PREUVE. Soient Fy : [0,1]?> — A une homotopie de 7y vers v et F : [0,1]> — A une homotopie de v; vers ;.
Alors, on vérifie immédiatement que ’application

F: 0,12 — A
Fy(s,2t) si0 <t <

(s,t) +— {

Fi(s,2t—1)si 5 <t<1

1
2
est une A-homotopie de ~vyy1 vers 7{vi, sa continuité en un point de la forme (s, %) venant du fait que
|F (s,3) — F(s,t)|, qui égalle |Fo (s, %) — Fy(s,t)] sit € [0, %] ou |Fy (s, %) — Fl(s,t).’ sit € [%, 1], tenq toujours
vers 0 lorsque ¢ tend vers 5 — exprimer cela “avec des epsilons” pour une traduction parfaitement rigoureuse
du “tend toujours vers 0” ci-dessus. [ |

Exemple (concaténer un aller-retour ne change pas la classe d’homotopie)
Soient A une partie de C, £ un lacet de A d’origine u et v un chemin de A d’origine u. On note y~! le chemin
inverse de . Alors, les lacets £ et fyy~! sont A-homotopes.

En effet, vy~! est homotope au lacet constant u. Concaténer un lacet constant ne change pas la classe

d’homotopie. Sans paroles :

‘N‘puls‘N‘N‘N
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Définition (lacet homotope a zéro)
Soient A une partie de C et v un lacet de A, d’origine u. On dit que v est A-homotope a zéro lorsqu’il est
A-homotope au lacet constant ¢, : [0,1] = A, t — u.

Exercice 22
Soient A une partie de C et v un lacet standard de A, d’origine u. Si 7 € [0,1] et si v = (7), on note v, le
“méme lacet v dont on a décalé l'origine en v”, c’est-a-dire le lacet

v [0,1]] — A
t — y{t+71})

ou {z} = x — || désigne la partie fractionnaire du réel = (et |z] sa partie entiére). Montrer que pour tout
T € [0,1], v est homotope & zéro si, et seulement si v, est.

Autrement dit, | dire qu’un lacet est homotope a zéro ne dépend pas de 'origine dudit lacet

__________________________________________

Sans paroles

1.2.3 Intégrale le long d’un chemin

Définition (intégrale d’une fonction le long d’un chemin)
Soient v : [a,b] — C un chemin de classe C! de C et f : Supp(y) — C une application continue. L’intégrale

(curviligne) de f le long de ~y est le nombre / f(2)dz défini par

b
/ f(2)dz = / £ (1) X A (1)t (5)

On note aussi parfois /

v
comme dans la définition générale qu’on a prise, on fait la somme des intégrales sur les intervalles sur lesquels

7 est de classe C'. Avec les notations de la définition d’un chemin, si on note v, la restriction de v & Iintervalle
[ek, Ch+1], cela s’écrit

f(z)dz = 7{ f(z)dz = / f. Lorsque le chemin est seulement de classe C! par morceaux,
¥ ¥

n Ck41

[1@az=3 [ =3 [ som) <@
Rl k=0 Ck

k=07 "k
Cela dit, si on se place dans I'obédience de I'intégrale de Lebesgue®, les points en lesquels v n’est pas dérivable

forment un ensemble de mesure nulle, rendant la formule (5) toujours valide.

Exemple fondamental
Pour tout r > 0 et pour tout a € C, on note C (a,r) le cercle de centre a et de rayon r parcouru une fois dans
le sens direct selon la notation (3). Alors,

“Henri-Léon Lebesgue, 1875-1941
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d
/ Y _oir
c(,r) %

et

Vn e Z\ {-1}, / 2"dz =0

C(0,r)
. . ) dz o it~ 1 it ; )
Pour montrer cela, il suffit de faire le calcul : d’une part — = (re ) x rie’"dt = 2im et d’autre
c(,r) ? 0

2 o pi(n+1)t 27
part, si n # —1, / Z"dz = / (re') " ire'tdt = ir”“/ ettt gy — gyt {} =0.
c(0,r) 0 0 n+l |/

De fagon (& peine) plus générale,

/ dz = % et / (z—a)"dz=0, VneZ\ {-1}.
c C(a,r)

(a,r) zZ—a

Exemple (aller-retour sur un segment)
Soient U un ouvert de C et f : U — C une application continue. Si [u,v] C U, alors, avec les notations (4)

/ f(z)dz—l—/ f(z)dz =0
S(u,v) S(v,u)

En effet, faisant le changement de variable s = 1 — ¢, on obtient fol F((1 =t)u+ to)dt = fol F((1 = s)v+ su)ds
et on reconnait de part et d’autre de 1’égalité les intégrales curvilignes de 1’énoncé, aux facteurs u — v pres.

Proposition (intégrale curviligne et concaténation)
Si une fonction f: C — C est continue et si vy et y1 sont deux chemins que l’on peut concaténer, alors

F(2)dz = L f(z)dz—i—/% f(2)dz

YoV

PREUVE. C’est immédiat a partir de la définition de la concaténation de deux chemins. [ ]

Proposition (invariance par équivalence de chemins)
Soit f : C — C une fonction continue. Soient a,b,c,d des nombres réels, v : [c,d] — C un chemin et
¢ : a,b] — [e,d] une application de classe C* strictement croissante et surjective. Alors, les intégrales de f le

long des chemins v et v o ¢ sont égales :
[seas= [ s
v Yoy

PREUVE. C’est le changement de variable sous l'intégrale ordinaire, ou encore le théoreme de dérivation des
fonctions composées : lorsque v est de classe C!,

d b
/ f(2)dz = / £ (1) Y (B)dt = / F(rop(s) 7 (9(s)) ' (5)ds = / f(2)dz,

la derniere égalité étant garantie par le fait que la croissance de ¢ impose que a < b. Lorsque v est seulement
C! par morceaux, ce calcul vaut pour tous les intervalles sur lesquels v est C! et il n’y a qu’a sommer. |

A noter

La preuve montre immédiatement, par I'intégration de la formule de la dérivée d’une fonction composée et appli-
cation du théoreme fondamental de ’analyse, que cette invariance s’étend au cas de n’importe quel changement
de parametre du chemin, fit-il non injectif. L’énoncé est le suivant : soit f : C — C une fonction continue.
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Soient a,b, v, B des nombres réels, v : [a,b] — C un chemin et ¢ : [, B] — [a,b] une application de classe C*
telle que p(a) = a et p(B) = b. Alors, les intégrales de f le long des chemins v et v o ¢ sont égales.

Exemple
On note C le carré de sommets 1, i, —1 et —i parcouru une fois dans le sens direct a partir de 1. Alors,

Vn € Z, / 2"dz :/ 2"dz.
C C(0,r)

En effet, on calcule brutalement : en décomposant le lacet en quatre chemins de classe C' que l'on parametre
directement avec l'intervalle [0,1] en utilisant le théoréme d’invariance par changement de paramétrage des

chemins, il vient
/ Z2"dz = / Z"dz —I—/ 2"dz —|—/ Z"dz —|—/ 2"dz.
c S(1,4) S@i,—1) S(—1,—1) S(—i,1)

Or, lorsque n # —1 et u,v € C, un calcul immédiat de primitive fournit

! — nt171 n+1 n+1
+t
/ 2"z = / (u+t(v— u))n (v—w)dt = (u (v —u)) v u
S(u,v) 0 n+1 o n+1

Ainsi, lorsque n # —1, les termes se simplifient deux a deux et

[ e = g (= 1) (1) =) (0 () (L (<)) =0
C

Pour n = —1, le calcul devient
dz Yoodt ! dt ! dt ! dt
A (14 4y (- (14 e
7 “)/0 i +Z)/0 i Z)/0 EprT H)/O t—i(1—1)

1 1
dt dt
— 91— L S %
( Z)/O T T2 H)/O t—i(l—1)

Y 1—t—it il -t

1—t
20220+ 1
est —i In (2t2 -2t + 1) + % arctan (2t — 1) — selon la technique ordinaire, pour calculer ces primitives, écrire le

Or, une primitive de ¢ — %szﬂ est %ln (2t2 — 2t + 1) + %arctan (2t — 1) et une primitive de ¢

dénominateur sous forme canonique 2t —2t+1 = 2 (t — %)2 + %, changer de variable s =t — %, faire apparaitre

et reconnaitre les primitives de =~ et de ﬁ, ces dernieres faisant intervenir le logarithme d’un coté,
2

25241
I’arctangente de 'autre. Il en résulte que

1 1
t 1—t
/7dt:/ N L N Y
0 22 —2t+1 o 22— 241 4

©_ on- D)L= )+ 20 +0) (1 +6) = 2im.

Par conséquent,

c <
Ouf ! Ce résultat est un cas particulier de résultats beaucoup plus généraux qui seront abordés plus bas. Une
fois les théoremes sur les fonctions holomorphes installés, ce fastidieux calcul sera bien inutile et son résultat,
rendu immédiat, ne nécessitera aucun développement technique.

Exercice 23
Soient m,n € Z, m > 2, n # —1. On note P le polygone régulier & m c6tés dont les sommets sont les racines m®
de 'unité, parcouru une fois dans le sens direct en partant de 1. Alors, fp z"dz = 0.
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Proposition (majoration standard d’une intégrale curviligne)
Soient f : C — C une fonction continue et v un chemin de C. Alors,

(i) jc.f(Z)dz

< max |f| x Long(y).
Supp(7)

(i) Si /f(z)dz = Smagc |f| x Long(y), alors |f| est constant sur le support de .
upp
PREUVE. (i) Si~ est défini sur l'intervalle [a, b], alors

b

< [ .max [f[x[7/(t)]dt = max |f]x Long(y).
a Supp(v) Supp(v)

b
/‘fwa»Mth

Noter que Supp(v) = v([a,b]) est compact puisque 7 est continu et Uintervalle [a,b] compact ; c’est cela qui
permet la notation max.

(ii) Si une fonction ¢ : [a,b] — R est continue et positive ou nulle, alors f (t)dt = 0 si, et seulement si ¢ = 0.

[En effet, si ®[a, b] — R est la fonction ®(t) = ft (7)dr, alors le théoréme fondamental de I’ analyse assure que ® est une primitive de ¢ ;
en particulier, ® est croissante et vérifie ®(a) = 0. Ainsi, ®(b) = 0 si, et seulement si ® = 0, qui équivaut encore au fait que ¢ soit nulle.]

On applique ce résultat d’analyse élémentaire & la fonction ¢ — (maxgupp(y) [f1 — [f (v(£))]) x |7/ (£)]. [ |

Exemple (en général, I’intégrale curviligne dépend du chemin)

On considere deux chemins reliant 1 et —1 : d’une part le segment S, d’autre part

I’hémicercle nord C' de centre 0. Plus précisément, on prend les paramétrages sur

[0, 1] suivants : ‘ 1 1
Vte[0,1], S(t)=1-2t et C(t) =e".

On integre la fonction z — §R( ) sur ces deux chemins. On trouve d'un coté [ R(z)dz = fol(l —2t)(—2)dt =0

et de autre [, R(z)dz = fo cos(mt) x (ime'™) dt = &

A noter

L’implication du (ii) dans la proposition précédente n’est pas une équivalence, comme le montre par exemple
I'intégration de la fonction z — z sur le cercle unité parcouru une fois dans le sens direct.

Définition (primitive complexe)

Soient D un ouvert de C et f : D — C. On dit qu'une application F' : D — C est une primitive (complexe)
de f lorsque F' est dérivable au sens complexe et F'(z) = f(z), pour tout z € D.

Proposition (intégrale curviligne d’une fonction admettant une primitive)

Soient D un ouvert du plan complexe et f : D — C une fonction continue admettant une primitive F sur D.

(i) Siu,v € C et si v un chemin de D d’origine u et d’extrémité v, alors / f(2)dz ne dépend que de u et v,
v

mais pas du choix du chemin v reliant u a v. Plus précisément,

/f(z)dz = F(v) — F(u).

(i) En particulier, si v est un lacet, /f(z)dz =0.

v
PREUVE. C’est le théoreme fondamental de 'analyse. 11 suffit de montrer (i) puisque (ii) en est un corollaire
immédiat. Soit [a,b] I'intervalle sur lequel « est défini. On suppose d’abord que v est de classe C'. Alors,

fﬂ/ f(z)dz = f: F' (y(t)) ¥ (t)dt = F oy(b) — Fov(a) = F(v) — F(u). Lorsque v est de classe C! par morceaux,
on applique ce résultat sur chaque sous-intervalle oi1 v est de classe C! ; les valeurs de F' en les bouts de ces
sous-intervalles se simplifient. [ |

A noter

(i) Reprendre, & la lumiere de ce résultat, les calculs d’intégrales de z™ le long du cercle ou du carré, en notant
n+1
rEs
En particulier, le fait que l'intégrale de % le long du cercle unité ne soit pas nulle démontre que

que si n # —1, Papplication est une primitive complexe de z" sur 'ouvert C\ {0}.
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Z % n’admet pas de primitive sur C*

Il sera plus bas longuement question des primitives de % et des déterminations du logarithme complexe dans
certains ouverts de C \ {0}.

(ii) L’exemple En général, l’intégrale curviligne dépend du chemin de la page 16 montre aussi que application
z — R(z) n’a pas de primitive sur C. On aura plus bas des arguments qui assurent que cette fonction n’admet
de primitive sur aucun ouvert de C.

1.2.4 Indice d’un point par rapport a un lacet

Théoréme (indice d’un point)

Soit v un lacet de C. On note U louvert du plan U = C\ Supp(y). On note Ind Uapplication

Ind,:U — C

1/ dz
p —
2w Jy 2 =D

Alors,
(1) Ind, (p) € Z, pour tout p € U
(i) Ind., est constante sur tout composante connexe de U

(#1) Ind (p) = 0 pour tout p appartenant d l'unique composante conneze non bornée de U.

1 [P A (t)dt
PREUVE. (i) Si [a,b] est I'intervalle sur lequel ~ est défini, Ind,(p) = T/ fy(t()) En particulier, cette

T Ja Y -p
écriture montre immédiatement que Ind,(p) est défini des que p ¢ Supp(y). Pour montrer que Ind,(p) est
entier, il suffit de montrer que exp (2imw Ind,(p)) = 1. On suppose d’abord que 7 est de classe C'. On note
f : ]a,b] — C lapplication

t
~' (t)dt
) = e [ UL

a V(t) —D

Puisque l'intégrand est continu, le théoreme fondamental de I'analyse assure que f est dérivable et que, pour
tout ¢ € [a, b],

£ A

MOBERIGESS

Ja, b[ et continue sur [a, b], a une dérivée nulle et

Cela montre que "application ¢ — G ()

est donc constante sur le connexe [a, ). Comme la valeur de f en a est 1, on obtient que

Vi€ [ab), F(t) = m

Enfin, puisque v est un lacet, v(b) = v(a) et donc f(b) = 1, ce qu’il fallait démontrer pour assurer que Ind, (p)
est un nombre entier.
Si v n’est plus de classe C! que par morceaux, avec les notations de la définition d’un chemin, on étudie la méme

fonction f sur chaque sous-intervalle [cy, cx11] sur lequel v est de classe C!. On montre ainsi que sur chaque
() —p
v(ck)—p?

[¢k, ck+1], la fonction f sécrit f(t) = si bien que

n n

f(b) :epo/CHl M - H (Crir) :kl—[lv (cht1) _ V(b)lp; _

k=1"Ck Y ’7(0’) -

la derniere égalité venant toujours du fait que -y est un lacet.

(ii) L’application Ind, est continue sur U. On peut voir cela de deux fagons : dans I'obédience de l'intégrale

7' (1)
y(#)—p o
dans le cadre de l'intégrale de Lebesgue, on peut remarquer que si pg € U et si D (pg,r) C U ou r > 0, alors

de Riemann, il suffit de remarquer que 'application (p,t) — est continue sur U X [a, b]. Si'on raisonne
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’ 7' (1)
() —p

I’application p —

' < mm;\ﬂ pour tout t € [a, b], ce qui suffit & montrer que Ind, est continue en p puisque, pour tout ¢,
7' (1)
y(t)—p
intermédiaires, les composantes connexes de 7 étant les singletons {n}, n € Z.

I'est. Une fois la continuité de Ind, acquise, on conclut avec le théoreme des valeurs

(iii) Soit M = maxyc[qp) [7(t)] — se rappeler que 7 est continu. Alors, pour tout R > M, si [p| > R et si

z € Supp (), la seconde inégalité triangulaire assure que |z — p| > R — M et donc que |[Ind,(p)| < 27&?27%.
En faisant tendre R tend vers 400, cela montre que Ind, (p) = 0 dés que p est dans la composante connexe non
bornée de U. ]

Exercice 24
Montrer que la compacité du support d’un lacet entraine I’existence et I'unicité de la composante connexe non
bornée de son complémentaire.

Définition (indice d’un point par rapport & un lacet)
Dans les conditions du théoreme, on dit que Ind, (p) est l'indice du point p par rapport au lacet 7.

A noter
L’indice d’un point p par rapport a un lacet «y calcule, en le formalisant, le nombre de tours que fait le lacet ~
autour du point p.

Par exemple, si v est le lacet qui, partant de 1, parcourt le
cercle de centre 0 et de rayon 1 une fois dans le sens direct,
puis le segment [1,2], puis le cercle de centre 0 et de rayon
2 une fois dans le sens direct, puis le segment [2,1].

Alors,
2 si peD(0,1)

Ind,(p) =< 1 si p est dans la couronne D (0,2)\ D (0,1) privée du segment [1,2]
0 si p¢ D(0,2).

Exercice 25
Vérifier par le calcul la précédente disjonction des cas de valeurs de l'indice.

1.2.5 Vérifier la formule de Cauchy

Définition (vérifier la formule (locale et circulaire) de Cauchy)
Soient U un ouvert de C et f : U — C une application continue. On dit que f vérifie la formule (locale et
circulaire) de Cauchy sur U lorsque pour tout z € U, pour tout w € U, pour tout r > 0,

7 (w,e? =0 — f(2) = Qi/ SO 4. (6)
z € D (w,r) imJewn ¢ =2

Remarquer que lorsque f vérifie la formule de Cauchy, sa valeur en un point
z est déterminée par ses valeurs sur n’importe quel cercle de centre w et de
rayon r, pourvu que le disque fermé D (w,r) soit dans I'ouvert de définition
de f et que z soit dans le disque ouvert D (w,r). Le cas particulier ot w = 2
est souvent utilisé, qui donne lieu a la formule

z) = L &d
f(2) /C =

T 2ur (—=z
des que D (z,7) C U. Notamment, I'intégrale de cette derniere formule — des

qu’elle a un sens ce qui est le cas pour tout r “assez petit” —, ne dépend pas
de r.
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Exemples

(i) Toute fonction constante vérifie la formule de Cauchy sur C.
En effet, soient ¢ € C, z,w € C et r > 0 tels que z € D (w, ). Alors,

/ ¢ = 2imcInde ) (2) = 2ime
C(w,r) C -z

puisque le cercle est parcouru une fois dans le sens direct par le Chemin C(w,r). Noter que dans le cas ot w = z,
ce résultat est une paraphrase du calcul de I'intégrale fc( . C — fait plus haut.

(ii) Plus généralement, si n est un entier naturel, la fonction z — z™ vérifie la formule de Cauchy sur C.

Pour montrer cela, on procede par récurrence sur n, le cas n = 0 étant acquis par le calcul pour les fonctions
constantes. Soient n un entier naturel non nul, z,w € C et r > 0. On suppose que z € D (w,r). Alors,

¢ g -2) S
d¢ = ——d d
/C(w,r) C -z C /C(w,r) C -z C - C(w,r) C -z

Puisque ¢ — ¢"~! admet une primitive sur C et puisque C(w,r) est un lacet, la premiere de ces deux intégrales
est nulle. Par récurrence, la seconde égale 2imz", ce qu’il fallait démontrer.

(iii) L’exponentielle vérifie la formule de Cauchy sur C.

En effet, pour tous z € C et pour tout r > 0, puisque la série de Taylor de la fonction exponentielle est une série
entiere de rayon infini, elle converge uniformément sur le disque (le cercle suffit, ici) de centre 0 et de rayon r,
ce qui légitime l'interversion de l'intégrale et de la série dans le calcul suivant :

1 ¢ 1 =1 g‘" 2"
- d e — _— _— =
2m Jowr) C— 2 ¢ 207 Jo(w,r) <Z nl ¢ — z) dc = Z n! 2im / yC—=z Z n!

n=0

Ce calcul typique sera repris plus bas dans un cadre beaucoup plus général.

A noter
Pour mesurer la puissance de ces raisonnements, tenter de montrer directement la formule 2™ = ﬁ /. Clwr) Cﬂ—zdg
en paramétrant le cercle et en cherchant des primitives des fonctions en jeu.

1.3 Fonctions développables en séries entieres
1.3.1 Mémento sur les séries entieres

Une série entiére est une série de fonctions de la variable complexe z de la forme E anz", ot (an), oy st une
n

suite de nombres complexes.

A noter

Le vocable “soit a,z™ une série entiere” est synonyme de “soit (a une suite de nombres complexes”.
n N n/neN

Cela dit, lorsqu’on choisit de dire ou d’écrire “soit ), a, 2™ une série entiere”, c’est qu’on s’appréte a focaliser

le discours sur la série de fonctions ) a,z", la plupart du temps sur la convergence de cette série en des sens

divers.

Proposition (lemme d’Abel”)

Soient ), anz™ une série entiére et zo € C. On suppose que la série numerique > o anzy converge. Alors, la
série entiére ), anz™ converge normalement sur tout disque fermé D (0,7) ot r < |z].

PREUVE. Puisque la série ) a,z{ converge, la suite (a,2y), oy est bornée : soit M > 0 tel que |a,2y| < M,

pour tout n € N. Alors, si 0 < r < |2, pour tout z € D(0,7), |anz"| < M (‘ZO‘)H et (ﬁ)n est le terme
général d’une série géométrique convergente.

“Niels Henrik Abel, 1802-1829
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A noter
Dans les conditions de la proposition précédente, la preuve montre qu'il suffit que la suite (a,2),,c s0it bornée
pour que la conclusion subsiste. C’est souvent sous cette forme qu’on trouve ce lemme d’Abel dans la littérature.

Définition (rayon et disque de convergence d’une série entiére)
Le rayon d’une série entiere ) a,z" est

p=sup{r >0, a,r" est le terme général d'une série absolument convergente} € [0, +oc].

Le disque ouvert D (0, p) est le disque (ouvert) de convergence de la série entiere ) a,z".

A noter
Soient ), anz™ une série entiere et p € [0, +00] son rayon. Les assertions qui suivent sont toutes (sauf (iii)) des
conséquences directes du lemme d’Abel.

(i) Pour tout z € D (0, p), la série > a,z" est absolument convergente, & vitesse au moins géométrique.
(ii) Pour tout z € C\ D (0, p), la série Y a, 2™ diverge, & vitesse au moins géométrique.

(iii) Sur le cercle {z € C, |z| = p} que 'on appelle improprement cercle de convergence, tout peut se passer.
L’ensemble des points du cercle en lesquels la série converge peut étre fini (méme vide), dense, égal & tout le
cercle, etc .

(iv) Le rayon est aussi

p =sup {7” >0, nhﬁngo apr" = 0} =sup{r >0, (a,r"), est une suite bornée} .

(v) Puisque les convergences ou les divergences des séries entieres hors du cercle de convergence sont & vitesse
au moins géométriques, les criteres de d’Alembert™ ou de Cauchy®™ pour la convergence des séries numériques
s’appliquent. Il fournissent les formules

Gntl| limsup|an|% (7)
n—oo

.
— = limsup
n—oo

Qn

: : 1 1 _
avec la convention habituelle T = 0et 5 = too.

(vi) Le théoréme de continuité d’une série uniformément convergente de fonctions continues assure que, sur son
disque de convergence, une série entiere définit une fonction continue.

Exemples

(i) Les fonctions polynomiales sont des séries entieres de rayon infini (!).

(ii) Les deux plus célebres des séries entieres sont ’exponentielle — de rayon infini — et la série géométrique
de raison 1 — de rayon 1 —, savoir :

exp(z) = Z ) et 1.~ Z Z".
n=0 n=0

ya n . . . 177,9
La série > 2" ne converge en aucun point de son cercle de convergence, puisque la suite (e )n ne converge
vers 0 pour aucune valeur de 6§ € R.

(iii) D’une maniere générale, si F' est une fraction rationnelle et si |a,| ~ F(n) lorsque n tend vers linfini, le
rayon de la série entiére ) anz™ est 1.
C’est une conséquence directe des formules (7).

. 7. LY n . . ’ ’ . .
(iv) Par exemple, la série entiere ) - est de rayon 1 puisque son coefficient général est une fraction rationnelle
en n. Sur son cercle de convergence, elle diverge en 1 mais converge en tous les autres points.

“Jean le Rond d’Alembert, 1717-1783

“La formule du rayon avec la puissance 1/n est souvent attribuée & Jacques Hadamard qui écrit une note aux Comptes Rendus
de I’Académie des Sciences a ce sujet en 1888 — qui, par ailleurs, est la date de naissance de I’axiomatique des espaces vectoriels,
due a Guiseppe Peano —, mais Cauchy l'avait écrite en 1821 dans son cours a 1’école polytechnique.
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Pour prouver cela, on peut faire appel a une tres classique transformation d’Abel, version discrete de I'intégration
par parties. Voici I'argumentaire : soit z € C, tel que |z] = 1 et z # 1. Pour tout n € N, on note S, la somme

partielle S, =1+2+ 22 a2 = 1—znt!
2

. Alors, Sy =1 et, pour tout n > 1, 2" =S, —S,_1 ; en outre, on

a la majoration uniforme |S,| < pour tout n > 1. On calcule ainsi la somme partielle

[1—z]>
N N N—1
z" 1 1 1 1
— = — (S, —Sh-1)==Sny—-1 Sn(f— )
T;n ;n( 1) N N +n¥l n n+1

Or,

Sn (l - %ﬂ)) < 52 ﬁ, pour tout n, et la série de terme général

p S 153 converge. Ainsi, par com-

1
n(n+1)

paraison des séries & termes positifs, la série > S, (% — n%rl) est absolument convergente, donc convergente.
2 1

M2 N tend vers 0 lorsque N tend vers U'infini. Ainsi, on a montré que la série numérique

S 2% converge pour tout z tel que |z| =1 et z # 1.

n n

Par ailleurs, |%SN} <

(v) Les séries entieres ) nlz" et ) n"™z" sont de rayon nul. C’est une application directe des formules (7).

. s 3N 2 !
n n:
(vi) Les séries entieres ) 2" et ) 2™ sont de rayon 1.
En effet, ces deux séries convergent dés que |z| < 1 — leur terme général est majoré par le terme général d’une
série géométrique convergente. Elles divergent lorsque |z| > 1 — leur terme général ne tend alors pas vers 0.

Proposition (sommes et produits de séries entiéres)
Soient Zn a,z" et Zn b,2" deux séries entiéres de rayons respectifs p, et py. Pour tout n > 0, on note

n
Sp = ap + by et Pn = agb, +aiby, 1+ 4+ an_1b1 + apby = Z agbn—t.
k=0
Alors, les séries entiéres y ., sp2™ ety ppz™

séries convergent,

ont un rayon supérieur ou égal & min{pq, pp}, et lorsque ces

i Sp2" = (i anz”> + (i bnz”> et ipnz" = (i anz”> X (i bnz"> .
n=0 n=0 n=0 n=0 n=0 n=0
PREUVE. Exercice. u

Proposition (théoréme d’Abel radial)
Sotent Y anz™ une série entiére de rayon strictement positif, et ¢ € C un point du cercle de convergence tel
que la série Y anc" converge. Alors, la série de fonctions ), anz™ converge uniformément sur le segment

[0,c]. En particulier,

z€[0,c] \n=0 n=0

PREUVE. La convergence uniforme suffit a linterversion de la somme et de la limite. On montre cette

convergence uniforme, en utilisant une transformation d’Abel.

On note p le rayon de la série entiere et ¢ = pe? ot § € R. Les points du segment [0, ]

; . . C o

sont les 7e’?, 0 < r < p. Puisque la série >, anc™ converge, on note R, son n® reste : , .
// \
1 \
| 0 |

pour tout n > 0,
o0
R, = Z arc” \ /
k=n

si bien que pour tout n, on peut écrire a,,c” = R, — Ry41.
Pour montrer la convergence uniforme de la série de fonctions ), a,2" sur le segment [0, ], on montre que la
suite de ses sommes partielles y est uniformément de Cauchy. Cela revient a montrer que les paquets de Cauchy
Zﬁi N41@n2" tendent vers 0 lorsque N tend vers U'infini, uniformément sur [0,c] et en M > N + 1.
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Pour cela, dans les paquets de Cauchy, on remplace a,c™ par la différence des restes comme ci-dessus, puis
on opére a une transformation d’Abel, sorte d’intégration par parties discrete. On obtient successivement : si
r €10,p] et si N et M sont des entiers naturels tels que N +1 < M,

M M M

D an (re®)" = > anc” (;)n => (i)n (Rn — Ryt1)
n=N n=N

() () e 32 () -C))

Soit € > 0. Puisque la série ) a,c™ converge, soit ng € N tel que |R,| < €, pour tout n > ng. Alors, dés que

n
N > ng, pour tout r € [0, p], puisque les (%) sont des réels positifs ou nuls et inférieurs ou égaux a 1, on a la

majoration

M n n+1 N+1 M—-N

> () -G ) =G (-G ) ==
n=N+1 P P P P

N M
En outre, les deux “termes de bord” sont faciles a majorer : '(;) Ryl <eet (%) Rpr41] < g, pour tout

r € [0, p], pour tout n > ng. Ainsi, on a montré que la série de fonctions ), a,z™ vérifie le critere de Cauchy
uniforme sur le segment [0, ¢], ce qui entraine sa convergence uniforme sur ledit segment. [ ]

A noter
Cette preuve gagne en intelligibilité si on 1’écrit dans le cas particulier ou ¢ = p = 1, qui se généralise ensuite
sans difficulté.

Exercice 26 (Abel secteur)

Sous les hypotheses du théoreme d’Abel radial, montrer que la convergence de
la série de fonctions ) a,2" est uniforme sur tout compact de tout secteur
de la forme

Sy = {c}U {z €D(0,|c]), Arg (z _ 1) c [—o,o}},

on f €0, %].
Noter que ’on peut encore écrire Sy = {c + pei(Arg(“)+"), In] <0, 0<p<2c|cos 'r]} .

Exemple trés classique

"

(-

n

converge. En outre, Y >0 = In - pour

Le théoreme des séries alternées assure que la série ) nel =

tout z € [0, 1[. Le théoreme d’Abel radial assure alors que

00

-1 n+1
S,
n=1 n

Exercice 27 (en guise d’application d’Abel radial)
Soient (an),en €t (bn),en deux suites de nombres complexes. Pour tout n € N, soit ¢, = Y axby—x. On
suppose que les séries Y an, y_, by et > ¢, convergent. Montrer que dans ces conditions,

S (£4) (1)

n=0

Proposition (dérivation et primitivation des séries entiéres)
oo

Soit Zanz" une série entiere de rayon p > 0 et soit f : z — Z anz™ la fonction qu’elle définit sur D (0, p).

n n=0
Alors,
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(i) la fonction f est dérivable au sens complexze sur D (0, p) et se dérive terme a terme au sens ot, pour tout
z € D(0,p),

oo

f(z)= Z(n + Dapy12™ ;
n=0
(i) la fonction f admet des primitives sur D (0, p), qui s’obtiennent par primitivation terme o terme au sens
ot ces primitives sont les fonctions de la forme

o0
zHC—FZMZ", ou C e€C.
n

n=1

PREUVE. Ils’agit d’abord de noter que les séries entieres Y- (n+1)an412™ et Y “=2" ont également p pour
rayon. Pour montrer (i), on applique le théoréme de dérivation des séries qui assure le résultat puisque la série
de fonctions ), a,2™ converge simplement et que sa série des dérivées ) (n+1)a,412" converge normalement
et donc uniformément sur tout disque fermé inclus dans D (0, p), en vertu du lemme d’Abel.

(ii) est une conséquence de (i) en prenant en compte le fait que le disque D (0, p) est connexe. u

Tout petit formulaire
Les formules donnée ci-dessous sont a la fois des énoncés sur la restriction des fonctions a ’axe réel et une
définition des fonctions de la variable complexe portant le méme nom. Certaines sont des redites.

()

o0

(i) Pour tout a € C, | (1 +2)* = Z ou le coefficient du binéme généralisé aux nombres complexes est

n=0
(Z) :a(a—l)(a—2T)L'...(a—n+1) —%ﬂ(a—k).
’ " k=0

Lorsque a € N, le rayon de cette série entiere est infini — c’est une fonction polynomiale ; dans tous les autres
cas, le rayon est 1.

oo
[Noter que la formule = Z 2" pour tout z (non nul) de module strictement inférieur & 1 est le cas ot a = —1.]
—zZ
n=0
o ZQn o 22n+1
(ii) | coshz = E et | sinhz = E — | respectivement parties paire et impaire de ’exponentielle.
(2n)! (2n + 1)!
n=0 n=0
fe9) ZQn e Z2n+1 .
cosz = E (=" o)l et |sinz = E (—1)"m respectivement parties paire et impaire de e**.
n)! n !
n=0 n=0

Comme l'exponentielle, ces quatre séries ont un rayon infini.

-~ (=D”
(iii) | arctan z = E 22" | de rayon 1.
o 2n+1
oo Zn
(iv) | log T E o de rayon 1.
n=1

On reviendra longuement sur les affaires de logarithme. Pour I’heure, le lien entre cette nouvelle serie entiere
“logarithme” et la fonction exponentielle complexe se limite & leur restriction & I'intervalle | — 1, 1].

Petite mise en garde
Attention & ne pas se laisser piéger par le nom donné a ces séries entiéres. Si on se laisse emporter par trop
d’enthousiasme, on risque d’écrire des formules fausses ; on y reviendra. Comme toujours, il convient de
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privilégier le sens et de se méfier de ’apparente évidence provoquée par les notations — qui sont pourtant bien
commodes !

Exercice 28

(i) Montrer que, dans le disque de convergence, %(1 +2)*=a(l+z2)* L

(ii) Montrer que, sur C, d% cosh z = sinh z, % sinh z = cosh z, d% cosz = —sin z, d% sin z = cos z.
. d 1

(iii) Montrer que, dans le disque de convergence, - arctan z = -

. . d 1o 1

(iv) Montrer que, dans le disque de convergence, - log = = 1.

1.3.2 Fonctions DSE

Définition (fonction DSE ou analytique)
Soient U un ouvert de C et f : U — C une application. Pour tout v € U, on dit que f est développable en série
entiére (DSE) en u ou encore analytique en u lorsqu’il existe r > 0 tel que

(i) D (u,r) CU ;
(ii) il existe une suite complexe (a, ),y telle que la série entiere Z anz" ait un rayon supérieur ou égal a r ;

n

(iii) f(z) = i an(z —w)", pour tout z € D (u,r).
n=0

Lorsque f est DSE en tout point de U, on dit que f est DSE sur U, ou encore analytique sur U.

Exemple
Si P(z) = ZZ:O anz™ est une application polynomiale & coefficients complexes, elle est analytique sur C. En
effet, pour tout u € C, la formule de Taylor-polynémes en u s’écrit

d
P (u) n
VzeC, P(z) = Z T(z—u)
n=0
(n)
ou la série entiere ) PT(")z" est de rayon infini puisque c’est un polynome.

Proposition (somme et produit de fonctions analytiques)

Soient U un ouvert de C et w € U. Si f et g sont DSE en u (respectivement sur U), alors f + g et fg sont
DSE enu (resp. sur U).

Preuve. Il suffit d’ajouter ou de multiplier les DSE(u), les rayons restent strictement positifs comme le
garantit la proposition sur la somme et le produit de séries entiéres. n

Contrairement a ce que pourrait laisser penser une lecture superficielle, la proposition qui suit n’a rien d’évident.
Elle mérite d’étre relue une fois établi que le développement en série entiere d’une fonction en un point, lorsqu’il
existe, est nécessairement son développement de Taylor™ en ledit point.

Proposition (une série entiére est analytique sur son disque ouvert)
Soit f(z) = Y07 s anz" une fonction définie par une série entiére de rayon p > 0. Alors, f est DSE en tout
point du disque de convergence D (0, p).

PREUVE. Soit u € D (0, p).
Il s’agit de trouver une série entiere ) b,2" de rayon non nul telle
que, au voisinage de u, la fonction f ait un DSE de la forme

F(2) =) balz —w)".
n=0

Soit 7 = p — |u|. Alors, r > 0 et on montre que f est DSE en u avec
un rayon au moins égal a r.

“Brook Taylor, 16851731
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(1) On fait un premier calcul de sommations sans prendre de précaution pour intervertir ou regrouper les termes.
On justifie ces interversions ensuite. Si h € D (0,7), alors u+ h € D (0, p) et

R T S (4 [ oY O] (TR

n,keN n=k
0<k<n

On pose — il faudra prouver que cette somme a bien un sens —

b = i (Z) apu™F = i (n Z k) A"

n==k n=0
11 suffit alors de montrer que la série entiere ) b,z™ a un rayon supérieur ou égal a r.
(2) On justifie les interversions, la convergence des séries qui définissent les b,, et on minore par r le rayon de la
série entiere ) b,2".
Soit h € D (0,7). Puisque |u| + |h| € D (0, p), en vertu du lemme d’Abel, la série >, a, (Ju| + |h|)" est absol-
ument convergente. Comme tous les termes des séries ci-dessous sont positifs ou nuls, toutes les interversions
et tous les regroupements sont licites. Cela est par exemple justifié par le théoreme de Fubini®-Tonelli? : la

famille
> laal (Z) B+

n,keN
0<k<n

est sommable puisque sa somme

> Ian|< )Ih Jul =" Zlanl [ul + [R[)"

n,keN
0<k<n

est une série convergente. Cela justifie, via le théoréeme de Fubini-Lebesgue, les interversions de la premiere
partie de la preuve. Notamment : pour tout n, la série qui définit b,, converge absolument donc converge, et
la série entiere ) b, 2", qui est absolument convergente en le point z = h, a un rayon supérieur ou égal a |h|.
Comme cela est valide pour tout A € D (0,7), cela montre que ledit rayon est supérieur ou égal a r. |
A noter

(i) La preuve en dit un peu plus que ’énoncé puisqu’elle montre que le DSE de f en un point u de D (0, p)
est valide au moins dans tous les disques ouverts de centre u que D (0, p) contient — ou au moins dans le plus
grand d’entre eux qui est D (u, p — |ul), on dit comme on veut.

(ii) En particulier, toute série entiere de rayon infini définit une fonction analytique sur C.

(iii) Cette proposition sera une conséquence immédiate du théoreme d’équivalence pour les fonctions holomor-
phes.

Théoréme (unicité du DSE)
Soit )", anz™ une série entiere de rayon p > 0. On suppose qu’il existe v €0, p| tel que

Vze D(0,r), Zan =

Alors, a, =0, pour tout n € N.
PREUVE. Soit r €]0, p[ tel que f(z) = > 07 janz™ = 0, pour tout z € C vérifiant 2| < r. On note R =

Alors, fC(o R) zfn(—f;)ldz = 0, pour tout n € N. En paramétrant le cercle, cela s’écrit

2T it 2T oo
[ (Re it\k | —int
VneN, 0= %dt = /O (kg_o ag (Re t) > e tdt.

0

“Guido Fubini, 1879-1943
“Leonida Tonelli, 1885-1946
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Or, le lemme d’Abel assure que la convergence de la série de fonctions >, anz™ converge normalement et donc
uniformément sur le disque fermé D (0,7), et donc sur le cercle de centre 0 et de rayon R. Ainsi le signe [ et le
signe Y peuvent-ils étre intervertis. On obtient, pour tout n € N, que

o0 27
0=> ayRF ( / ei(k_")tdt> = 2ra, R",
k=0 0

et donc que a, = 0, ce qu’il fallait démontrer. [ |
A noter

(i) Cette preuve est une preuve “a la Cauchy”. Ici encore, lorsqu’on aura fait le lien entre le DSE d’une fonction
analytique en un point et sa série de Taylor en le méme point, ce théoréeme prendra un éclairage nouveau.

(ii) On énonce un corollaire immédiat qui justifie le mot “unicité” dans le théoréme précédent : si u € C, si
(an)pen €t (bn),en SOnt deux séries entiéres de rayons strictement positifs et si

Z an(z —u)" = Z bn(z —u)"
n=0 n=0

pour tout z dans un disque ouvert non vide centré en u, alors a, = by, pour tout n € N.

Autrement dit, une fonction analytique ne peut pas avoir deux DSE différents en un point donné.

(iii) On peut encore affaiblir les hypotheses du théoréme d’unicité en supposant seulement que la fonction définie
par la série entiere est nulle sur un cercle de centre 0 et de rayon strictement positif.

Proposition (principe des zéros isolés pour les séries entiéres)

Soit (an),cy une suite non nulle de nombre compleves. On suppose que la série entiére ) a,z" a un rayon

strictement positif et que la fonction f(z) = Y. " anz", définie sur le disque ouvert de convergence, vérifie
£(0) =0. Alors, il existe r > 0 tel que f(z) # 0, pour tout z € D (0,7) \ {0}.

PREUVE. Puisque la suite (ay), oy n’est pas nulle, soit N = min {n >0, a, # 0}. La condition f(0) =ao =0
impose que N > 1. En mettant 2V en facteur, on écrit f(z) = 2V g(z) ol g est la fonction définie par la série
entitre g(z) = > °  ani,2" dont le rayon de convergence est le méme que celui de f. Or, g(0) = ay # 0 et
g est continue en 0, puisqu’elle est définie par une série entiere. Ainsi, g est non nulle sur un disque ouvert
D (0,r) ott r > 0, ce qui prouve le résultat. [ ]

1.4 Le théoréme d’équivalence pour les fonctions holomorphes

On démontre ici le théoreme d’équivalence qui fonde la définition des fonctions holomorphes. La preuve, longue
et consistante, met en jeu un raisonnement historiquement important, qui met déja en relation les différents
points de vue qui font la richesse de ’analyse complexe.

Théoréme (d’équivalence pour les fonctions holomorphes)
Soient U un ouvert de C et f : U — C une application continue. Les assertions suivantes sont équivalentes.

(i) f vérifie la formule de Cauchy sur U ;
(i) f est développable en séries entiéres sur U ;

(iii) f est dérivable au sens complexe sur U.

PREUVE. (i)=(ii) On suppose que f vérifie la formule de Cauchy sur U. Soit 2o € U. On montre que f est
DSE en zg. Soit 7 > 0 tel que D (zg,7) C U. Alors, pour tout z € D (29, 7),

1 O, 1 f(©)

f(z) B % C(zo,r) C - ZdC B % C(zo0,r) (< - ZO) - (Z - ZO)

dc.
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Dans cette derniere intégrale, la variable courante ( est sur le cercle de centre
<1l:le

Z—Z0

¢—z0

zo et de rayon r alors que z est dans le disque ouvert. Ainsi,

développement en série entiere

oo

1 o Z (Z — Zo)n
- +1
(C—20) = (z2—20) 2= (C—2)"
est valide et sa convergence est normale et donc uniforme dans le disque fermé
D (zo, rtlz| ), comme le garantit le lemme d’Abel. On peut donc intervertir la

2
somme et I'intégrale ; on obtient

Z:L 00(2_720)” dzoo(l f(od)z—zn
(ORI (Z (C_ZO)nH)f(c)c > (2 / ) )

%d{) z" étant supérieur ou égal a r puisque le calcul

ci-dessus est valide pour tout z € D (zg,7). On a montré que f est DSE sur D (z,r).

le rayon de la série entiere Y oo, (ﬁ $otzom)

(if)=(iii) C’est immédiat : si une fonction est DSE sur U, elle admet en chaque point un développement limité
d’ordre 1, ce qui signifie qu’elle y est dérivable au sens complexe.

(iii)=-(i) Cette implication est la clef de ’équivalence. On suppose que f est dérivable sur U.
(1) On démontre d’abord l'assertion suivante : pour tout ouvert U de C, pour tout u € U, pour toute fonction
f:U — C continue sur U et dérivable sur U \ {u}, pour tout triangle A inclus dans U, lintégrale de f le long
du bord du triangle OA est nulle :
f(z)dz =0. (8)
OA

On précise les termes de cet énoncé : soient a,b,c € U tels que I'enveloppe convexe A de {a, b, c} soit contenue
dans U — l'enveloppe convexe est Uensemble {aa + b+ ve, «, 8,7 € [0,1], a+ S+~ = 1} ; c’est I “intérieur”
du triangle. On note alors 9A le chemin formé de la concaténation des segments [a, b], [b, c] et [c, a] prise dans
le sens direct. Noter que I'invariance de l'intégrale par changement de paramétrage et le fait que JA soit un
lacet donne un sens non ambigu & la formule (8).
On prouve l'assertion (). On note I = [, f(z)dz.
On suppose dans un premier temps que v ¢ A. On découpe A en les quatre triangles
dont les sommets, outre les sommets de A, sont les milieux des aretes de A. Tous
ces sous-triangles ont pour périmetre la moitié du périmetre de A. Alors, I est la
somme des intégrales de f le long des bords des quatres triangles de la subdivision As
— dans la somme, les trois intégrales aller-retours le long des segments joignant les
milieux des arétes de A sont nulles. L’inégalité triangulaire permet d’en déduire
que l'intégrale le long d’au moins un de ces quatres triangles, que 'on nommera Ay,
vérifie

1] <4 f(z)dz

0A

— il suffit de prendre pour A; I'un des triangles pour lequel le module de I'intégrale

de f est le plus grand.

En itérant ce procédé, on obtient une suite de triangles A O Ay O Ay D Ag... qui vérifient : Long (0A,,) =
27" Long (0A) et [I] < 4™
de I'espace complet C est encore non vide. Soit ainsi zp € Np>1A,,.

J. on (z)dz‘. L’intersection de cette suite décroissante de parties fermées non vides

Soit alors € > 0. Puisque f est dérivable en zg, soit » > 0 tel que

Vz € D (z0,7), |f(2) = f(20) — ' (20) (z — 20)| < €]z — 20| .

Soit aussi n tel que A, C D (2, 7).

[Noter qu’un tel n existe. En effet, si zg est dans un triangle uwvw, max {|z0 — u|, |z0 — v|, |20 — w|} < diam(uvw) ol le diametre diam(uvw)
du triangle est la plus grande distance joignant deux points de ce triangle. On montre aisément que le diametre d’un triangle est le plus
grand de ses coté, ce qui entraine que max {|zo — u|, |20 — v|, |20 — w|} < max {|u — v[, |v — w|, |w — u|} < 7(wvw) ol w(uvw) désigne le
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périmeétre du triangle uvw. Ainsi, par convexité du disque, dés que le périmetre de uvw est inférieur ou égal & un réel positif r, le triangle
est tout entier dans le disque de centre zg et de rayon r.]

Alors, puisque la fonction z — f(20) + f (20) (2 — 20) admet évidemment une primitive sur D, Uintégrale de
cette fonction le long du lacet dA,, est nulle, si bien que

/aAn f(z)dz

La encore, la distance de zg & un point du bord de A,, est inférieure ou égale au diametre de A,, qui est lui-méme
inférieur ou égal au périmetre de A,. On obtient ainsi

1] < 4" =4

/ (F(2) =  (20) = ' (20) (= — 20)) d2| < 4" Long (9A,) max |z 2|
OA, z€

n

|| < 4™ Long (9A,,)* < & Long(dA).

On a montré que |I| est inférieur & tout réel strictement positif, c’est-a-dire que I = 0.

Il reste a traiter le cas ot u € A. On note a, b, ¢ les sommets de A, que I'on suppose distincts sans quoi I'assertion
est évidente.
Si u est un sommet de A, disons u = a, soient 5 €|a, b] et v €]a, c]. Alors, I est la somme
des intégrales de f le long des bords des triangles a8y, by5 et cyb, les deux dernieres
étant nulles grace au raisonnement ci-dessus. On note A’ le triangle af~. Soit € > 0.
B#AT  Puisque f est continue en a, soit n > 0 tel que D (a,n) C U et tel que |f(z) — f(a)| < e
des que z € D (a,n). Alors, si 8,7 € D (a,n),
c 1| =

(2)dz| < eLong (0A’) < e Long (0A).

A
On a montré que |I| est inférieure & tout réel strictement positif, c’est-a-dire que I = 0.
a

On suppose pour finir que u est a l'intérieur de A. On applique
ce qui précede aux trois triangles abu, bcu et cau : chacune des
intégrales de f le long de leurs bords est nulle. Comme I est la
somme de ces intégrales, cela prouve que I = 0.

b

(2) On montre ensuite 'assertion : pour tout ouvert U de C, pour tout u € U, pour toute fonction f: U — C
continue sur U et dérivable sur U\ {u}, pour tout r > 0 et pour tout w € U tels que D (w,r) C U,

/ f(z)dz = 0.
C(w,r)

Pour obtenir la formule, il suffit de montrer que f admet une

Soient 7 > 0 et w € U tels que D (w,r) C U.
w,r), le segment [w, z] est encore dans D (w,r) ; on pose alors

primitive sur D (w,r). Pour tout z € D (

Flz) = /S Lo

On prouve que F est une primitive de f. Soit h € C tel que z + h €
D (w,r). Alors, puisque le triangle w, z,z + h est dans D (w,r), le (D)
garantit que I'intégrale de f le long de ce triangle est nulle. Autrement
dit,

F(z+h) - F(z) = / Qe

S(z,z+h)
ou encore

F(z+h) - F(z) - hf(z) = / (F(O) — £(2)) dc.

S(z,z+h)
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Soit € > 0. Puisque f est continue en z, soit n > 0 tel que D (z,1m) C D (w,r) et tel que |f(¢) — f(2)| < e des
que |¢ — z| < n. Alors, il suffit que |h| < n pour que |F(z + h) — F(z) — hf(2)| < eh, ce qui montre que F est
dérivable au sens complexe en z et que F'(z) = f(z).

(® Fin de la preuve de (iii)=>(i) : soient r > 0 et w € U tels que D (w,r) C U. Soit aussi 2 € D (w,r). On
définit P'application g : U — C par

MO-1C) & (.
9(¢) = ¢z
fl(z) si (==

Puisque f est dérivable, g est continue sur U et également dérivable sur U \ {z}. On peut alors appliquer (2) &
g, ce qui s’écrit
/ &dg = / &dg = f(2) x 2im Indo(w,r (2) = 2i7 f(2)
C(w,r) (-2 C(w,r) (-2
puisque z est dans le disque ouvert D (w,r) et puisque le chemin C(w,r) parcourt le cercle une fois dans le sens
direct. [ |

Définition (fonction holomorphe)
Dans les conditions du théoréme d’équivalence, un application qui vérifie les conditions (i), (ii) ou (iii) est dite
holomorphe sur U.

Notation
Si U est un ouvert de C, on notera | O(U

~

I’ensemble des applications holomorphes U — C.

A noter

(i) L’holomorphie est & vrai dire une propriété locale des fonctions complexes de la variable complexe. Si U est
un ouvert de C et si w € U, on dit que f est holomorphe en u lorsque f est dérivable au sens complexe sur un
voisinage de u. Une fonction est alors holomorphe sur U lorsqu’elle est holomorphe en tout point de U.

En revanche, la dérivabilité au sens complexe est, elle, une propriété ponctuelle en le sens suivant : une fonction
complexe de la variable complexe peut étre dérivable en un point sans n’étre dérivable sur aucun autre point
d'un voisinage. Prendre par exemple la fonction z +— |2|?, qui est dérivable au sens complexe en 0, et seulement
en 0 (exercice).

(ii) Opérations sur les fonctions holomorphes

La somme et le produit de deux fonctions holomorphes sur U y sont encore holomorphes. Si on ajoute encore
le produit par une constante (qui est le produit par une fonction constante), ces lois conférent & O(U) une
structure de C-algebre. En outre, une fonction holomorphe sur un ouvert U est inversible dans ’anneau O(U)

’

si, et seulement si elle ne s’annule pas sur U, avec la formule de dérivation ordinaire (l), = —z.
La composée de deux fonctions holomorphes est encore holomorphe, avec la formule de dérivation fog =
(f' og) x g’. La réciproque d’une fonction holomorphe bijective est encore holomorphe avec la formule de
dérivation ordinaire (f *1)I = W

Toutes ces propriétés se voient immédiatement en utilisant le point de vue “dérivable au sens complexe” de
I’holomorphie.

On conclut ce chapitre par un corollaire de la preuve de I'implication (i)=(ii) du théoréme d’équivalence. Ce
résultat opératoire est souvent bien commode. Il a pour conséquence, notamment, que les rayons de tous les
développements en séries entieres d’une fonction holomorphe sur C sont infinis.

Proposition (rayons des DSE d’une fonction holomorphe))
Soient U un ouvert de C, f € OU) et w € U. Soit R = sup{r >0, D(u,r) CU}. Alors, le rayon du
développement en série entiére de f en u est supérieur ou égal a R.

au moins égal a la distance de u au bord de U. Relier cela au A noter

Autrement dit, le rayon du développement en série entiere de f en u est @ U
de la proposition 1.3.2.

N. Pouyanne, UVSQ 2026, LSMA621 29



2 Différentiabilité, Cauchy-Riemann, prolongement analytique
2.1 Dérivées complexes d’ordres supérieurs

Définition (dérivées d’ordre supérieur au sens complexe, classe C*)

Soient U un ouvert de C et f : U — C une application. On dit que f est de classe C' sur U lorsqu’elle y est
dérivable au sens complexe et lorsque sa dérivée (premiére) f’ est continue — on dit aussi que f est contindment
différentiable sur U. Par récurrence, pour tout entier n > 2, on dit que f est de classe C™ sur U lorsque [y est
de classe C"~! et lorsque sa dérivée (n — 1)° est de classe C! ; la dérivée de la dérivée (n — 1)° est alors appelée
dérivée n® et on la note comme toujours f(™. Lorsque f est de classe C" pour tout n > 1, on dit que f est de
classe C*.

Proposition (le DSE en un point d’une fonction holomorphe est celui de Taylor)
Soient U un ouvert de C et f € O(U). Alors, f est de classe C*° sur U et, pour tout u € U, le DSE de [ au
voisinage de u est

% t(n)(y
fey =3 LW,
n=0 '

n

PREUVE. Soit u € U. Puisque f est holomorphe, elle est DSE au voisinage de u. Soient r > 0 et (an),cy
une (la, & vrai dire, puisqu'on a déja vu qu’elle est unique) suite de nombre complexes telles que pour tout
z € D (u,r),

f(z) = Z anz".

n>0

Alors, le théoreme de dérivation des séries entieres assure que f est dérivable sur D (u,r), que sa dérivée f’ est
également DSE en u — avec un rayon de convergence au moins égal a celui du DSE de f — et que le DSE de
/! s’obtient en dérivant terme a terme le DSE de f. Cela valant pour tout u € U, on en déduit que f' € O(U).
Par récurrence, il est alors immédiat que f est de classe C* sur U, et que pour tout n > 1, le DSE de f(™) en
u s’obtient en dérivant terme a terme et s’écrit

Ji) (z) = Z <n Z k) Elanp(z —u)*.

k=0

n

0>a" = nla,, ce qu'il fallait démontrer. ®

En particulier, en prenant la valeur en u, on obtient que f™ (u) = n!(

A noter
(i) On peut encore écrire le DSE en u de f sous la forme

% 4(n)(y
f(quz):Zif n'( )z"

n=0

(ii) La proposition montre que la notion de fonction de classe C™ au sens compleze n’a qu'un tres faible intérét
puisque lorsqu’un fonction est dérivable (une fois) au sens complexe, elle est automatiquement de classe C*°. La
seule motivation consiste & donner du sens a la dérivée n® qui apparait dans le développement de Taylor. On
aurait pu s’en passer en définissant (") (u) par récurrence en utilisant Pimplication g € O(U) = ¢’ € O(U).

Proposition (formule intégrale pour les dérivées d’ordres supérieurs)

Soient U un ouvert de C et f € O(U). Alors, pour tout z € U, pour tout r > 0 tel que D (z,7) C U et pour
tout n > 0,

f ( ) /C'(z,r) (C - z)nJrldC. (9)

2

PREUVE. La preuve du (i)=-(ii) du théoreme d’équivalence pour les fonctions holomorphes montre que, dans
les conditions de 1’énoncé, le coefficient de (u — 2)™ dans le développement de f(u) au voisinage de z est

ﬁ fC(z ” %d( . Combinée avec le théoreme d’unicité du DSE, la proposition précédente montre la formule
cherchée. [ |
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A noter

On avait déja vu que la valeur d’une fonction holomorphe sur un disque ouvert est déterminée par ses valeurs
sur le cercle, frontiere dudit disque. Toutes les dérivées dans le disque sont donc également déterminées par les
valeurs de la fonction sur le cercle. La proposition donne des formules intégrales de ces dérivées, qui s’averent
souvent bien commode pour obtenir des majorations. C’est 1a une des manifestations de la puissance opératoire
de la formule de Cauchy.

Corollaire (inégalités de Cauchy)
Soient U un ouvert de C, f € O(U). Alors, pour tout r > 0 tel que D (z,7) C U et pour tout n € N, le n®
coefficient du DSE de f en z vérifie

|f(n)(z)} < maXBD(z,r) |f|

nl 7 ™

PREUVE. On part de la formule intégrale (9) qui fournit, par majoration standard, I'inégalité

(n) 1 1 A .
PPN L L x 2mr = P0G ]
n! 21 vt 9D (z,r) ™ [ ]

A noter
Avec les notations de la proposition, les inégalités de Cauchy permettent de comparer les coefficients du DSE
en un point d’une fonction holomorphe aux suites géométriques de raisons %, pour tout r €]0, R].

2.2 Prolongement analytique

Définition (partie discrete)
Une partie A de C est dite discréte lorsque tous ses points sont isolés. Autrement dit, lorsque pour tout a € A,
il existe r > 0 tel que

AND (a,r)={a}.

Exercice 29 Une partie de C a la fois discréte et compacte est finie.

[Un conseil : utiliser la propriété de compacité sous la forme de tout recouvrement ouvert, on peut extraire un recouvrement fins.]
Théoréme (les zéros d’une fonction DSE sont isolés)

Soient U un ouvert connexe de C et f : U — C une application DSE non nulle sur U. Alors, l’ensemble des
zéros de [ est une partie discréte de U.

PREUVE. En notant f4 la restriction de f & une partie A de U, soient N = {z eU, Ir>0, fiper = 0}, et
1, la fonction indicatrice de N sur U — elle vaut 1 sur A et 0 en tout autre point de U. Par définition de N,
si 1ps vaut 1 en un point z € U, elle vaut 1 sur un disque ouvert centré en z. Inversement, si 1n vaut 0 en un
point z € U, la fonction f n’est identiquement nulle sur aucun voisinage de z ; le principe des zéros isolés pour
les séries entieéres garantit donc qu'il existe r > 0 tel que f ne s’annule pas sur D (z,7) \ {z}. En particulier, 1
vaut encore 0 sur D (z,7). On a montré que 1p : U — {0, 1} est localement constante sur le connexe U. Elle
est donc constante. Comme f n’est pas la fonction nulle, 15r = 0 et donc N' = ). On a montré que I’ensemble
des zéros de f est discret puisque, si z est un zéro de f, comme il n’est pas dans N, le principe des zéros isolés
garantit qu’il existe un voisinage de z sur lequel f ne s’annule qu’en z. [ |

A noter

(i) Passer du principe des zéros isolés a la discrétion des zéros d’une fonction holomorphe sur un connexe ne
demande qu’a traiter l'affaire de la connexité. On a fait ici le choix d’éviter de parler de topologie induite.
Pourtant, cette derniére preuve se trouve plus intelligible lorsqu’on raisonne avec cette notion.

(ii) La connexité est essentielle, bien stir. La fonction valant 0 sur D (1,1) et 1 sur D (—1,1) est analytique ;
pourtant, 'ensemble de ses zéros n’est pas discret puisque c’est D (1,1).

Exemple
La formule cos 2z = cos? z — sin” z est valide pour tout z € R, c’est une formule trigonométrique ordinaire. On
en déduit qu’elle est valide pour tout z € C puisque R n’est pas une partie discrete de C.

[Bon, d’accord, cette formule est facile & prouver directement, mais ce que dit le raisonnement, c’est qu'une fois qu’on la connait sur R, elle
est vraie sur C.]

2
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Corollaire (cardinal des zéros d’une fonction DSE)
Soient U un ouvert connexe de C et f une fonction DSE sur U, non nulle. Alors, le cardinal de [’ensemble des
zéros de [ est fini ou dénombrable.

PREUVE. On note Z(f) 'ensemble des zéros de f et K = [0,1] +4[0, 1]. Alors, C est 'union dénombrable des
compacts z + K ou z € Z + iZ a une partie réelle et une partie imaginaire entieres. Or, pour tout z € Z + iZ,
lintersection de z + K et de Z(f) est a la fois discréte — Z(f) lest — et compacte — K est compact et Z(f)
est fermé puisque f est continue ; ainsi, (z + K) N Z(f) est fini. [ |
Exercice 30

Montrer que toute partie discrete de C est finie ou dénombrable.

[Le corollaire est évidemment une conséquence immédiate de cela et du théoréme qui précede.]

Corollaire (nullité d’une fonction holomorphe sur un connexe)
Soient U un ouvert conneze de C, f € O(U) et u € U. Alors, les assertions suivantes sont équivalentes.

(i) f est nulle sur un disque ouvert non vide contenant u
(ii) fO) (u) = 0, pour tout n € N
(iii) f est nulle sur U.

PREUVE. C’est une conséquence immédiate du fait que les zéros de f sont isolés. [ ]

Exercice 31
Soit U un ouvert de C. Alors, 'anneau O(U) est intégre si, et seulement si U est connexe.

Corollaire (principe du prolongement analytique)
Soient U un ouvert connezxe et f,g € O(U). Si f et g coincident sur une partie non discréte de U, alors elles
coincident sur U tout entier.

PREUVE. C’est une conséquence immédiate du fait que dans U, les zéros de f — g sont isolés. [ ]

Exercice 32

Si A est une partie de C et si a est dans ’adhérence de A, on dit que a est un point d’accumulation de A lorsque
Vr > 0,3z € AN (D (a,r)\ {a}). Montrer quune partie de C est discréte si, et seulement si elle ne contient
pas de point d’accumulation.

2.3 Le théoréme de Liouville

Définition (fonction entiére)
Une fonction est dite entiére lorsqu’elle est holomorphe sur C (tout entier).

Théoréme (de Liouville®)
Toute fonction entiére et bornée est constante.

PREUVE. Soit f € O(C) et M > 0 tel que |f(2)] < M, pour tout z € C. Alors, les inégalités de Cauchy en 0
montrent que pour tout r > 0 et pour tout n > 0,

(n)

Fm©) M

n! rn
En faisant tendre r vers l'infini, cela entraine que les coefficients du DSE de f en 0 sont tous nuls, sauf le
coefficient constant — sur lequel les inégalités de Cauchy ne disent rien. Donc f est constante sur un disque
ouvert centré en 0. Par prolongement analytique, cela implique que f est constante. [ ]

A noter

Une série entiere est analytique sur son disque de convergence. La preuve que l'on a faite page 24 de ce résultat
montre en particulier que lorsqu’une fonction est entiere, le rayon de son DSE en chaque point de C est infini
— voir le (i) du A noter qui suit cette preuve. Cela permet de conclure la preuve du théoreme de Liouville
présentée ci-dessus sans avoir recours au théoréme du prolongement analytique : le DSE(0) de f est valide sur
C tout entier puisque son rayon est infini.

“Joseph Liouville, 18091882
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2.4 Différentiabilité en 2 variables, équations de Cauchy-Riemann

Dans tout ce paragraphe, on note z la variable complexe générique et = et y ses parties réelle et imaginaire si
bien que z = z + iy. On identifie comme d’habitude C & I’espace euclidien R? standard, ou encore & ’espace
euclidien des vecteurs-colonne My ; (R) au moyen des applications R-linéaires bijectives isométriques

~

Ma1 (R) R2 — C
()
—
Y
Ainsi, par exemple, on notera (1,i) la base canonique de R?, qui oriente le plan euclidien R? dans tout ce

paragraphe. Au moyen de cette identification, tout ouvert de C est aussi un ouvert de R? et on notera de la
méme facon sa version réelle dans R? et sa version complexe dans C, par ’abus de notation

(x,y) +— z=z+1iy

U={(z,y) €ER?, (z,y) €U} ={(z,y) €R*, a+iyec U} ={z€C, z€U}.

Si U est un ouvert de C et si f : U — C est une application, on notera de fagon générique P(z) = P(x,y) et
Q(z,y) = Q(2) les parties réelle et imaginaire de f(z) = f(x,y). Ainsi, P et @ sont des applications R? — R
qui vérifient : Vz =z + iy € U,

f(z) = P(2) +iQ(2) ou encore f(z,y)= P(z,y)+iQ(z,y)

et aussi toute combinaison équivalente qui mélange les notations dont on convient.
[En particulier, P(z,y) = R (f(z + iy)) et Q(z,y) = S (f(z + iy)).]

2.4.1 Les applications C-linéaires, ou similitudes directes planes

Parmi les applications R-linéaires R2 — R? se trouvent les trées particulieres applications C-linéaires C — C.
Ces dernieres sont évidemment les applications de la forme z +— az ou a € C.

Proposition (matrice réelle d’une application C-linéaire)
Soita =a+1if € C ou o, B € R. Alors, la matrice de 'application R-linéaire s, : C — C, z — az dans la base
canonique C de R? est

Matc () = (g *5) .

«

PREUVE. Il suffit de faire le calcul : s,(2) = az = (a +i8)(z + iy) = (ax — By) + i (Bx + ay). u
A noter
(i) sq est inversible (bijective) si, et seulement si a # 0, son inverse étant alors s /4.

(ii) Avec les notations de la proposition, en tant qu’application R-linéaire, le polynéme caractéristique de s, est

det (idgz —Xs4) = X? — 2R(a)X + |a|? = (X —a) (X —q).

En particulier, si a ¢ R, la matrice (g _aﬁ) est diagonalisable sur C, semblable a (g g), mais pas sur R

puisqu’elle a des valeurs propres non réelles.

(iii) Dans I’espace euclidien R? standard, la base canonique (1,4) est orthonormée — on a choisi de la prendre

pour orienter cet espace. Par ailleurs, toute matrice orthogonale de dimension 2 est de la forme (g _CS) ou

<z _SC> avec s,c € R et ¢2 + 52 = 1, selon qu’elle a pour déterminant 1 (matrice de rotation) ou —1 (matrice

C

-8 . X
s ¢ ) commutent, ce qui entraine

de réflexion). Le calcul montre aisément que deux matrices (g _aﬁ) et (

que la matrice de s, est celle de I’énoncé de la proposition non seulement dans la base canonique de R?, mais
aussi dans n’importe quelle base orthonormée directe de R2.
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(iv) Soient «, 8 € R, non tous les deux nuls. Soit alors 6 € R vérifiant \/ﬁ = cosf et \/%752 = cosf —

un tel 6 existe et est unique modulo 277. Alors, la matrice ci-dessus est le produit d’une homothétie et de la
rotation d’angle 6, comme le montre la calcul immédiat

(g —ﬂ):\/m(cose —sin&)'

« sinf  cos6

Définition (préserver les angles orientés (de vecteurs de ’espace euclidien standard R?))
On dit qu'une application R-linéaire s : R? — R? préserve les angles orientés (de vecteurs de 1'espace euclidien
standard R?) lorsque s est I’application nulle ou lorsque s est bijective et vérifie

Yu, v ERQ\{(g)}, m: m

A noter
(i) L’angle de deux vecteurs @ et o d’affixes respectifs u et v est bien défini dans le cas ofl ni u ni v ne sont

nuls. Dans ce cas, la mesure principale de 'angle orienté de vecteurs (7, 7) est
— v
u,v) = Ar, <7> .
(u, ) g,

ou Arg z €] — 7, 7] désigne argument principal du complexe z.
(ii) Dans le jargon, une application linéaire R? — R? qui préserve les angles orientés est un similitude plane
directe.

Exercice 33 o
Siu,v € C\ {0} et si § € R, la mesure principale de l’angle orienté de vecteurs (u,v) est 6 si, et seulement si

0 €| —mmet
v o U

Exemples

(i) Si p € R\ {0}, on note h, = pidg> Phomothétie de rapport p. Il est immédiat que les homothéties préservent

les angles orientés, puisque une homothétie h, est bijective et vérifie Arg Z"EZ% = Arg Z—Z =Arg ..
13

(ii) Dans ’espace euclidien orienté R?, I’expression complexe de la rotation d’angle € R est rg : z — €92, 1l

est a nouveau immédiat que les rotations préservent les angles orientés, puisque toute rotation ry est bijective
0

et vérifie Arg 7€) = Arg €0V = Arg L,

ro(u) eify
(iii) Un calcul analogue montre que toute application C-linéaire préserve les angles orientés — noter qu'une
application C-linéaire non nulle est bijective. Noter en passant que si a € C\ {0} s’écrit sous forme géométrique
a=re? olir >0et @ €R, alors s, = hy 0rg =79 0 hy.

Proposition (les applications C-linéaires préservent les angles et vice-versa)
Soit s une application R-linéaire R? — R2. Alors, s préserve les angles orientés si, et seulement si elle est
C-linéaire.

PREUVE. Le sens réciproque est montré dans les exemples qui précedent. On suppose que s € Homp (RQ) est
bijective et préserve les angles orientés. On note (g g) sa matrice dans la base canonique de R2. On note

aussi a = (1) = a+if et b = s(i) = y+1id. Puisque s est injective, ni a ni b ne sont nuls. Alors, s(14¢) =a+b

—

et la préservation des angles (1,4) et (1,14 ¢) par s s’écrit

b .a a+b x Q

. vy

— =i et —— =¢e"1T —.
bl lal " la+0] lal

“Une question de fondements : d’ou cela vient-il exactement ?
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On note r = ||b|| > 0. Alors, la premiere égalité s’écrit b = iar et en élevant au carré la seconde, on obtient

(1+ir)? = i(l +7“2), ce qui impose que r = 1 et donc que b = ia, ou encore que (g) = (_aﬂ). Avec les

notations de la proposition matrice réelle d’une application C-linéaire ci-dessus, on a montré que s = s,. |

2.4.2 Les équations de Cauchy-Riemann

On reprend les notations génériques f = P +iQ) = (g) lorsque f est une fonction complexe de la variable

complexe. Soient U un ouvert de C et f € O(U). Alors, f est contintiment dérivable et pour tout z € U,

fz+h) = f(z) + f'(2)h + o(h) (10)

lorsque le nombre complexe h tend vers 0. On note respectivement o = «(z) et 8 = [(z) les parties réelle et
imaginaire de f’(z), si bien que

f'(z)=a+iB
avec a, 5 € R. Si 'on considere f selon le point de vue d’une fonction de deux variables réelles, en notant
z=x+1iy = (z,y) et h=k+il = (k,0) avec z,y, k,{ € R, selon I’étude du paragraphe 2.4.1, cela s’écrit :

f(x+k,y+€):f(x,y)+(g _aﬂ) <€)+o<§) (11)

lorsque le vecteur (lz) de R? tend vers (8) Autrement dit, f est différentiable sur U et, pour tout (x,y) € U,

sa matrice jacobienne en (x,y) s’écrit

Py Ly
B ox "’ oy (o -8
Jac(ay (f) = 0 0 N <5 a > '
%(xa Y) By - (z,9)

On rassemble cette inégalité sous la forme des célebres équations dites de Cauchy-Riemann.
Théoréme (équations de Cauchy-Riemann)
Soient U un ouvert de C et f = P +1iQ € O(U) selon les notations génériques. Alors, en tout point de U,

PLLE I
or dy dy Oz

.. 0 f oP 8Q 8 f oP BQ
O Y el
( m) - + gjyc 0.
PREUVE. Tout le travail est fait dans 'introduction de cette section. ]

Corollaire (une fonction holomorphe non constante n’est pas réelle)

Soient U un ouvert connexe de C et f € O(U). Si f est a valeurs réelles, alors f est constante.

PREUVE. Avec les notations ci-dessus, si f est a valeurs réelles, alors @ est identiquement nulle. Les équations
de Cauchy-Riemann assurent alors que les dérivées partielles de P sont identiquement nulles, et ainsi que
f'(z) = 0, pour tout z € U. Comme U est connexe, cela entraine que f est constante. [ ]
A noter

(i) Les fonctions P et Q sont & valeurs réelles. A moins qu’elles ne soient constantes, cela implique qu’elle ne
sont pas holomorphes. Attention & ne pas se laisser tenter par 1’écriture formelle “f'(z) = P'(z) +iQ'(2)” qui
n’aurait en général pas de sens.
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(ii) Les assertions (i), (ii) et (iii) du théoreme sont trois formulations équivalentes des liens entre les dérivées
partielles de P et Q. Elles expriment le fait que la différentielle de f est C-linéaire.

(iii) Les équations de Cauchy-Riemann constituent aussi une condition suffisante de dérivabilité au sens com-
plexe. Cela est établi par I'équivalence immédiate entre les formules (10) et (11). On obtient ainsi I’énoncé
suivant.

Proposition (holomorphe signifie différentiable plus Cauchy-Riemann)
Soient U un ouvert de C et f : U — C une application. Alors, f est holomorphe si, et seulement si f est

différentiable (sur U, au sens des fonctions de 2 variables réelles) et vérifie — +i—— =0 sur U.

or dy

Exercice 34
Dans la méme veine que le corollaire, montrer qu’une fonction holomorphe non constante ne prend pas ses
valeurs dans une droite du plan.

2.4.3 Angles infinitésimaux

Définition (angle infinitésimal (orienté))
Soient 7q : [a,b] — C et 1 : [¢,d] — C deux chemins de classe C! de C, tq €]a, b] et t; €]c,d]. On suppose que
(i) les supports de g et y1 se coupent en un point p = o (tg) = 71 (1) ;

(i) 7o (to) # 0 et 71 (t1) # 0.
Alors, langle infinitésimal (orienté) entre o et 41 en (tg,t1) est Pangle orienté entre les vecteurs tangents
¥ (to) et 1 (t1) — en rouge sur le dessin.

Yo

7

Exemple

On considere les chemins g : t € [0,27] 5 e et vy : t € [~2,2] = t+it?
dont les supports sont respectivement le cercle unité et une portion de
la, parabole d’équation y = z2. Le point d’intersection de leurs sup-
ports dans le premier quadrant est le point dont les coordonnées (x,y)
vérifient & la fois 22 + y2 = 1l et y = 22 : clest p = (\//7, p) ol
p = % ~ 0.61803. Sur 7, c’est le point de parametre t; = /p
; sur g, c’est le point de parametre fy = arccos,/p = 0.66624.
On calcule les vecteurs tangents : 7y(to) = e = —p + i\/p et
yi(t1) = 1+ 2iy/p =~ 1+ 1,57230i. L’angle infinitésimal entre les 70

chemins 7y et 7; en leur point d’intersection p en les parametres
142i/p
—p+iy/p

Arg Z5E = Arg (142ip) (—vP—i) = Arg(Vp—i(l+20) =
— arctan (ﬁ + 2\/ﬁ> ~ —T70°

Définition (préserver les angles infinitésimaux orientés)

Soient U un ouvert de R? et f : U — C une application de classe C'. On dit que f préserve les les angles
infinitésimauz orientés lorsque pour tout couple (7g,71) de chemins de classe C! de U, pour tout couple de
parametres (to,t1) tels que vo (to) = 71 (o) et v (o) v (t1) # 0, 'angle infinitésimal (orienté) entre g et ;1 en
(to,t1) égale angle infinitésimal (orienté) entre les chemins f oy et f o~y en (to,1).

g4l

respectifs arccos,/p et ,/p a pour mesure principale Arg
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Autrement dit, lorsque

(4 (to) 71 (41) ) = (£ (3 (t0)) DS (3 (1)) ),
ol z =y (to) = 71 (t1) et Df,(h) désigne 'image de h par la différentielle de f en a.

Proposition (les fonctions holomorphes préservent les angles infinitésimaux et vice-versa)
Soient U un ouvert de R? et f : U — C une application de classe C*. Alors, f préserve les angles infinitésimauz
orientés si, et seulement si elle est holomorphe.

PrREUVE. 1l suffit de faire le calcul : f préserve les angles infinitésimaux orientés si, et seulement si sa
différentielle préserve les angles orienté de vecteurs, ce qui équivaut a sa C-linéarité — autrement dit, a la
dérivabilité de f au sens complexe. [ |

A noter
Si f est holomorphe, en reprenant les notations de la définition ci-dessus, si on note z = g (t9) = 1 (¢1), la
préservation de angle infinitésimal entre les chemins vy et 41 en (tg,t1) s’écrit

_— -

(46 (t0) 75 (1) ) = (#(2) x 3% (t0) . (2) x 34 (1) ).

ce qui tombe sous le sens puisque la similitude directe ¢ — f’(2)¢ préserve les angles orientés.

Exemples sans paroles
Les dessins ci-dessous représentent 'image — bleue — d’un carré grillagé — rouge — par les fonctions indiquées.
On y voit la préservation de 'angle infinitésimal.

.

-500

T
LT o |
11
2 1 2
Z'—)% zvﬁg 2 /10 zH(%) e#/140

Corollaire (une fonction holomophe de module constant est localement constante)
Soient U un ouvert connexe de C et f € O(U). Si |f] est constant sur U, alors f est constante sur U.

PREUVE. Puisque f est a valeur dans un cercle, les angles infinitésimaux des images de deux chemins qui se
coupent sont tous nuls. Donc f’ est nulle sur le connexe U, ce qui entraine que f soit constante. |

Exercice 35
Faire une preuve de ce corollaire en n’utilisant que les équations de Cauchy-Riemann.

Exercice 36
Plus généralement, montrer que si une fonction holomorphe sur un ouvert connexe est a valeur dans le support
d’un chemin (de classe C! par morceaux), alors f est constante.

2.5 Le principe du module maximum

Si A est une partie de C, on note A son adhérence pour la topologie usuelle, et A = A\ A sa frontiere — qu’on
appelle aussi son bord.

Théoréme (principe du module maximum pour les fonctions holomorphes)
Soient U un ouvert borné de C et f : U — C une application continue, holomorphe sur U. Alors,
(i) le mazimum de |f| est atteint en un point de OU ;
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(ii) si Vouvert U est connexe et si le maximum de |f| est également atteint en un point de U, alors f est
constante sur U.

PREUVE. Noter que puisque f est continue sur le compact U, sa borne supérieure sur U est un maximum.
Ainsi, il suffit de prouver (ii). On suppose que le maximum de |f| sur U est atteint en un point zy € U. Soit
r >0 tel que D (z9,7) CU. On note M, = max{|f (z0 + u)|, |u| =r} le maximum de f sur le cercle de centre
zo et de rayon r — qui est compact. La formule intégrale de Cauchy

27
f(z0) = %/0 f(z0+re)dt

montre que |f (z0)| < M, avec égalité seulement si | f| est constante, égale & | f (20)], sur le cercle de centre z; et
de rayon r — g’il faut, voir ou revoir I’argumentation du cas d’égalité dans la majoration standard d’une intégrale
curviligne, page 16. Or, puisque |f (z0)| est le maximum de |f| sur U tout entier, on a aussi M, < |f (z0)|. On
est dans le cas d’égalité : |f (z0)| = M, et donc |f| est constante, égale & |f (20)|, sur le cercle de centre z et
de rayon r. Puisque cela est vrai pour tout r > 0 tel que D (z9,7) C U, cela entraine que |f| est constante
au voisinage de zg. Autrement dit, la fonction holomorphe f est & valeur dans un cercle sur un disque ouvert
centré en zy. Par conservation des angles infinitésimaux, on en déduit que f est constante sur ce disque ouvert.
Ainsi, par prolongement analytique, puisque U est connexe, f est constante sur U. u

Corollaire (principe du module maximum, version extremum local)
Soient U un ouvert connexe de C et f € O(U). Si |f| a un mazimum local, alors f est constante.

PREUVE. Si|f|aun maximum local en zy € U, alors |f| atteint ce maximum sur un ouvert connexe et borné de
la forme D (zg,7), 7 > 0, & adhérence duquel f se prolonge en une application continue. Donc f est constante
sur D (zp,r), donc sur U tout entier par prolongement analytique. [ ]

Exercice 37
Soit f une fonction holomorphe sur un ouvert connexe. Montrer que si f ne s’annule pas et si | f| a un minimum
local, alors f est constante.

A noter
On appelle parfois “paysage” d’une fonction holomorphe f le graphe de I'application z — |f(z)], ou encore de

(x,y) = | f(z,y)|. Cest une surface de R?. Ce que dit le principe du maximum, c’est que dans le paysage d’une
fonction holomorphe, les sommets sont & I’horizon — au bord de 'ouvert.

Cela est illustré sur les trois dessins qui suivent. Les fonctions dont on dessine le paysage sont mentionnées dans
les 1égendes. Les ouverts au dessus desquels ces paysages sont pris sont tous des carrés centrés a ’origine.

[N

hed
w n
[N

N
W

IIITIVII

n

R RERE

54
73

M T TI T[T TTrT
-1 -0.5 0 0.5 1

z > |sin z 4 sinh z|
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Proposition (lemme de Schwarz®)

On note D = D (0,1). Soit f € O(D). On suppose que f(0) =0 et que |f(z)] < 1, pour tout z € D. Alors,

(i) |f(2)] < |z|, pour tout z € D ;

(i3) s’il existe zo € D\ {0} tel que |f (20)| = |20|, alors f est une rotation : il existe § € R tel que f(z) = "z,
pour tout z € D.

PREUVE. (i) Puisque f(0) = 0, 'application g : z — @ se prolonge en 0 en une fonction holomorphe sur D.
Pour tout r €0, 1[, le principe du module maximum appliqué & g sur D (0,7) assure que le maximum de |g| sur
le compact D (0,7) est atteint sur son bord ; ainsi, |g(2)| < %7 pour tout z € D (0,7). On en déduit que Vz € D,
Vr €]lz|,1[, [g(z)| < . En passant a la limite r — 1, on obtient que Vz € D, |f(z)| < |z|.

(ii) Si un tel zg existe, le module de la fonction g € O(D) ci-dessus atteint son maximum en un point intérieur
au connexe D. Ainsi, g est constante, égale & u € C, comme le garantit le principe du module maximum. Sa

valeur en zy assure que |u| = 1. [ |

2.6 Suites de fonctions holomorphes, intégrales a parametres

Proposition (convergence uniforme de fonctions holomorphes)
Soient U un ouwvert de C et (f,), oy une suite de fonctions holomorphes sur U.
(i) Si la suite de fonctions (fy),cyn converge uniformément sur tout compact de U vers f : U — C, alors la
suite des dérivées (fy,), cn converge aussi uniformément sur tout compact de U, f € O(U) et
f = lim f].

n—oo

(ii) Si la série de fonctions E fn converge uniformément sur tout compact de U, alors la série des dérivées

n

Z 11, converge uniformément sur tout compact de U, Z fn€OU) et
n neN

(X h) =1

neN neN

PREUVE. C’est la formule de Cauchy. Il suffit de montrer (i) puisque (ii) en est une conséquence directe en
raisonnant sur les sommes partielles. Puisque f est limite uniforme de fonctions continues, elle est continue
sur U. Les intégrales curvilignes qui suivent ont donc un sens. Soit u € U. Soit r > 0 tel que D (u,r) C U.
Alors,
1
Vn €N, Vz € D (u,r), fn(z):f/ Md{
2 Joqury € — 2
On passe a la limite n — oo, interversion de la limite et de 'intégrale étant garantie par la convergence
uniforme de la suite de fonctions ¢ — JZ%(CZ) sur le cercle de centre u et de rayon r. On obtient ainsi
1 f(Q)

2im Joqur C—2

Vz € D (u,r), f(2) dg,

ce qui entraine I'holomorphie de f sur D (u,r). On a montré que f est holomorphe sur U. De la méme facon,
le passage a la limite dans 1’égalité

VneN, Vz e D (u,r), f;l(z):;?r/c( )(gfn—(i))zdc

montre que f’ est la limite simple des f/,. Enfin, si K est un compact de D (u,r) et si § est la distance de K
au cercle de centre u et de rayon r, alors 6 > 0 et [ — z| > 4, pour tout z € K et pour tout ¢ sur le cercle de
centre u et de rayon r. Par conséquent, la majoration standard fournit ’'inégalité

/ f(C) — fn(C)
C(u,r)

r

a < 5

VneN, vz € K, |f/(s) ~ fa(a) = 5

sup ‘f - fn‘

D(u,r)

(€—2)?

“Hermann Amandus Schwarz, 1843-1921
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qui montre le convergence uniforme des dérivées sur K. Comme les disques ouverts D (u,r) CU, u € U, r >0
forment un recouvrement ouvert de U, cela suffit a prouver la convergence uniforme sur tout compact de la
suite des dérivées. [ |

A noter

(i) Par récurrence sur m, sous les hypotheses de la proposition, pour tout m € N, on a respectivement

neN neN

(ii) Les hypotheses relatives a la dérivation complexe sont plus faibles que celles relatives & la dérivation réelle
ordinaire : on n’a pas besoin de faire d’hypothése sur la convergence uniforme des dérivées pour conclure a la
dérivabilité de la limite.

(iii) On peut aussi énoncer une variante plus opératoire de cette proposition. La preuve est laissée en exercice
— on peut par exemple adapter la preuve ci-dessus, ou encore déduire ce résultat de la proposition précédente.

Proposition (convergence uniforme de fonctions holomorphes, version disques)
Soient U un ouvert de C et (fy,), oy une suite de fonctions holomorphes sur U.
(i) Si la suite de fonctions (frn),cy converge uniformément sur tout disque fermé inclus dans U vers f : U — C,

alors la suite des dérivées (f)), cn converge aussi uniformément sur tout disque fermé inclus dans U, f € O(U)

et
f'= lim f,.

n—oo

(ii) Si la série de fonctions g fn converge uniformément sur tout disque fermé inclus dans U, alors la série

n

des dérivées Z f, converge uniformément sur tout disque fermé inclus dans U, Z fn€OU) et
n neN

(X h) =1

neN neN

Exemple ultra classique
On note P le demi-plan ouvert P = {z € C, R(z) > 1}. Pour tout z € P et pour tout entier naturel non nul n,

1 1
nz| nX(z)
si bien que la série numérique ) n% est absolument convergente, donc convergente. La fonction ¢ de Riemann

est alors définie par

=1
Vz e P, C(’Z)ZZE
n=1

Si K est un compact de P, il existe a > 1 tel que K C {z € C, R(z) > «}, si bien que
1
7(1-

1
VzeK,Vn>1, |—|<
n? n
Comme n~“ est le terme général d’une série numérique convergente, la série > # de fonctions de z converge

normalement et donc uniformément sur tout compact de P. On en déduit que

la fonction ¢ est holomorphe sur P = {z € C, R(z) > 1}
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En outre, pour tout entier naturel m et pour tout z € P, la dérivée m® de { s’écrit

o

() = (Y LB
n=1

Proposition (intégrales & paramétres holomorphes)

Soient U un owvert de C et (X, F, u) une espace mesuré. Soit f:U x X — C. On suppose que :
(H1) pour presque tout x € X, Uapplication z € U — f(z,x) est holomorphe ;

(H2) pour tout z € U, Uapplication z € X — f(z,x) est mesurable ;

(H3) il existe g € LY(X, ) telle que |f(z,x)| < g(x) pour tout z € U et pour presque tout x € X.
Alors,

(i) Vapplication F : z — / f(z,x)du(zx) est holomorphe sur U ;
X

n

0
(i) pour tout z € U, pour tout n € N, la dérivée partielle x — 3

(iii) ¥z € U,¥n € N, F(™(z) :/ o f
D' az"

—(z,) est intégrable ;
z

(=, 2)dp(a).

PREUVE. C’est encore la formule de Cauchy. L’hypothese (H3) assure la définition de F'. Soit u € U. Soit
r > 0 tel que D (u,r) C U. Alors, pour presque tout € X et pour tout z € D (u,r),

fzz) = - /C 62 g,

- T (u,r) C— z
On s’appréte a intégrer en x. Or, pour tout ¢ € Supp C(u,r) et pour presque tout x € X,
‘f(@x) o 9@
C—z |~ [¢—2]

En paramétrant le chemin circulaire, le théoreme de Fubini-Tonelli assure donc que
27r

o 27
g(z)r
< A S <
N dn@ar < [ [ SR < ol < g

(notation évidente pour la distance). Alors, le théoréme de Fubini tout court implique que

1 F¢m) _ 1 Jx £ a)dpto) o L £
F(z) = 24T /X (/C(u,r) (—=z dC) dp(z) = 24T /C(u,,.) (—=z 6 = 2im Jeur) € — zdc

si bien que F' est holomorphe sur D (u,r). On a ainsi montré que F' est holomorphe sur U. L’inégalité de
Cauchy assure alors une inégalité de domination (locale) sur les dérivées partielles : pour presque tout x € X
et pour tout z € D (u,r),

f(u+re ) ire'

u+reit — z

o f

nlg(z)
@(Za :E) .

<
=7

Le raisonnement mené ci-dessus sur f appliqué aux dérivées partielles

o1 5L )
92" (z,2) = %in /C(u,r) (¢ — z)nH1 dg

montre a la fois (ii) — conséquence de Fubini-Tonelli — et (iii). [ |

Exemple ultra classique
On note Q le demi-plan ouvert Q = {z € C, (z) > 0}. Pour tout z € Q et pour tout ¢t > 0,

|t27167t| — t%(z)fleft

ce qui montre que t — t*“le~? est intégrable sur R — différentier I’étude en 0 et I’étude en +oo. La fonction
Gamma d’Euler™ est alors définie par

“Leonhard Euler, 1707-1783
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+oo
Vze Q, I'(z) :/ t*~letdt
0

Pour tous a, 8 réels vérifiant 0 < o < /3, on note B, g la bande verticale fermée
Bapg={2€C, a <R(z) <B}.
Soit alors zgp € Q. On choisit o, 3 tels que zp € By,g — il en existe, prendre par exemple a = %%(zo) et

B = 3R (2). Soit alors t > 0 et z € By g. D'un c6té, si 0 < ¢ < 1, alors [t*~Le~!| < t*~!e~". De l'autre coté, si
t>1, alors |t*"te™!| < tP~le~". Dans tous les cas, pour tout z € Bq g et pour tout ¢ > 0,

}tz_le_t’ < e tmax {t“_17tﬁ_1} .

Comme t — e !max {t”"l,tﬁfl} est intégrable sur R, cette inégalité est une inégalité de domination de
(2,t) = t*"te~! sur la bande B, g. Le théoreme des intégrales & parametres holomorphes montre ainsi que T
est holomorphe sur cette bande, donc en zy. On a montré que

la fonction T est holomorphe sur @ = {z € C, R(z) > 0}

En outre, pour tout n > 0 et pour tout z € Q, la dérivée n® de I' s’obtient en dérivant sous le signe somme :
elle s’écrit

“+o0
r™(z) = / t*~Y(logt) e dt.
0
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3 Le théoreme de Cauchy global

Proposition (existence locale de primitives pour une fonction holomorphe)
Soient U un ouvert de C et f € O(U). Alors, pour tout u € U et pour tout r > 0 tel que D (u,r) C U, la
fonction [ admet une primitive sur D (u,r).

PREUVE. On a déja vu cela dans la preuve du (iii)=-(i) du théoreme d’équivalence. En effet, en reprenant cette
preuve, on a montré d’abord que si f € O(U), son intégrale le long de tout triangle dont 1’enveloppe convexe
est incluse dans U est nulle — c’est I'assertion (). Soient alors u € U et r > 0 tel que D (u,r) C U. Comme
dans le (2) de la preuve du théoréme d’équivalence, 'application F': D (u,r) — C définie par la formule

F(z) = /S RAGLS

est bien définie puisque le segment [u, z] est inclus dans D (u,r) qui est lui-méme inclus dans U. En outre,
puisque son intégrale le long de tout triangle {u, z, z + h} inclus dans D (u,r) est nulle, la continuité f entraine
que F(z+h) — F(2) = hf(z) + o(h), ce qui montre que F est dérivable en z et que F'(2) = f(z), ce qu'il fallait
démontrer. ]

A noter

(i) Retenir la forme d’une primitive locale d’une fonction holomorphe, donné par une simple intégrale curviligne
le long d’un segment — comparer par ailleurs ce résultat au théoreme fondamental de I’analyse.

(ii) En utilisant le méme raisonnement, on montre que si V' est un ouvert étoilé de centre u contenu dans U, la
méme intégrale curviligne est bien définie et définit une primitive de f sur V tout entier.

Théoréme (invariance des intégrales de fonctions holomorphes par homotopie des chemins)
Soient U un ouwvert de C et f € O(U). Soient vy et v1 deux chemins U-homotopes. Alors,

/70 f(z)dz = /71 f(z)dz.

PREUVE. Soit H : [0,1]?> — U une U-homotopie entre les chemins 7o et 1, conformément aux notations de la
section 1.2.2.

Puisque H ([O, 1]2) C U est compact — c’est I'image continue d’un compact —, sa distance au fermé C\ U qu’il
ne rencontre pas est strictement pOSitiVG. [C’est un résultat général de topologie métrique : d’abord, si F' est fermé et si k ¢ F,
alors la distance de k & F, savoir d(k, F) = inf {d(k, f), f € F} est strictement positive. En effet, puisque C \ F est ouvert, soit r > 0 tel
que D (z,7) CC\ F ; alors, d(k, F) > r > 0. Ensuite, si F est fermé , si K est compact et si K N F = (), alors la distance de K & F, savoir
d(K,F) =inf{d(k, f), k € K, f € F}, est encore strictement positive. En effet, ’application € C — d(z, F) est continue (exercice) sur
le compact K. Elle y atteint donc sa borne inférieure : soit k € K tel que d(K, F') = d(k, F). D’aprés ce qui précede, d(k, F') > 0 et voila.]
Soit 6 = d (H ([0,1]*) ,C\ U) > 0 cette distance. Alors, D (z,6) C U, pour tout z € H ([0,1]?). En particulier,
le théoreéme d’existence locale de primitives assure que f admet une primitive sur tous les disques ouverts D (z, )

ou z € H ([0,1]?).
(1,1)

Pour chaque entier naturel non nul n, on découpe 'intervalle I { "
3 2,3

[0,1] en les n intervalles I, = [a,ap+1], 0 < k < n —1, ou

ar = % — a vrai dire, on devrait noter I avec un double

indice mentionnant n, mais on choisira un n plus bas ; ainsi,

pour alléger, on s’abstient. Alors, le carré [0,1]% est découpé

en les n? sous-carrés Cre=1px1p,0< k£ <n—1quiont

tous 1 pour longueur d’aréte. Co
O

1 12

Les Cy ¢ dans le cas n = 5

On note aussi ¢ ¢ le centre du sous-carré Cj . Comme la fonction H est uniformément continue — elle est
continue sur le compact [0,1]% —, on choisit n de sorte que H (Cj, ) soit dans le disque ouvert D (H (ckz),6),
pour tout (k,€) € {0,...n — 1}>. [Dans le jargon,

ni/ﬁ est un module de continuité uniforme de H pour §.]
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Cas

Cho

Alors, la fonction f admet des primitives sur chacun des disques ouverts D (H (cg ¢) , ), c’est une conséquence du
choix de . On note F, ¢ une primitive (holomorphe) de f sur 'ouvert D (H (ck¢),6), pour tous 0 < k, ¢ <n—1.

En particulier, en notant Yoi1, la restriction de g a l'intervalle I, — c’est encore un chemin —,

L ez - T / S ; / 7 (o(0) 7 0)dt.

£=0

Or, pour tout t € Iy, v (t) = H(0,t) € H (Co,) ; ainsi vy (I¢) est dans le domaine de définition de Fp ¢, de sorte
que f(v0(t)) = Fy, (10(t)). Alors, le théoreme fondamental de I'analyse assure que

/ [y = 3 / R (o) v (1)dt
Yo =0 v a¢

= > [Fox (o (art1)) = Foe (o (ar))] (12)
=0

= Y [Foeo H (ag,ars1) — Fog o H (ag, a)]
£=0

puisque ag = 0. De méme, puisque a, =1,

=

n—

f(z)dz =" [Fu 1400 H (an,ar41) = Foo100 H (an,ar)]. (13)

Y1 =0

~

[Noter qu’on a fait ici comme si yg et 1 étaient de classe Cl. Sils ne sont que de classe C! par morceaux, il faut raffiner ces sommes en
ajoutant une subdivision des I} qui tienne compte des sauts de dérivée de vo et 1. Quoi qu’il en soit, les formules (12) et (13) restent
valides telles qu’elles sont écrites.]

L’idée qui suit consiste a calculer les intégrales de f le long de tous les t — H (ag,t) qui prendront la méme
forme que dans les formules (12) et (13), d’utiliser que deux primitives different d’une constante sur un connexe
et de faire jouer le fait que tous les t — H (ay,t) prennent la méme valeur en 0 et la méme valeur en 1 puisque
qu’ils sont tous homotopes. Hélas, on n’a fait aucune hypothese de différentiabilité sur I’homotopie H, de sorte
que les t — H (ag,t) ne sont pas des chemins sur lesquels on peut intégrer f. Il n’empéche, on mime ces

intégrales en les remplagant par les sommes Z; qui suivent. [Ensuite, comme on dirait dans le jargon, il n’y a plus qu’a écrire
les “relations de cobord”, qui sont une maniére de nommer les annulations dans les sommes ci-dessous et qu’on rencontre dans d’autres
situations mathématiques, notamment dans le calcul (co)homologique.]

Pour chaque k € {0,...,n — 1}, on note

n—1

T = Y [Freo H (ak, ar1) = Fro o H (ar, ar)]
£=0
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— que Pon gagne & penser comme “I'intégrale de f le long du “chemin” ¢t € [0,1] — H (ay,t)”. Bien sir,

Io= | f(2)dz,

Yo

c’est la formule (12). Alors, on montre que

VkE{O,...n—l}, Tk :Ik+1-

En effet,
n—1
Iy —Ipt1 = Z [Fk,é o H (ak,ap+1) — Fr o0 H (ak,ae) — Frr1.00 H (ak+1,a041) + Frp100 H (ak+17ae)]
=0

Or, Vintersection des disques D (H (ck),0)
et D (H (ck+1,0),0) est convexe donc con-

nexe ; ainsi, puisque les fonctions Fj41¢ (ak+1,a0+1)
et Fj, sont deux primitives de f, leur

différence Fj41¢ — Fy ¢ est constante sur ce Cli’z .
connexe. Puisque I'image par H du segment Cht1,0

[(ak+1,ae), (aks1,ae+1)] est dans ce connexe,
on en déduit que

(ag+1,a0)

Fry1,00 H (a1, 0041) — Fry1,00 H (g1, 00) = Frp 0 H (Gg1, 6o11) — Fro 0 H (Gr41, ar)

— dans les deux derniers termes du crochet, on peut remplacer Fj, 1 par Fj . Ainsi, en intervertissant aussi
les deux termes centraux du crochet,

n—1
Ty — Ik = E (EFy0 H (ar,ap41) — Froo H (ary1,a041) — Freo H (ag, ar) + Frp o H (apy1,a0)].
£=0
P A  nouveau, lintersection des disques
Ch,0+1 R R D (H (cke),0) et D(H (ckes1),0) est
L] . . .
/ \ convexe donc connexe ; ainsi, puisque les
~ 1 . . o .
(ag,aps1) (art1,a041) L Ly fonctions Fy, s et Fy, 41 sont deux primitives
\ . ’
CIZ,Z I A \ de f, leur différence Fj 41 — Fj ¢ est cons-
| . .
— ) tante sur ce connexe. Puisque l'image par
\
/

R / H du segment [(ag,art1), (@gt1,ap41)] est
dans ce connexe, on en déduit que

FrooH (ar,ar41) — Frpoo H (aks1,0041) = F o1 0 H (ak, ao41) — Froo1 0 H (Qt1, ar41)

— dans les deux premiers termes du crochet, on peut remplacer Fj, ; par Fj, ¢y1. On obtient alors

n—1

I — Ipt1 = Z ([Fr,e41 0 H (ak, ap41) — Frp1 0 H (g1, a041) | — [Fre 0 H (ag, ag) — Fro 0 H (ag41,a0)])
=0

ou l'on voit que, a k fixé, les deux crochets sont tous de la forme ay41 — ay. Leur sommation ne laisse plus que
la différence des termes de bords, savoir

Ik 7Ik+1 = |:Fk,n OH(ak, ].) — Fk,n OH(ak+1, 1)} — [Fk,O OH(ak,O) — Fk,O e} H(ak+1,0)}

[Fk,n(b) — Fk,n(b)} — [Fk,o(a) - Fk,o(a)} —0

puisque, par définition de ’homotopie, tous les H(s,0) valent a et tous les H(s, 1) valent b. Ainsi, on a montré
que

/f@w=%=h+
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Il ne reste plus qu’a montrer que

aqz/fmw
Y1

ce qui se fait encore par le méme raisonnement qui conduisit plus haut a Zg = f% f(z)dz = Iy : on a encore
successivement

3
|
—

1,1 = [Fr—1,00H (an—1,a041) — Fr—100 H (an—1,a¢)]

S
[l
= O

= [Fro100H (an,ar41) — Foo1 00 H (an, a0)] = / f(z)dz.

71

T
o

A noter

L’idée globale de cette preuve consiste a utiliser ’existence locale de primitives de f pour montrer que les
intégrales de f le long de tous les chemins déformés ¢ — H(s,t) sont toutes les mémes. Cette idée trouve une
réalisation technique au prix du contournement d’écueils que 'on décrit dans la preuve. D’autres méthodes
de contournement sont possibles, que I'on laisse ici de c6té — approcher les faux chemins ¢ — H(s,t) par des
vrais chemins de classe C! par morceaux, par exemple, ou encore prendre un peu de hauteur théorique et traiter
préalablement I'intégration de formes différentielles.

Corollaire (intégration d’une fonction holomorphe le long d’un lacet homotope a zéro)
Soient U un ouvert de C et f € O(U). Soit aussi v un lacet de U, homotope a zéro dans U. Alors,

L F(2)dz = 0.

PREUVE. C’est une conséquence immédiate du théoreme d’invariance par homotopie des chemins, puisque
Iintégrale le long d’un lacet de longueur nulle est nulle. u

Corollaire (’indice est un invariant d’homotopie)
Soit U un ouvert de C et v et y1 deux lacets de U. On suppose que ~yy et 1 sont U-homotopes. Alors,

Vz € C\ U, Ind,,(2) =1Ind,,(2).

PREUVE. Siz € C\ U, la fonction ¢ C%z est holomorphe sur U. On applique le théoréme d’invariance des
intégrales de fonctions holomorphes le long de lacets homotopes. [ ]

A noter
En particulier, si z € C et si vy et 71 sont deux lacets homotopes dans C\ {z}, alors Ind,,(z) = Ind,, (2).

Exercice 38
Un cercle parcouru une fois dans le sens direct et le méme cercle parcouru deux fois dans le sens direct ne sont
pas homotopes dans le plan complexe privé du centre du cercle.

Théoréme (formule globale de Cauchy)
Soient U un ouwvert de C et f € O(U). Soit v un lacet de U, homotope d zéro dans U. Alors,

Ind, (2) x f(z) = i / Cf(_ozdc (14)

pour tout z € C\ Supp(7y).

PREUVE. On note g 'application définie sur U x U par

(0-1© 4 .
9(z,¢) = Z=¢
F2) sioz=C.
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Puisque f est holomorphe, g est continue — pour le voir simplement, écrire par exemple g sous forme intégrale :
g(z,¢) = fol f(¢C+t(z—))dt, des lors que [(, 2] C U. En outre, pour tout z € U, 'application g, : { — g(z,()
est holomorphe sur U. En effet, elle est évidemment dérivable au sens complexe sur U \ {z} et par ailleurs,

9:(¢) — g2(2) _ f(Q) = f(z) = ((=2)f'(2) 1 e
-z C— 2 o 2l )

ce qui montre que g, est dérivable en z et que sa dérivée en z est % f"(z) — noter que puisque f est holomorphe,
elle est dérivable & tout ordre au sens complexe. Ainsi, puisque 7 est homotope & zéro,

Yz e D, /g(z,()d( =0.
2!

e [

ce qui permet de conclure, puisque le membre de gauche de cette égalité est 2im Ind. (2) f(2). ]

Lorsque z ¢ Supp(y), cela s’écrit

A noter
(i) La formule (14) est souvent appelée formule (globale) de Cauchy.

(ii) Le cas ou l'indice de z par rapport & v vaut 1 revét une importance opératoire particuliere.
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4 La question des primitives et du relevement de I’exponentielle

4.1 Primitives d’une fonction holomorphe sur un ouvert simplement connexe

Le section précédente commence par une preuve de ’existence locale de primitives pour une fonction holomorphe.
On a vu, par exemple avec la fonction z — 1/z sur le disque ouvert épointé D (0,1) \ {0}, qu’une fonction
holomorphe sur un ouvert n’a généralement pas de primitive globale sur cet ouvert. Ce paragraphe traite d’une
condition suffisante sur un ouvert pour qu’une fonction qui y est holomorphe y admette une primitive.

Proposition (tout ouvert connexe de C est connexe par arcs)

Soit U un ouvert connexe de C. Alors, pour tous u,v € U, il existe un chemin de U (de classe C* par morceauz)
dont 'origine est u et lextrémité v.

PREUVE. Soit u € U. Pour tout z € U, on dira que z est relié¢ d¢ u lorsqu’il existe un chemin de U (de classe
C! par morceaux) dont l'origine est u et 'extrémité z. Soit f: U — {0, 1} 'application définie par : f(z) = 1 si
z est relié & u et f(z) = 0 sinon. On montre que f est localement constante. Puisque U est connexe et puisque
f(uw) =1, cela montre que f =1, ce qu’il fallait démontrer.

Soit z € U tel que f(z) = 1. Soit alors v un chemin de U reliant v & z. Puisque U est ouvert, soit r > 0 tel
que D (z,7) C U. Alors, pour tout w € D (z,r), la concaténation de v et du segment S(z,w) est un chemin
qui relie u & w. Cela montre que f est constante, égale a 1 sur D (z,r). Le méme raisonnement montre que si
f(z)=0et si D(z,7) C U, aucun point de D (z,7) n’est relié & u ; ainsi, f est nulle sur D (z,7). On a montré
que f est localement constante [ |

A noter
Une partie U de C est dite conneze par arcs lorsque Yu,v € U, 3y : [0,1] — U, continue, telle que v(0) = u et
~(1) = v. La proposition qui précéde montre en particulier que tout ouvert connexe de C est connexe par arcs.

Exercice 39 Tout connexe par arcs est connexe.

Définition (simplement connexe)

Une partie A de C est dite simplement connexe lorsqu’elle est non vide et lorsque tout lacet de A est A-homotope
a zéro.

A noter

Certains auteurs ajoutent la connexité a la définition de la simple connexité, en disant qu’une partie de C est
simplement connexe lorsqu’elle est connexe et lorsque tout lacet y est homotope a zéro.

Exercice 40
Montrer que A est simplement connexe si, et seulement si toutes les composantes connexes de A le sont.

Exemples
(i) Proposition Tout étoilé est simplement conneze.

PREUVE. Soient A une partie étoilée de C, a un centre de A et « un lacet standard de A d’origine a. Alors,
I’application
(s,t) — sa+ (1 —s)v(¢)

est une A-homotopie entre v et le lacet constant égal & a. Soit maintenant un lacet v d’origine quelconque
u € A, et soit ¢ un chemin standard d’origine u et d’extrémité a. On note ¢! : ¢ 5 ¢(1 — t) le chemin inverse
de c¢. Alors, le lacet ¢~ 'vyc a pour origine a. Selon ce qui précede, il est donc homotope & zéro. On conclut en
utilisant le dernier exercice de la section 1.2.2 et ’exemple qui le précede : d’abord, le lacet ycc™' ne differe de
¢ 'yc que par un changement d’origine ; puisque ce dernier, est homotope & zéro, ycc™' 'est aussi. Enfin, v
est homotope & zéro puisque yec™! lest. [ |

(ii) Proposition Tout conveze est simplement conneze.
PREUVE. Tout convexe est étoilé. [ |

(iii) Proposition (union de deux simplement connexes, vers van Kampen®)
St U etV sont deuz ouverts simplement connexes de C et si U NV est connexe, alors U UV est simplement
conneze.

“Egbert van Kampen, 19081942
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PREUVE. Soient u € U NV et v un lacet standard de U UV d’origine u. Puisque 7 est continu, v~ 1(U) et
7~1(V) sont des ouverts de I'intervalle [0,1]. On écrit chacun de ces deux ouverts comme unions d’intervalles
disjoints Z,, a € A ouverts dans [0, 1]. Les intervalles ouverts Z, recouvrent le compact [0, 1] ; on extrait de ce

recouvrement un recouvrement fini
n+1

[07 ” = U Jk
k=0

N

ol

e Jy est de la forme [0,bg[, 0 < by <1 ;

o J, i1 est de la forme Jap41,1], 0 < apy1 <1

o Ji = Jag, bi[ est un intervalle ouvert non vide, pour tout k € {1,...n} ;

e <a; <by<as<b <az<by<- - <ap_1<byp_o<a,<bp_1<apy1 <b, <1;
o Jo, Jo, Jy--- Sy HU) et Jy, J3,J5--- €y (V) — quitte & échanger U et V.

Pour chaque k € {1,...,n+ 1}, on choisit un nombre
cr € Jp N Jgyr1. On note aussi ¢cg = 0 et ¢ppo = 1 de
sorte que

n+1

[0,1) = U ¢k, Crt1]

k=0

O

C’
-
<

(a)():co<01<cz<--~<cn+1<cn+2:1;

(b) Ve €{0,...,n+2}, v(ck) €eUNV;

() v([co,e1]) , v ([e2,c8]) - CU

(d) v (ler, e2]) v ([es ea]) - C V.

En notant 7y la restriction de v & Uintervalle [c, ¢gp41],
cela entraine que 7y est le concaténé v = voy1 ... Ynt1-
Puisque tous les points 7 (¢) sont dans UNV, et puisque
U NV est connexe, on note d; un chemin standard de
UNV joignant v (ck) A et 6, " : t = d;(1—1) le chemin
inverse. Dans ces conditions, chaque (5;17k5k+1 est un
lacet de U ou un lacet de V, tous d’origine » ; comme
U et V sont simplement connexes, tous les d, 1'yk6k+1
sont homotopes & zéro dans U U V.

<
<

X

Par ailleurs, ajouter un aller-retour ne modifie pas la classe d’homotopie de sorte que v = Yovy1...Vnt1 €t
(607001) (5;17162) (5517353) (57;11%1,15”) (5glfyn§;i1) (0n+1Yn+19n+2) ont le méme classe d’homotopie —
noter qu’on peut choisir les lacets vy et 7,2 comme étant le lacet constant égal a u. Comme ce long concaténé
est un concaténé de lacets homotopes a zéro, v est homotope a zéro.

Enfin, si v est un lacet de U UV dont 'origine n’est pas dans U NV, si son support est dans U ou dans V, il
est homotope a zéro dans U UV puisque U et V sont simplement connexes ; si son support rencontre U NV, il
est aussi homotope a zéro dans U UV d’apres ce qui précede, puisqu'un décalage de son origine en un point de
U NV est homotope a zéro. [ |

Exemples

Simplement connexe Non simplement connexe
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A noter
On peut considérer ce résultat comme un prélude au magnifique théoreme de van Kampen, dont ’énoncé seul
nous emmenerait sur des rivages de la topologie algébrique, trop éloignés du présent propos.

Proposition (une fonction holomorphe a des primitives sur les ouverts simplement connexes)
Soient U un ouvert connexe et simplement connexe de C, et f € O(U). Alors, f admet une primitive sur U.

PREUVE. Soient u,z € U. Soient également g et 1 : [a,b] — U deux chemins de U d’origine u et d’extrémité z.
On note vy ' : t + y1(a + b — t) le chemin inverse de ;. Alors, le chemin concaténé vy, ' est un lacet de U.
Il est donc U-homotope a zéro, ce qui entraine, par invariance des intégrales de fonctions holomorphes par
homotopie des chemins, que fvwfl f(¢)d¢ = 0, ou autrement dit que ﬁm f(Q)d¢ = 5571 f(¢)d¢. Cela montre que
I'intégrale de f le long d’un chemin reliant « & z ne dépend pas du chemin, mais seulement de ses bouts u et z.
Or, puisque U est connexe, tout point de U est relié a u par un chemin ; on peut ainsi définir ’application

F:U — C par
Fe) = [ 0

ou 7, est nimporte quel chemin d’origine u et d’extrémité z. Il reste & montrer que F' est une primitive de f
— mieux, puisque U est connexe, que F' est la primitive de f qui s’annule en wu.

Soit z € U. Soit r > 0 tel que D (z,7) C U. Alors, comme on 'a vu dans le théoréme d’existence locale de
primitives pour une fonction holomorphe, pour tout w € D (z,r), U'intégrale de f le long du segment S(z,w)
est une primitive de f ; or, F(w) = F(z) + fs(z w) f(¢)d¢, ce qui montre que F' est holomorphe sur D (z,7) et
que c’est une primitive de f sur ce disque. On a montré que F' est holomorphe sur U et que c’est une primitve
de f sur U. [ |

A noter

(i) Dans les conditions de I’énoncé, puisque U est connexe, toutes le primitives de f different d’une constante.
(ii) Retenir que, dans les conditions de 1’énoncé, pour tout u € U, lapplication F(z) = ¢ __ _f(¢)d¢ — ou la
notation u ~ z désigne n’importe quel chemin d’origine u et d’extrémité z — est d’une part bien définie, d’autre
part est une primitive de f.

4.2 Relevement de ’exponentielle, logarithmes

Proposition (’exponentielle se reléve sur les simplement connexes)

Soient U un ouvert simplement connexe de C et f € O(U). On suppose que f ne s’annule pas. Alors, il existe
g € O(U) telle que f = exp(g).

PREUVE. La fonction fTI est holomorphe sur le simplement connexe U : soit gy une primitive de fTI sur U.
Alors, la fonction holomorphe fe™9° a une dérivée nulle sur U : elle est localement constante, donc constante
sur chaque composante connexe de U. Soit V une composante connexe de U et Ky € C tel que fe 9 = Ky,
sur V. Puisque f ne s’annule pas, Ky # 0 ; soit donc Cy € C tel que Ky = ¢“v. Alors, f = exp (g0 + Cv)
sur V. La fonction g : U — C dont la restriction a chaque composante connexe V est gy + Cy convient : elle

est holomorphe sur U et vérifie f = e9. |
A noter
(i) Dans les conditions de la proposition précédente, on dit que la fonction
. ; - . 9 exp
g est un relévement holomorphe de f par ’exponentielle. On illustre parfois
cette situation par le diagramme commutatif ci-contre. U C\ {0}

(ii) Dans les conditions de ’énoncé, lorsque U est connexe, deux relevements de f different d’un multiple entier
de 2im.

En effet, si f = €91 = €92 ou g1 et g2 sont holomorphes sur U, alors e91 792 = 1 et g1 — g2 est continue sur le connexe U. Donc g1 — g2,
qui prend ses valeurs dans 2i7Z, est constante, égale & un multiple de 2im.

Définition (déterminations du logarithme)
Soit A une partie de C. Une détermination (continue) du logarithme est une application continue L : A — C
telle que eX(®) = 2z, pour tout z € A.
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A noter

(i) Puisque lexponentielle ne s’annule pas, une détermination du logarithme ne peut étre définie sur aucune
partie de C contenant 0.

(ii) Si w € C\ {0}, en écrivant w sous forme géométrique w = re® ot r > 0 et ot § € R, I'ensemble des
solutions complexes de 1’équation e* = w est Inr + i (0 + 27Z). Autrement dit, tout logarithme de w est de la
forme In |w| + iargw ol argw est n’importe quel argument de w. Ainsi, chercher une détermination continue
du logarithme sur une partie de C\ {0} revient & chercher une détermination continue de ’argument.

Proposition (déterminations du logarithme sur un ouvert simplement connexe)
Soit U un ouvert connexe et simplement connexe de C\ {0}.
(i) 1l existe des déterminations continues du logarithme sur U.

(i) Toute détermination continue du logarithme sur U est holomorphe.

(iii) Si L et M sont deux déterminations du logarithme sur U, alors Uapplication L — M est constante sur U,
égale a un multiple de 2im.

PREUVE. (i) Par définition, les déterminations du logarithme sur U sont les relevements de la fonction holo-
morphe idy : z — z par 'exponentielle. On applique le théoréeme de relevement qui précede.

(ii) et (iii) Soit L une détermination holomorphe du logarithme sur U, et M une détermination continue
du logarithme sur U. Alors, 'application continue e~ est la fonction constante égale & 1 sur U. Ainsi,
I’application continue L — M, continue sur le connexe U, est a valeur dans la partie discrete 2inZ de C : elle
est constante. Donc M est holomorphe. [ |

A noter

(i) Si L est une détermination du logarithme sur un ouvert simplement connexe U, la dérivation de la relation
expoL(z) = z montre que d%L(z) = %, pour tout z € U. Autrement dit, toute détermination du logarithme est
une primitive de z — %

(ii) Il n’existe pas de détermination du logarithme sur un ouvert “entourant 0” : si V est un ouvert de C
contenant 0 et si U =V \ {0}, il n’y a pas pas détermination du logarithme sur U.

En effet, on 'a vu, z — % n’a pas de primitive U — on redonne une raison “a la Cauchy” : l'intégrale de % sur
un lacet de U dont l'indice par rapport a l'origine est 0 n’est pas nul n’est pas nulle.

Définition (logarithme principal)

La fonction logarithme principal est la détermination continue du logarithme sur ’ouvert connexe et simplement
connexe C\ R_ qui vaut 0 en 1 ; on le note Log, ou encore log. On I'appelle aussi détermination principale du
logarithme, ou encore logarithme (tout court).

Autrement dit, Log est 'unique application holomorphe C\ R_ — C qui vérifie

(i) eM°8* = 2 pour tout z € C\ R_ ;

(ii) Log1 = 0.

A noter

(i) L’ouvert C\ R_ est souvent appelé plan coupé principal, ou méme parfois plan coupé (tout court).
(ii) Le logarithme principal est la primitive de z % sur C\ R_ qui s’annule en 1.

(iii) La restriction de Log & |0, +00[ est le logarithme népérien, réciproque de la restriction de ’exponentielle &
Paxe réel, comme ’agsure (ii). On le notera In selon 1'usage.

(iv) L’argument principal d’'un nombre complexe non nul est son unique argument contenu dans l'intervalle
] — m,m]. On prolonge usuellement le logarithme principal en un application Log : C\ {0} — C en utilisant
I’argument principal — ce prolongement est discontinu en tout point de R.g. Le lien entre le logarithme
principal et 'argument principal est ainsi

Vz € C\ {0}, Logz=In|z| +iArgz

(v) La relation expoLog = idc\gr_ montre que le logarithme principal est injectif. Le point (iv) entraine
immédiatement que son image est la bande B = {z € C, — 7 < Sz < 7}. Ainsi, le logarithme principal est une
bijection holomorphe C\ R_ — B dont la réciproque, qui est 'exponentielle, est également holomorphe.
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-1 __Log
_._.0 ~
exp

Log

exp

(vi) Attention & ne pas abusivement prolonger au logarithme principal les formules usuelles valides pour le
logarithme népérien. Par exemple, sans autres formes de commentaires,

(a) Log (e%) = f%r
(b) Log[i X (—1+14)] = Logi + Log(—1 + 1) + 2im
(c) Log(—1+1i)? = 2Log(—1 +14) — 2im

Exercice 41

Trouver tous les nombres complexes z pour lesquels les formules suivantes sont valides et dessiner leur ensemble.
(a) Log (¢7) =

(b) Log (e*) =

(c) Log(zz) = Logz + Log z, o x € C\ {0} est donné
(

(

d) Log(zz) = Logz + Log z — 2im, ot x € C\ {0} est donné

vii) Soit r > 0. Puisque fC(O ” % = 0, il n’existe de détermination continue du logarithme sur aucun ouvert
contenant D (0,7) \ {0}.

(viii) Si Dy = {rew, r > O} est n’importe quelle demi-droite du plan issue de l'origine, alors C\ Dy est étoilé,
donc connexe et simplement connexe. Par conséquent, les déterminations continues du logarithme sur 'ouvert

C\ Dy forment une famille de fonctions indexée par Z. Par exemple, il existe une unique fonction holomorphe
L sur C\ Ry qui vérifie L(—1) =0 et e/(*) = 2, pour tout z € C\ R,.

4.3 Relevement des puissances, fonctions racines carrées, cubiques, etc

Proposition (les puissances se relévent sur les simplement connexes)
Soient n un entier naturel non nul, U un ouvert simplement connexe de C et f € O(U). On suppose que [ ne
s’annule pas. Alors, il existe g € O(U) telle que f = g".

PREUVE. Par le théoréme de relevement de I'exponentielle, soit h € O(U) telle que f = e". La fonction

g = exp ( h) convient. ]

1
n
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Définition (ordre d’une fonction holomorphe en un point)
Soient U un ouvert de C, uw € U et f € O(U). Si f n’est pas constante au voisinage de u, 'ordre de f en u est
Pentier naturel

ord, (f) = min {n >1, f(”)(u) + 0} ;
Autrement dit, f est d’ordre m > 1 en u lorsque le DSE de f en u est de la forme

o0

f(2)=fw)+ Y an(z —u)"

n=m

avec a,, # 0. Par extension, lorsque f est constante sur la composante connexe de U contenant u, on dit que f
est d’ordre 0 en u.

A noter
Selon le contexte, 'ordre de f en w s’appelle aussi valuation de f en u, ou encore multiplicité de f en u.

Exemples
z > sin 22 est d’ordre 2 en 0 et z — cos z2 est d’ordre 4 en 0.

Proposition (forme locale d’une fonction holomorphe, lemme de revétement version 1)

Soient U un ouvert conneze de C et f € O(U), non constante. Soit m > 1 Uordre de f en u. Alors, il existe
un ouvert V de C et h € O(V) telles que uw € V. C U, h(u) #0 et

V2 eV, f(z) = f(u) + [(z — w)h(2)]". (15)

PREUVE. Puisque f n’est pas constante et puisque U est connexe, le DSE de f en u n’est pas constant : soient
>, an la série entiere de rayon non nul et R > 0 tels que ag # 0 et

Vz€D(u,R), f(z)=f(u)+(z =)™ D an(z —u)"
n=0

On note g 'application holomorphe définie sur D (u, R) par la formule g(z) = >°°  an(z—u)". Puisque ag # 0,
soit r €]0, R[ tel que g ne s’annule pas sur D (u,r). Comme D (u,r) est simplement connexe, en appliquant
le théoréme de relevement par la puissance m®, soit h, holomorphe sur D (u,r), telle que g = A™. Alors, h
convient. |

Définition (déterminations de la racine n®)
Soient n un entier naturel non nul et A une partie de C. Une détermination de la racine n® sur A est une
application f holomorphe sur A qui vérifie f(2)™ = z, pour tout z € A.

A noter
(i) Puisqu'une détermination f de la racine n® vérifie nf"~!f’ = 1, d’une part, une détermination de la racine

n° ne s’annule sur aucun ouvert et, d’autre part, il n’existe de détermination de la racine n° sur aucun ouvert
contenant 0.

(ii) Une détermination de la racine n® sur un ouvert U est un relevement sur U de l'application identique z — 2
par la fonction z — 2.

Proposition (déterminations de la racine n° sur un ouvert simplement connexe)

Soit U un ouvert connexe et simplement connexe de C\ {0}.

(i) Si L : U — C est une détermination du logarithme sur U, alors application R : U — C, z — exp (%L(z))
est une détermination de la racine n® sur U.

(i) Les déterminations de la racine n® sur U sont exactement les n applications wR ot w est une racine n®
arbitraire de l'unité et R n'importe quelle détermination de la racine n® sur U.

PREUVE. (i) L’application R est holomorphe et il suffit de calculer : [exp (1L(2))]" = expoL(z) = .
(ii) Si S est une autre détermination de la racine n® sur U, elle ne s’annule pas sur U et I'application (R/S)" est
constante égale & 1 sur U. Le quotient R/S, qui est par conséquent & valeur dans ensemble fini des racines n®

de T'unité, est donc constant sur le connexe U. [ |
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Définition (détermination principale de la racine n°)

Soit n un entier naturel non nul. L’application holomorphe C\R_ — C, z > exp (% Log z) est la détermination
principale de la racine n®. On la prolonge par la méme formule en une application définie sur C\ {0}, discontinue
en tout point de R.g. Pour tout z € C\ {0}, on note

1
{/zZ=zw = exp (ﬁLogz).

Exemples

V4= \4/56%, \4/—71 = 6%, \/ (—]. + 2)2 =1-—1, \3/173 = e_i% = jzi, ou j = 6¥. [Attention, 1& encore, & ne pas
inventer de formules fausses qui sembleraient prolonger naturellement celles, bien connues, qui concernent les fonction racines n® réelles.]
A noter

Puisque Zw = |z\%eAri(z> ou Arg désigne 'argument principal, 'image de la racine principale n® est le secteur
S, ={z€C\{0}, — X <Argz < Z} et l'application z zw établit une bijection biholomorphe

C\R- = {zeC\ {0}, —%<Argz<%}

entre le plan coupé et 'intérieur de S,,, dont la réciproque est bien str z +— 2.

-
ES Phe us
2 2n .- "
-
_— -
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0 0o
- ~
n S~
Z <z S
~
~
~
~
~
~
~
~
~
~
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~
~
~
~
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1 ’ ,' ’
’
~ 1 ~ ’ ~ . ~ .
L o 4 Lo — ¢ L o g L oo L <
zz 2=z 2= Yz ‘. 2>z N
1 AY . \s
1 AY . ~

4.4 Inversion locale holomorphe, théoréme de I’application ouverte

En un point ou sa dérivée ne s’annule pas, une fonction holomorphe est localement inversible au sens ou elle
établit une bijection biholomorphe au voisinage du point — on définit plus bas le sens de biholomorphe, qui
tombe sous le sens. L’énoncé suivant précise cela.

Théoréme (d’inversion locale holomorphe)

Soient U un ouvert de C, f € O(U) et u € U tel que f'(u) # 0. Alors, il existe un ouvert V de C tel que
(i))ueV CU

(i) [ est injective sur V

(iii) L’image W = f(V)) de V par f est un ouvert de C

(iv) Uapplication réciproque fl;/l : W =V de la restriction de f a V' est également holomorphe.

PREUVE. On note g 'application définie sur U x U par
flx) = f(y)

g9(z,y) = vy
fl(z) si x=y.

si z#y

N. Pouyanne, UVSQ 2026, LSMA621 54



Puisque f est holomorphe, g est continue — et méme holomorphe, on a déja utilisée cette fonction auxiliaire
dans la preuve du théoréme global de Cauchy, page 46. Puisque g(u,u) = f'(u) # 0, soit V un voisinage ouvert
de u tel que

1
V(z,y) € V2 lg(@y)l = 5 If (W)
En particulier,

V(w,y) € V2, |f(z) — fy)l = % [f ()] > Ja =y, (16)

ce qui montre que f est injective sur V.

(iii) Pour montrer que f(V) est ouvert, il s’agit de montrer que pour tout v € V, il existe § > 0 tel que pour
tout w € D (f(v),d), 'équation f(z) —w a au moins une solution dans V.

Soit v € V. Soit r > 0 tel que D (v,r) C V. On note 9D (v,r) le cercle de centre v et de rayon r. Alors, en
vertue de (16), |f(2) — f(v)| > 5 |f'(u)], pour tout z € D (v,r). On note § = % |f'(u)| ; ce réel est strictement
positif. On montre que ce ¢ convient. Soit w € D (f(v),d). Alors, pour tout z € 9D (v, ), la seconde inégalité
triangulaire assure que |w — f(2)| > |f(2) — f(v)| = |f(v) — w| > §. Par conséquent, si la fonction z — f(z) —w
ne s’annulait pas sur D (v,7), le principe du module maximum entrainerait que le maximum sur D (v,7) de
z m serait atteint sur dD (v,7), et donc que le minimum sur D (v,r) de z — |f(2) — w]|, qui serait
atteint sur 0D (v, ), serait strictement supérieur a ¢ ; en particulier, on aurait |f(v) —w| > J, ce qui entre en
contradiction avec le fait que w € D (f(v),0) : on a montré que la fonction z — f(z) —w a une solution dans V'

— et méme dans D (v,r) —, ce qui finit de montrer que f(V) est ouvert.

(iv) En notant W = f(V'), on a montré que f établit une bijection entre V et W. On note f~! sa réciproque —
au lieu de (f|v)71. On déduit de 'inégalité (16) que f’ ne s’annule pas sur V. Soient wg € W et w € W\ {wo}.
Alors,

fw) = f 7 (wo) - fTHw) = f T (wo) 1
w — wo S )] = f1f~ (wo)] fH (7 (wo))
lorsque w tend vers wg, puisque f’ ne s’annule pas sur V. Cela montre que f~! est holomorphe. [ |

Définition (difféomorphisme analytique)

Soient U et V deux ouverts de C. Une application f : U — V est un difféomorphisme analytique lorsqu’elle est
holomorphe, bijective, et lorsque sa réciproque f~' : V — U est également holomorphe. On dit aussi parfois
que f est une transformation holomorphe (de U sur V), ou une application biholomorphe.

A noter

(i) Le théoreme d’inversion locale holomorphe peut se dire ainsi : toute fonction holomorphe f dont la dérivée
ne s’annule pas est un difféeomorphisme analytique local.

Cela signifie que si U est un ouvert de C, si f € O(U) et si f/'(z) # 0 pour tout z € U, alors pour tout u € U,
il existe un voisinage ouvert V de u contenu dans U tel que la restriction de f a V soit un difféomorphisme
analytique de V sur louvert f(V).

(ii) On peut aussi prouver les théoreme d’inversion locale holomorphe en utilisant le théoréme ordinaire d’inversion
locale pour les fonctions complexes de deux variables réelles, en utilisant les équations de Cauchy-Riemann et
le fait que l'inverse d’une similitude directe est encore une similitude directe.

Proposition (une bijection holomorphe est un difféomorphisme analytique)

Soient U un ouvert de C et f € O(U).

(i) Si f est injective, alors f' ne s’annule pas.

(ii) Si f est une bijection holomorphe, alors f est un difféomorphisme analytique de U sur f(U).

PREUVE. (i) On suppose que f'(u) =0 ol u € U. Soit alors m > 2 l'ordre de f en u. On applique le lemme de
revétement : soient V un voisinage ouvert de u et h € O(V) telles que h(u) # 0 et f(2) = f(u)+[(z — u)h(2)]"

pour tout z € V. Alors, si g : V' — C désigne 'application définie par la formule g(z) = (z — u)h(z), elle vérifie
simultanément

VzeV, f(z) = f(u) +9(z)" (17)

g(u) =0 et et ¢’(u) # 0. On applique le théoréeme d’inversion locale holomorphe & g en u : soit W, voisinage
ouvert de u contenu dans V', tel que le restriction de g & W soit un difféomorphisme analytique de W sur g(W).
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Puisque g(W) est un voisinage ouvert de 0, soit R > 0 tel que D (0,R) C g(W). Puisque g~ (D (0, R)) est
un voisinage ouvert de u, soit alors 7 > 0 tel que D (u,7) C ¢g~!(D (0, R)). Dans ces conditions, pour tout
z € D (u,r) et pour toute racine m¢ de 'unité w, on a wg(z) € D (0, R) d’une part, et, d’autre part, grace a (17),
fzy=f¢ [g’l (wg(z))} Comme m > 2, cela entraine que f n’est pas injective. Ainsi, 'hypothese f'(u) = 0 ne
tient pas. On a montré que la dérivée de f ne s’annule pas sur U deés lors que f est injective.

(ii) Puisque f est injective, f’ ne s’annule pas. Le théoréme d’inversion locale holomorphe montre alors que
£~ est holomorphe — et que sa dérivée vaut W n

Définition (application ouverte)
Soient U un ouvert de C et f : U — C une application. On dit que f est ouverte lorsque 'image de tout ouvert
de C contenu dans U est un ouvert de C.

A noter

(i) C’est une notion topologique plus générale, qui ne se limite pas au cadre des applications complexes de la
variable complexe. Une application f : X — Y entre deux espaces topologiques est dite ouverte lorsque I'image
par f de tout ouvert de X est un ouvert de Y.

(ii) Une application continue et bijective n’a pas forcément une réciproque continue. Par exemple, ’application
[0,27[— {z € C, |z| = 1}, 0 — € est continue et bijective, mais n’est pas un homéomorphisme puisque [0, 27|
n’est pas compact alors que {z € C, |z| = 1} lest. En revanche, une application continue, bijective et ouverte
est un homéomorphisme — sa réciproque est continue puisque I'image inverse d’un ouvert par ladite réciproque,
qui est 'image directe dudit ouvert, est ouverte.

(iii) La composée de deux applications ouvertes est ouverte, ¢’est immédiat.

Exercice 42 (de topologie générale)
Montrer qu’une application f : X — Y est ouverte si, et seulement si tout point de ’ensemble de départ a un
voisinage dont I’'image est ouverte.

Exemple

Pour tout entier naturel non nul n, l'application C — C, z — z" est ouverte.

En effet, on note p,, : z — 2". D’abord, si r > 0, alors p, (D (0,7)) = D (0,7™). Ensuite, si V est un ouvert
qui ne contient pas 0, alors p!/, ne s’annule pas sur V et le théoréme d’inversion locale holomorphe montre que
pn (V) est un ouvert de C. Ces deux derniéres assertions suffisent & montrer que p,, est ouverte.

Images presque sans paroles
On regarde I'image par z — 22 de cercles de centre % et de rayons R divers et croissants.
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R=0,48

Proposition (théoréme de ’application ouverte)
Soient U un ouvert connexe de C et f € O(U), non constante. Alors, f est ouverte.

PREUVE. Soit u € U et m l'ordre de f en u. Puisque f n’est pas constante et puisque U est connexe, m n’est
pas nul. Alors, en appliquant le lemme de revétement, soient V; un voisinage ouvert de u et h € O (V1) tels que
h(u) #0 et

Vze Vi, f(z) = f(u)+[(z —u)h(2)]™.

On note alors p,, : C - C, z — 2™ et ¢t la translation t : C — C, z — 2z + f(u). En notant g : V; — C,
z = (z — u)h(z), la formule précédente s’écrit encore f(z) = t o p, o g(z), pour tout z € V;. Or, on a vu
plus haut que p,, est ouverte et ¢, qui est holomorphe, bijective et dont la réciproque est z — z — f(u), est
également ouverte. En outre, g est holomorphe et ¢'(u) = h(u) # 0. En appliquent le théoreme d’inversion
locale holomorphe, on en déduit qu’il existe un voisinage ouvert V' de u contenu dans V; dont l'image par g est
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ouverte. Par composition d’applications ouvertes, cela entraine que f(V) est ouvert. Puisque u est arbitraire
dans U, on a montré que f est ouverte. [ |

A noter

En reprenant les conditions et les notations de la premiere version du lemme de revétement qui décrit la
forme locale d’une fonction holomorphe au voisinage d’un point d’ordre m wia la formule (15), si on note k
la fonction k : z — (2 — u)h(z) définie au voisinage de u, alors k est holomorphe au voisinage de u et vérifie
k'(u) = h(u) # 0. Ainsi, par le théoréme d(inversion locale holomorphe, k est un difféomorphisme analytique
local et on peut énoncer le lemme de revétement sous sa seconde version.

Proposition (lemme de revétement, seconde version)

Soient U un ouvert connexe de C et f € O(U), non constante. Soit m > 1 lordre de f en u. Alors, il existe
un voisinage ouvert V. de u contenu dans U et k € O(V) telles que :

(i) k est un difféomorphisme analytique k : V. — k(V)
(1) Y2 € V, f(2) = f(u) + k()™
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4.5 Automorphismes du disque et du demi-plan

Définition (automorphisme analytique d’un ouvert de C)
Soit U un ouvert de C. Un automorphisme analytique de U est un difféomorphisme analytique de U sur U.

A noter

(i) Puisque les bijections holomorphes sont automatiquement biholomorphes, un automorphisme analytique de
U est une application U — U holomorphe et bijective.

(ii) Muni de la composition des applications, I’ensemble des automorphismes d’un ouvert U est un groupe
(exercice), que 'on note parfois Aut(U).

Définition (fonction homographique)
Une fonction homographique est une fonction C — C de la forme z —
complexes qui vérifient ad — bc # 0.

az+b

ou a,b,c et d sont des nombres
cz+d

A noter

(i) A vrai dire, sans qu’il ne soit ici question de définir proprement ces notions pourtant simples et fondatrices,
une homographie est une transformation de la droite projective complexe, que 'on peut voir comme le plan
complexe auquel on a ajouté un point a l’infini, noté oo — en termes topologiques, la droite projective complexe

est la sphére de dimension 2. La fonction homographique f : z — ijrrg se trouve alors prolongée a un application

de la droite projective complexe sur elle-méme par les formules f(co0) = £ et f (74) = 00, étant entendu que
R c c

G = oo des lors que a # 0.

[Pour définir proprement la droite projective complexe, définir sur C?\ {(0,0)} la relation d’équivalence (z,y) ~ (2,t) < xt = yz. La droite

projective IP% est alors I’ensemble quotient de cette relation d’équivalence, la classe du couple (z,y) étant le plus souvent notée (z : y).

Alors, ’application z € C — (z : 1) € P,}: est injective et c’est le complémentaire de 'image dans lP’Kl:, savoir (0 : 1), que l’on note oco.
L’application homographique vu ci-dessus s’écrit naturellement (z : y) — (az + by : cx + dy). Pour aller plus loin, voir n’importe quel cours
de géométrie projective.]

(ii) Pourquoi avoir demandé que le déterminant ad — be soit non nul ? Si ad — bc = 0 et si ¢ # 0, Papplication

Z ijrrg est constante sur le connexe C\ {—%} puisque elle est holomorphe et puisque sa dérivée, qui vaut
(Zg_;g;, est nulle — retrouver cet fait en calculant la décomposition en éléments simples de la fraction. Enfin,

si ad—bc = 0 et si ¢ = 0, il ne reste plus grand chose : d est nécessairement non nul et la fonction est constante,
. < b
égale a 7.

Exercice 43
On note D = D (0,1).

(i) Soit z un nombre complexe de module 1. Montrer que Vzy € D, 12_:_3) =
A4
(ii) Soit zg € D. Montrer, en utilisant le principe du maximum, que Vz € D, f:ﬁ eD
A4
(iii) Si zp € D, on note h., 'application homographique D — D définie par la formule h. (z) = 12: zi.
zZZ20

Montrer que I'ensemble {h,,, zo € D} est un sous-groupe de Aut(D).

[En particulier, la réciproque de h,, est h_.]

Proposition (automorphismes du disque)

Le groupe des automorphismes analytiques du disque D (0,1) est le groupe des homographies

Z+ 2o

Z A —
1+ 2%

ot zo € D(0,1) et |A] = 1.

PREUVE. On note D = D (0,1). L’ensemble de ces homographies forme un sous-groupe de Aut(D) ; voir
Pexercice précédent : c’est le sous-groupe de Aut(D) engendré par les homographies de ’exercice et les rotations
de centre 0. Il s’agit de montrer que ce groupe est le groupe Aut(D) tout entier. Soit f € Aut(D). On note
20 = —f71(0) € D et g 'homographie de Aut(D) définie par la formule g(z) = 124:;22%’ qui envoie f~1(0) sur 0.
Alors, fog™! est un automorphisme du disque qui fixe 0. Par le lemme de Schwarz, ‘f o g’l(z)} < |z| pour tout
z € D. En raisonnant de méme sur la réciproque g o f~!, on obtient que ’f og_l(z)| = |z| pour tout z € D.
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Toujours grace au lemme de Schwarz, cela implique que f o g~! est une rotation r : z — Az, ot |A\| = 1. Ainsi,

f=rog, ce qu’il fallait démontrer. u

Définition (demi-plan de Poincaré®)

Le demi-plan de Poincaré est 1'ouvert H

H={zeC, Sz>0}.

Proposition (le disque et le demi-plan sont conformément équivalents)

zZ—1

z+1i

L’homographie h : z — 1 définit un difféomorphisme analytique du demi-plan de Poincaré H sur le disque

unité D (0,1).
PREUVE. On note D = D(0,1). Si z € C, alors, |z —i|* = |z +i|> — 432z, En particulier, si z # —i,
|h(2)> =1 — 232, ce qui montre que h(H) C D. En outre, h est une bijection C\ {—i} — C\ {i}, dont

[o+il? .
la réciproque s’écrit h=1(z) = fzzf; — le calcul est immédiat puisque h est une homographie. Si z # i, alors
. 2
Shi(z) = -R (zfi) = |1;_|;|2 , ce qui montre que h~*(D) C H, ou encore que D C h(H). Ainsi, h (H) = D, ce
qu’il fallait démontrer puisque les homographies sont holomorphes. |
*
e i i
Il, \\
f \
i o
>y j
S z—1 \ ’
__________________ 2t z+i - Pl
~e--
A noter

On aurait pu choisir bien d’autres homographies. L’homographie h de I’énoncé est la seule qui envoie 0 sur —1,
i sur 0 et co sur 1.

Exercice 44

Trouver toutes les homographies qui définissent des difféomorphismes analytiques de H sur D (0, 1).

Exercice 45
Montrer que tout difféomorphisme analytique de H sur D (0,1) est homographique — autrement dit, que c’est
la restriction a H d’une homographie.

Proposition (automorphismes du demi-plan)
Les automorphismes analytiques du demi-plan de Poincaré H sont les homographies

s az +c
z
bz+d

. (a ¢
ot (b d) € SL(2,R).
PREUVE. D’abord, si (Z ccl) € SL(2,R) et si z € H,

R

bz+d?  |bz+d?  |bz+d]?

(az + c) S(az +c)(bz+d)  S(adz + bez) 3(2)
bz +d

“Henri Poincaré, 1854-1912
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la derniere égalité venant du fait que ad — bc = 1. Cela montre que ’homographie associée a (a C), dont la

b d
. . IS L d -—c . .
réciproque est associée a la matrice inverse boa ) est un automorphisme de H. Par ailleurs, en notant

D = D(0,1) et h ’homographie de la proposition précédente, I’application

Aut (D) —  Aut(H)
« —> hloaoh

est une bijection de Aut (D) sur Aut (H) — c’est un isomorphisme de groupes. [En particulier, tout automorphisme
de H est une homographie, puisque c’est une composée d’homographies.] Si« (/\7 Zo) désigne l’automorphisme de D générique
a(X zp): 2z )‘124:_;%7 ou |A] = 1 et |29] < 1, Pautomorphisme « (), z9) est la composée de automorphisme
a(1,2) et de la rotation « (),0). 11 suffit donc de montrer que h™! o v (1,29) o h et b=t o ar(\,0) o h sont des
homographies associées & des matrices du groupe SL (2, R) pour conclure. On calcule naivement : en notant

d’une part xg et yo les parties réelle et imaginaire de zg € D (0, 1),

1+y0 z+ Zo
(I+wo)ztzo _ Vil  Vi-|zl

zoz + (1 — Zo 1—yo
0z + (1= o) \/17|z0|22+ O

htoa(l,2)0h(z) =

et, d’autre part, si A = e?? ot § € R,

B i(1+XNz+A-1 zcosf —siné
ht A Bz) = = '
o (A, 0)o0h(z) (I1—=XNz+i(14+X)  zsinf+ cosf

Ainsi, h~' o a (1, 29) o h est associé & la matrice ——— (1 ¥ o ) € SL(2,R) et At oa (A, 0)0h est

Vi-lz? \ 7o 1—yo

cosf  —sin 9) € SL (2,R), ce qu'il fallait démontrer. [ ]

associé a la matrice ( .
sinf  cos6
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5 Séries de Laurent, formule des résidus

5.1 Séries de Laurent, fonctions analytiques dans une couronne

Définition (série de Laurent)
Une série de Laurent™ est une série de fonctions de la variable complexe z de la forme Y, an2™ ot (ap), oy st
une suite de nombres complexes indexée par Z.

Définition (convergence d’une série de Laurent)
Si (an), ¢z est une suite de nombres complexes indexée par Z, on dit que la série de Laurent ), anz

lorsque les deux séries
1 n
a, 2" et a_ (7>
D> an > a-n | ;

n>0 n>0

" converge

convergent. Dans ces conditions, on note

E apz" = E anz” + E a_pz "

nez n>0 n>1

Dans le cas contraire, on dit que la série diverge. Dans cette définition, le mot converge peut étre pris dans
n’importe quel sens usuel relatif a la convergence des séries de fonctions : simple ou absolue en un point zg € C,
uniforme ou normale sur une partie de C, etc.

Définition (couronne) LT T T
4 ~
. 4 \
Soient r > 0, R €]0, +00] et ¢ € C. La couronne ouverte A PR s
d d ~ 4 N
(ou couronne tout court) de centre ¢ et de rayons r et , / ! 1
1
R est : . c ! !
\ R S
A .
Cour (¢,7,R)={z€C, r<|z—¢| < R}. v S--- y
\\\ ,//
A noter

(i) Si r > R, la couronne Cour (¢, r, R) est vide (!).

(ii) La couronne Cour (¢, 0, R) est le disque épointé D (¢, R) \ {c}.

(iii) La couronne Cour (0,0, +00) égale C\ {0}.

(iv) Soit )°, anz™ une série de Laurent. Elle converge simplement en un point zy € C\ {0} si, et seulement si
la série entiere ) a,2" converge en zg et la série entiere ) a_, 2" converge en -

On note p’ € [0, 400] le rayon de la série entiere Y, a,z" et p” € [0,400] le rayon de la série entiere ), a_,z".
Alors, la convergence des ces deux séries entieres est normale sur tout compact contenu dans la couronne ouverte
{z eC, # <zl < p’}, avec les conventions usuelles sur les rayons : +%.O =0et % = +o00. Par conséquent,
la fonction z — g anz" est holomorphe dans la couronne ouverte {z e C, % < |z| < p’}.
nez

Exemples
(i) Les fonctions ;—z ouun > 0, exp %, ¢*+e* sont définies par des séries de Laurent sur C\{0} = Cour (0,0, +0).

.. 1 n
(ii) Pour tout z € Cour (0,1, +00), - % = Z P

Exercice 46 Soit w € C\ {0}.

1 = 2"
(1) Si |z| < |w], alors e Z sy
n=0

“Pierre Laurent, 1813-1854
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1 & w™”
(ii) Si |z| > |w|, alors R —Z gy

Théoréme (les fonctions holomorphes dans les couronnes sont les séries de Laurent)

Soient R',R" tels que 0 < R’ < R" < +o0 et f une fonction holomorphe dans la couronne Cour (0, R', R").
Alors,

(i) il existe une unique série de Laurent Z anz" dont la somme soit égale & f sur Cour (0, R, R") :

n

vz € Cour (0, R, R"), Z anz" ;

n=—oo

(i1) pour tout n € Z,

B L f(z)dz
Ap = — /C( — (18)

1
2 0,r) ZTL+

ot T est nimporte quel réel vérifiant R’ <r < R".

PREUVE. On note C' = Cour (0, R', R").
Unicité On suppose que f est la somme d'une série de Laurent sur C' : soit (ay,),,c;, telle que

VzeC, f(2) =) an2"

nez

En particulier, la série entiere ) a,z" a un rayon supérieur ou égal & R” et la série entiere ) a_pnz"™ a un
rayon supérieur ou égal & 1/R’. Soient r € |R', R"[ et N € Z. Les séries de fonctions

: Z .
n —n
— anz’ et ——- E a_n2
SN+1 n ZN+1 n
n n

convergent normalement sur le cercle de centre 0 et de rayon r, si bien qu’on peut intervertir somme et intégrale
(curviligne) dans 1’égalité

f(z)dz / / .
— anz" | dz = an, = 2imay.
/C(O,r) 2N+ oo, )ZN+1 Z Z )ZN n+1

nez nez

Cela montre a la fois I'unicité et le (ii).
Ezistence Soit z € C. Soient 11 et 7o deux réels tels que R’ < r < |z]| <ry < R".
On note v le concaténé dans cet ordre des lacets C~1 (0,71), S (r1,72), C (0,72)
et S (rg,71), o C~1(0,71) désigne le lacet inverse du lacet C (0,71) — c’est le
cercle de centre 0 et de rayon r; parcouru une fois dans le sens indirect a partir
du point r1. L’ indice de z par rapport a v est 1 et v est homotope a zéro dans
C, si bien que f(z) = 2“7 fv d( , selon la formule de Cauchy. Or, la somme
des intégrales le long des deux segments est nulle ; en outre, I'intégrale le long
de C~1(0,71) est 'opposée de I'intégrale le long de C (0, 7"1). Cela montre que

_ 1 fQ .1 fQ)
fz) = 2im /C(O,rg) ¢— ch 2im /C(o,n) ¢— ch

En utilisant les développements de I'exercice précédent, on obtient les convergences normales sur les cercles de
centre 0 et de rayons respectifs r, et 1 des séries

1 N 2"
=D ot Z :
— 2 <n+1 Zn+1
n=0
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ce qui légitime l'interversion des sommes et des intégrales dans 1’égalité

1 s ik 1
f(Z) = % C(0,r) f(C) (72 Cn-‘rl) dC + % c(o, Tl) ( g AL >
(1 FQAC o = (1 )d¢
- Z <227r /C(OM) (1 > z +n¥ (217r o) Cn+1 >

n=0 1
Enfin, puisque la fonction ( — Cfn(ﬂ est holomorphe dans la couronne ouverte C, le théoréeme d’homotopie
montre que pour tout n € Z, 'intégrale §C(O " ! C(SHC ne dépend pas de 7 pourvu que R’ < r < R”. Ainsi, en

notant a,, = fC(O " ! C(Offc pour n’importe lequel de ces r, on a montré que

z) = Z anz",

neEZ

ce qu’il fallait démontrer. [ |

A noter
(i) L’indépendance de la formule (18) en le nombre r, redémontrée dans la partie unicité de la preuve ci-dessus,
est une conséquence du théoréeme d’homotopie puisque tous les lacets C(0,r), r € |R’, R"[, sont (évidemment)
homotopes dans la couronne ouverte Cour (0, R’; R”). On utilise également cela dans la partie existence de
ladite preuve.
(ii) Le théoréme montre en particulier que deux séries de Laurent qui définissent une méme fonction au voisinage
épointé d’un point ont les mémes coefficients.
Corollaire (décomposition d’une fonction holomorphe dans une couronne)
Soient R',R" deux réels tels que 0 < R’ < R" < 400 et f une fonction holomorphe dans la couronne
Cour (0, R', R"). Alors, il existe fy € O (D (0,R")) et fa € O ((C \ D (O,R’)), uniques, telles que
(i) Vz € Cour (0, R, R"), f(2) = f1(2) — fa(2) ;
(i) lim fo(z) =0

|z| =00

PREUVE. L’existence de f1 et fy est garantie par le théoréme précédent, en prenant

et
V2 € C\D(0,R), Vr €]|z], +od], Z nz =5 Z(C)ch
n=-—oo c,r) & —

En particulier, la condition sur la limite de f5(z) lorsque |z| tend vers 0 est assurée par la forme intégrale de f,
puisque U'intervalle d’intégration est compact — ce qui légitime I'interversion de l'intégrale et de la limite. Pour
P'unicité, il suffit d’étudier le cas ou f est la fonction nulle sur la couronne ouverte. On suppose ainsi que fi est
holomorphe dans le disque ouvert D (0, R”), que fs est holomorphe dans la couronne ouverte {z, |z| > R’}, que
f2(2) tend vers 0 lorsque |z| tend vers l'infini, et que fi(z) = f2(z), pour tout z vérifiant R’ < |z| < R”. Alors,
la fonction g définie par f1 sur {z, |z| < R"} et par fo sur {z, |z| > R’} est entiere et tend vers 0 lorsque |z|
tend vers l'infini. Elle est donc bornée, ce qui entraine, par le théoreme de Liouville, que g est la fonction nulle.

Donc les fonctions f; et fy sont nulles, ce qu’il fallait démontrer. [ |
Exercice 47 1 1
Pour tout z ¢ {0, 1}, =2 = -+ T Montrer qu’on peut développer cette fonction sur les couronnes
z2(1—z z —z
suivantes.
(i) ! 1+i” tout z € Cour (0,0,1), i 0<]z] <1
i) — =-— z" pour tout z our , 1.e. pour z
S p 0, p

n=0
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oo

1 -1
(ii) 9 =t 7;:0(—1)”(2: —1)" pour tout z € Cour (1,0,1), i.e. pour 0 < |z — 1] < 1
1 —1 — 1
= =— — tout z € C 0,1, 00), i.e. >1
(iii) -5 2= HZ::QZTL pour tout z our ( 00), i.e. pour |z
1 -1 — (—1)nt?
(iv) = = Z (=1) — pour tout z € Cour (1,1,00), i.e. pour [z — 1| >1

-2 Gop(ir ) &G0

Définition (DSL)
Soient U un ouvert de C et w € U. On dit qu’une application f : U \ {u} est développable en série de Laurent
(DLS) en u lorsqu’il existe r > 0 tel que D (u,r) \ {u} C U et une série de Laurent ), a,z" telles que

+oo
V2eC, 0<|z—ul<r=f(z)= > an(z—u)" (19)

n=—oo

A noter

(i) Le théoréme précédent assure que, lorsqu’une fonction f est DSL en w, il existe une unique série de Laurent
qui vérifie les conditions de la définition. On dit que la relation (19) est le développement en série de Laurent
de f en u.

(ii) Lorsqu’'une fonction f est holomorphe sur un disque épointé D (u,r) \ {u} = Cour (u,0,7) ot r > 0, elle est
développable en série de Laurent en u. En outre, si son développement en série de Laurent est

+o0

f(Z): Z an(zfu)na

n=—oo

le rayon de la série entiere a_,2z" est infini.
n n

Définition (résidu d’une fonction DSL)
Soient U un ouvert de C, u € U et f : U \ {u} — C une fonction DSL en u. Avec les notations de la définition
précédente, on appelle le nombre complexe a_; le résidu de f en u. On le notera Res (f, u).

A noter
Dans les conditions de la définition précédente, le résidu de f en w est écrit en rouge dans le DSL de f en u :
a_3 a_2 a—1

f(2)=-~-+(Z_U)S+(Z_u)2+Z_u+ao+a1(z—u)+a2(z—u)2+...

Exercice 48
Si une fonction f est holomorphe dans un ouvert épointé U \ {u}, le résidu de f en w s’écrit sous forme intégrale

T 2ir

Res (f,u) = — /C R

pour tout réel strictement positif r suffisamment petit [pour que D (u,r) soit contenu dans U]
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5.2 Points singuliers, fonctions méromorphes

Définition (point singulier, point régulier)
Soient U un ouvert de C, u € U et f € O (U \ {u}). Soit (an),cz la suite de complexes indexée par Z telle que
le développement en série de Laurent de f en wu soit

+oo

f)= 3 anlz—u)"

n—=—oo

On dit que w est un point singulier pour f lorsqu’au moins un des a,, n < —1, est non nul. Dans le cas contraire,
on dit que u est un point régulier pour f.

A noter

(i) Dans la situation de la définition, si w est un point régulier pour f, alors f se prolonge de maniére unique,
par continuité, en une fonction holomorphe sur U.

(ii) Certains auteurs parlent de singularité plutot que de point singulier. Le choix fait ici consiste & réserver le
nom de singularité a la situation — bien différente — suivante : un point s du cercle de convergence d’une série
entiére en est une singularité lorsque la fonction définie par la série entiere sur son disque ouvert de convergence
ne se prolonge analytiquement sur aucun disque ouvert non vide centré en s.

Exemples
L’origine est un point singulier pour la fonction z — < et pour la fonction z L

e*—
22

, alors que c’est un point

zZ
e*—1

régulier pour les fonctions z — % et z — si on prolonge ces dernieres par 1 en 0.

Définition (péle, point singulier essentiel)
Soient U un ouvert de C, u € U et f € O (U \ {u}). Soit (ay),cy la suite de nombres complexes indexée par Z
telle que le développement en série de Laurent de f en u soit

+oo

flz) = Z an(z —u)"™.

n=—oo

Lorsque {n < —1, a, # 0} est fini et non vide, on dit que u est un pédle de f, ou encore que f présente un pdle
en u. Lorsqu’au contraire {n < —1, a,, # 0} est infini, on dit que u est un point singulier essentiel de f, ou
encore que [ présente un point singulier essentiel en u.

A noter
Il résulte immédiatement de cette définition qu’'un point singulier d’une fonction holomorphe sur un ouvert
épointé est ou bien un poéle, ou bien un point singulier essentiel.

Exemples
0

1 1
(i) La fonction ¢ = 2 = cos — = Z 2n)! —5,, Présente un point singulier essentiel en 0, et un résidu nul.
z n)! z

n=—oo
2
coS z . . .
m presente un podle en 7 et un autre en —m — exercice : écrire les DSL en 7 et en
22—

—7 de cette fonction paire.

(ii) La fonction z —

Proposition (caractérisation du résidu en terme de primitives)
Soient U un ouvert de C, w € U et f € O(U\ {u}). On suppose que u est un point singulier de f. Alors,
Res (f,u) est l'unique nombre compleze tel que la fonction

~ Res(f,u)

2 f(2) - o

ait une primitive sur un disque épointé D (u,r) \ {u} ot r > 0.

PREUVE. On développe f en série de Laurent sur un disque épointé D (u,7) \ {u} ot 7 > 0 : soit (an),,, telle
que

Vz e D (u,r)\{u}, f(z)= Za”(z —u)".

neE”Z
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Si a est n’importe quel nombre complexe, la fonction z +— Lﬁ(f’)

et seulement si a = Res (f, u). Comme la fonction

Z Z an(z —u)"

ne”Z

admet une primitive sur D (u,r) \ {u} si,

n#—1
admet
Z (z —u)"
Z n + 1 )
nez
n#—1
pour primitive sur D (u,r) \ {u}, le résultat en découle aussitot. [ |

5.2.1 Points réguliers

Proposition (théoréme du faux point singulier)
Soient U un ouvert de C, u € U et f € O (U \ {u}). Alors, u est un point régulier de f si, et seulement si f
est bornée au voisinage épointé de u.

A noter
Dire que f est bornée au voisinage épointé de u signifie qu’il existe r > 0 tel que |f| est borné sur D (u,r) \ {u}.

PREUVE. 1l s’agit de montrer que f est bornée au voisinage épointé de u si, et seulement si f se prolonge en
une fonction holomorphe sur U tout entier. Si f se prolonge ainsi, ce prolongement est continu sur un disque
fermé de centre u et de rayon non nul, donc borné au voisinage de u. Réciproquement, on suppose que 7 > 0
est tel que |f]| soit une fonction bornée sur D (u,r) \ {u}. On définit la fonction ¢ : D (u,r) — C par g(u) =0
et g(z) = (z — u)?f(2) pour tout z € D (u,r) \ {u}. Puisque f est bornée sur D (u,r) \ {u}, la limite de %
lorsque z tend vers u dans D (u,r) \ {u} est nulle, ce qui implique que g est dérivable au sens complexe en u et
que ¢'(u) = 0. Par ailleurs, g est évidemment holomorphe sur D (u,r) \ {u}, si bien que g € O (D (u,r)). On
écrit le développement en série entiere de g en u : soit p > 0 et (an), oy € CN telles que ag = a; = 0 et

Vz € D (u,p), Zanzfu
n=2
Alors,
Vz € D (u,p), Zam_ngu
ce qui prouve que f est DSE en u. [ |

5.2.2 DPéoles, fonctions méromorphes

Proposition (caractérisation des péles)
Soient U un ouvert de C, u € U et f € O (U \ {u}). On suppose que u est un pole de f. Alors, les assertions
sutvantes sont équivalentes.

(i) f présente un péle en u

(i) Il existe un entier naturel (non nul) m et des nombres complexes 11, ...,y tels que la fonction
m
zZ
0~ ety

soit bornée au voisinage de u
(iii) Il existe un entier naturel (non nul) m tel que z — (z — u)™ f(2) soit bornée au voisinage de u

(i) Il existe un entier naturel (non nul) m et g € O(U) telles que

Vz e U\ {u}, f(z):#
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PREUVE. (i)—(ii) Ecrire le DSL de f en u et soustraire la série des puissances négatives de z —u — qui est un
polynome en ——. (ii)—(iii) (z —u)™ f(2) est la somme d’une fonction polynomiale et d'une fonction bornée au

voisinage de u. (iii)—(iv) Appliquer le théoréme du faux point singulier & z — (z — u)™ f(2). (iv)—(i) Ecrire
le DSL de f en u a partir du DSE de g en wu. [ |

Définition (ordre d’un pole)

Soient U un ouvert de C, u € U et f € O (U \ {u}). On suppose que u est un pole de f. Le degré m de la
partie négative du DSL de f en w — qui est une fonction polynomiale en ﬁ — est Vordre du pdle u de f.
On dit aussi que f présente un péle d’ordre m en u. Un poéle d’ordre 1 est dit simple, un pole d’ordre 2 est dit

double, etc.

A noter
Dans les conditions de la définition, f présente un pole d’ordre m en u si, et seulement si I'une des assertions
suivantes est vérifiée.

(i) Le DSL de f en u s’écrit

avec a_n, # 0.
(ii) L’application ¢ : z — (z — u)™ f(z) se prolonge en une fonction holomorphe sur U qui vérifie g(u) # 0.
Définition (partie principale d’une fonction en un de ses pdles)

Soient U un ouvert de C, u € U et f € O (U \ {u}). On suppose que u est un pole d’ordre m de f et que le
DSL de f en u est

m —+oo
10 = 3 g + e

La partie principale de f en u est la fonction rationnelle
L a
—n
zZ —_—
n=1

A noter
Si F est la partie principale de f en un pole u, alors |F(z)| tend vers +oo lorsque |z| tend vers wu.

Définition (fonction méromorphe)
Soit U un ouvert connexe de C. Une fonction f est dite méromorphe sur U s’il existe g, h € O(U) telles que
(i) h n’est pas la fonction nulle sur U ;

(ii) si Z(h) désigne l'ensemble des zéros de h, alors

Vze U\ Z(h), f(z) =

A noter

(i) L’ensemble des zéros d’une fonction holomorphe non nulle sur un ouvert connexe U étant discret, toute
fonction méromorphe est holomorphe hors d’une partie discrete (ensemble des zéros de son dénominateur), en
chaque point de laquelle elle présente un point régulier ou un pole.

(ii) A vrai dire, si U est un ouvert connexe de C et si Z est une partie discréte de U, toute fonction holomorphe
sur U\ Z qui présente un péle en tout point de Z est méromorphe sur U. C’est un théoréme de Weierstrass™,
pas si simple, dont on n’apporte pas ici de preuve.

[Cela revient essentiellement & trouver une fonction holomorphe sur un ouvert connexe dont I’ensemble — discret — des zéros est prescrit.]
(iii) Si U est un ouvert connexe de C, 'ensemble M(U) des fonctions méromorphes sur U est un corps pour
Paddition et la multiplication usuelles. C’est le corps des fractions de anneau O(U), qui est integre grace au

théoreme de prolongement analytique.

“Karl WeierstraB, 1815-1897.

N. Pouyanne, UVSQ 2026, LSMA621 68



Proposition (calcul du résidu en un pole simple)
Soient U un ouvert de C, f et g deux fonctions méromorphes sur U, non nulles.
(i) St uw € U est un péle simple de f, alors

Res (f,u) = lim (z — u) f(2).

Z—Uu

(i) Siu € U est un pole simple de la fonction méromorphe g avec f(u) # 0, alors ¢'(u) #0 et

Res (§7u> = 1 (u) .

PREUVE. (i) Développer f en série de Laurent au voisinage épointé de w, multiplier par z — w, puis passer a la

limite en u. (ii) Puisque g(u) = 0, le quotient (Z_;Eij)c () (gz(z_)qi);((zg tend vers gf/(&)) lorsque z tend vers w. u

1
2ie”

Exemple Res (%71) =

Exercice 49
Dans les conditions de la proposition précédente, si u € U est un péle d’ordre m de f, alors

h(mfl)(u)

Res (f,u) = m =1

ou h est la fonction z — (z — u)™ f(2).

Exemple d’application v ,

Pour calculer le résidu de z +— ﬁ en i, calculer le début du DSE de z +— ﬁ en i, en extraire le coefficient

de z — 7, c’est le résidu cherché. A vrai dire, il suffit de calculer le développement limité a ’ordre 1 en i de la
eiz e'z :

fonction G On trouve Res (m,o = 52

Définition (valuation en un point d’une fonction méromorphe)
Soient U un ouvert de C, f une fonction méromorphe sur U et v € U. La valuation de f en u est le nombre
entier — que 'on notera v, (f) — défini par :

(i) vy (f) = 0si f est holomorphe en u et si f(u) # 0 ;
(ii) vy (f) = n si f est holomorphe en u a un zéro d’ordre n en u ;

(iil) vy (f) = —n si f présente un pole d’ordre n en u.

Autrement dit, v, (f) est 'unique entier relatif tel que, dans un voisinage épointé V' \ {u} de u, f s’écrive sous

la forme
f(z) = (z—uw)"Pyg(2)

ol g est holomorphe sur V' et vérifie g(u) # 0.

5.2.3 Points singuliers essentiels

Une notion de topologie générale : une partie A de C est dense — ou encore partout dense — lorsque son
adhérence A pour la topologie usuelle de C est C tout entier.

Exercice 50 (de topologie)
Soit A C C. Les assertions suivantes sont équivalentes.

(i) A est dense dans C
(i) V2eC,Ve>0,Ja € A, |z—a| <¢

(iii) Pour tout z € C, il existe une suite (a,,) de points de A telle que z = lim a,,.

neN n—-+oo

Exercice 51 o
Les sous-ensembles Q +iQ, C\ {—1,0,1}, C\ iR, C\ 9D (2 + 1, 3) sont denses dans C.
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Théoréme (densité de ’image autour d’un point singulier essentiel)

Soient w € C, r > 0 et f une fonction holomorphe sur D (u,r) \ {u}. On suppose que u est un point singulier
essentiel de f. Alors, f (D (u,r)\ {u}) est une partie dense de C.

PREUVE. On suppose que f (D (u,r)\ {u}) n’est pas dense. Soient alors z € C et n > 0 tels que V({ €
D (u,r) \ {u}, |f({) — 2| > n. Alors, la fonction g : ¢ € D (u,r) \ {u} — ﬁ est holomorphe, et |g(¢)] < %7
pour tout ¢ € D (u,r) \ {u}. Ainsi, g et bornée sur D (u,r) \ {u}, ce qui entraine que g se prolonge en une
fonction holomorphe sur D (u,r). Alors, f = z + % est méromorphe sur D (u,r) : en u, elle est réguliére ou a
un poéle, ce qu’il fallait démontrer. [ |

A noter
(i) Ce théoreme est dit & Weierstrass, encore lui.
(ii) En particulier, si u est un point singulier essentiel de f, alors | f(z)| n’a aucune limite lorsque z tend vers u.

(iii) A vrai dire, I'important grand théoréme de Picard” en dit bien davantage : [’image d’une fonction holo-
morphe au voisinage d’un point singulier essentiel est soit C, soit C privé d’un unique point ; en outre, les fibres
non vides sont infinies. On ne démontre pas ce théoréme ici. Se contenter de se faire les dents en calculant
limage de n’importe quelle couronne Cour (0,0, R), R > 0 par la fonction z — expé

5.3 Le théoréme des résidus

Théoréme (théoréme des résidus, dit aussi formule des résidus)

Soient U un ouvert de C, n € N* et P une partie finie de U. Soient aussi f une fonction holomorphe sur U\ P
et v un lacet de U, homotope a zéro dans U, dont le support ne rencontre pas P. Alors,

2m/f )dz = > Res(f,p) x Ind, (p).

pEP

PREUVE. Pour chaque p € P, on écrit le développement en série de Laurent de f en p :
2) =Y apn(z—p)"
nez

et on note

$ptZ Z apn(z —p)",
n<—1

qui est encore holomorphe sur U \ P. En outre, la fonction
f— Z Pp
pEP

se prolonge par continuité en une fonction holomorphe sur U tout entier, puisque son DSL en chaque point de
P est un DSE. Comme le lacet v est homotope a zéro dans U, cela entraine que

/f dz—%;/wp

Puisque les fonctions z — (”7"“ admettent des primitives sur U \ P lorsque k # 1 et puisque les convergences
des séries de Laurent sont normales sur tout compact de C\ P, garantissant I'interversion des sommes et des

intégrales — le support de v est compact —, on obtient que
Res (f, .
/ f(z / . _f Z Res (f,p) x 2iwInd,(p),
peEP peEP
ce qu’il fallait démontrer. [ |

“Emile Picard, 1856-1941
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Corollaire (résidu et changement de variable)
Soient U un ouvert de C, uw € U et ¢ € O(U) telle que ¢'(u) # 0. Soit f une fonction holomorphe sur
o(U)\ {p(u)}. Alors, fop est DSL en u et

Res (f o x ', u) = Res (f,(u))

PREUVE. Quitte a restreindre U, grace au caractere local du résidu qui ne dépend que du DSL, le théoreme
d’inversion locale holomorphe permet de supposer que U est connexe et que ¢ est un difféomorphisme holomor-
phe U — o(U). On note v = p(u) et V Pouvert connexe V = ¢(U). Soit r > 0 tel que D (u,r) C U. On note
v le lacet v = C'(u,r). Alors, par changement de variable,

[foetr <ot = [ s (20)
¥ oy
En particulier, en divisant par 2im, le théoreme des résidus permet de ré-écrire cette formule en

Res (f o x ¢',u) = Res (f,v) x Indgoy (v).

11 suffit donc, pour conclure, de montrer que l'indice en v du lacet ¢ oy est 1. On applique la formule (20) a la
fonction z — —=. Cela fournit la relation

1 d 1 !
Indgoow(v) = 7/ 72 = — Mdz
26T Jpoy 2 —v 20w )y p(2) =0

Or, puisque ¢ est un difféfomorphisme holomorphe, u est un zéro simple de v, si bien que la fonction méromorphe

—~— présente un pole simple en u, dont le résidu est £ E") =1, ce qu'il fallait démontrer. [ ]
Exemple
we 1 1 1
Si w # 0, alors Res (67,0) = —Res( ,1) =—.
ewz —1 w z—1 w

On conclut cette section par trois énoncés relatifs au calcul du nombre de zéros et de poles d’'une fonction
méromorphe.

Proposition (intégrale curviligne de la dérivée logarithmique)
Soient U un ouvert de C et f une fonction méromorphe sur U et v un lacet de U homotope a zéro. On suppose
que ’ensemble P des zéros et des poles de f dans U est fini. Alors,

Lre
. / bz = 3 (1) x Ind ().

peP

PREUVE. Gréce a la formule des résidus, il suffit de calculer le résidu de f’/f en un point quelconque p € P
puisque f’/f est méromorphe sur U et a tous ses poles dans P. Comme f(z) = (z — p)*»Fg(z) o g est
holomorphe au voisinage de p et ne s’annule pas en p, la dérivée logarithmique f’/f s’écrit

f2)  ulf) | ¢
) z-p g0

au voisinage épointé de p. Comme ¢’/g est holomorphe au voisinage de p cela montre que Res (fT,’ p) =v,(f),
ce qu’il fallait démontrer. [ |

Corollaire (nombres de zéros et de pdles d’une fonction méromorphe)
Soient U un ouvert de C et f une fonction méromorphe sur U et v un lacet de U homotope a zéro. On suppose
que l’ensemble P des zéros et des poles de f dans U est fini et que lindice de v par rapport a tout point de P

égale 1. Alors,
L [z, _
2ir | f(2) dz‘pzepvp(f)'

N. Pouyanne, UVSQ 2026, LSMA621 71



PREUVE. C’est une application immédiate de la proposition précédente. u

A noter
Dans. l’c.én.oncé précédent, la somme ZpG'P vp(f) s’}nterpréte comme le nombre de zéros de f comptés avec leurs
multiplicités & laquelle on retranche nombre de poles de f comptés avec leurs ordres.

Théoréme (de Rouché™)
Soient U un ouwvert de C et f,g € O(U). On suppose que D (u,7) C U et que

VzeC, |z—ul=r=|f(2) - g(2)| <lg(2)|.

Alors, f et g ont le méme nombre de zéros dans D (u,r), comptés avec leurs multiplicités.

PREUVE. L’hypothése implique que ni f ni g ne s’annulent sur le cercle D (u, ). En outre, puisque D (u,r) est
compact, le nombre de zéros de f dans D (u,r) est fini, et idem pour g. Ainsi, le quotient h = ; est holomorphe
dans une couronne C' = Cour (u,71,72) C U olt r; < r < ry. Quitte & rapprocher r; et ro de 7, on peut supposer
que l'inégalité |h(z) — 1| < 1 est valide sur la couronne C. Ainsi, h envoie C dans le disque ouvert D (1,1) qui
est inclus dans le plan coupé C \ R_. Alors, la fonction Logoh est holomorphe sur Cour (u,r1,72) et a pour

dérivée le quotient h'/h. En particulier,
W(z)
dz = 0.
C(u,r) h(Z)

On conclut en remarquant que % = fTI — %/ et en appliquant le corollaire sur le nombre de zéros et de poles
d’une fonction méromorphe — noter que ni f ni g n’ont de podles dans U. ]

A noter
(i) Si Z(f) désigne I'ensemble des zéros de f, la conclusion du théoréme de Rouché signifie précisément que

Z Uz(f): Z Uz(g)'

z€Z(f) z€Z(g)

(ii) Le théoréme de Rouché se généralise en remplacant le disque D (u,r) par un compact dont le bord est le
support d’un arc simple — la preuve ci-dessus s’adapte sans histoire a cette situation plus large.

Exemple classique d’application : le théoréme de d’Alembert-Gauss™

Soit P un polynéme a coefficients complexes, unitaire, non constant, de degré d. Alors, la limite de Pz(dz ) est 1
lorsque |z| tend vers l'infini. Ainsi, il existe R > 0 tel que |P(z) - zd| < |zd} pour tout z dans le cercle de
centre 0 et de rayon R. Le théoréeme de Rouché assure alors que P a autant de zéro dans D (0, R) que z%, &
savoir d, en comptant les multiplicités. En particulier, P a au moins un zéro dans D (0, R), ce qui prouve le

théoreme de d’Alembert-Gauss : le corps C est algébriquement clos.

5.4 Exemples de calculs d’intégrales par la méthode des résidus

Les applications de la formule des résidus au calcul d’intégrales sont innombrables. On n’en présente ici qu’un
tout petit apergu.

Exemple 1
On montre que

/+°° at  ow
e 14t V2
1

Bien str, on peut calculer une primitive de 75z en décomposant cette fraction rationnelle en éléments simples

et se ramener ainsi & un calcul de limite. La formule des résidus fournit un autre mode de calcul, bien moins
fastidieux, comme suit.

“Eugene Rouché, 1832-1910.
“Karl Friedrich GauB, 1777-1855
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. ye 42 +oo gt e . R gt
Puisque l'intégrale convergente ffoo 17 est la limite de |~ T

lorsque R tend vers 400, on considere le lacet yg formé de la con-
caténation du demi-cercle de centre 0 et de rayon R > 1, d’origine
R et d’extrémité —R, suivi du segment S(—R,R). La fonction
z ﬁ est méromorphe sur C et admet les deux péles w et
w3 dans le demi-disque dont le support de vz est le bord, ot

w=¢€l = 1—\}? En outre, I'indice de yg par rapport a ces deux

poles vaut 1.

La formule des résidus assure alors que, pour tout R > 1,

1 dz 1 1
N —— —R (7’ ) R (7’ 3) .
2im ), 142 o 1—|—z4w +hes 1—|—z4w

/ dz 7/ dz +/R dt
R/ T S R

D’une part,

olt 8 est le lacet [0,7] — C, t — Re't. Comme ‘1_524 < \z\41—1 = 41—, Vintégrale le long de 65 vérifie, par
majoration standard,
/ dz TR 0
s 1t 28| S RE—1 Rogeo

si bien que, pour tout R > 1,

teo e d d 1 1
/ = lim/ 7Z:/ 7Z:2iW<ReS<7,w>+Res( ,w3>>.
o 14+tt  mRoo ) 1424t T4 1+ 24 1+ 24

Comme la fonction z — H% admet des poles simples en w et w3, le calcul de ces résidus lorsque R > 1 est

immédiat : 1 1 1 _
w w
Res (ﬁzww) = - g CtRes (ﬁzw“) =7

dont il résulte que

oo gt T . i . T
Exemple 2 ,
eltmdt

144

“+oo
On généralise 'exemple précédent pour calculer la transformée de Fourier™ z € R — / . On integre
— 00

sur le méme lacet : la formule des résidus fournit, sachant que w® = 1,
1 eizmdz < eizz > < eiz:c 3> eiwm eiw3fc \/i e < ) T T )
— —— =Res| ——,w ) + Res Jw? | = 4+ —— =—i—e V2 |sin—= +cos— ).
2im [, 1+ 24 1424 1424 4w 4w 4 V2 V2

R(izx) _

Par ailleurs, si z est un complexe dont la partie imaginaire est positive ou nulle et si x > 0, ’e"’” ’ =e
e~ *S% < 1. Ainsi, lorsque x > 0, l'intégrale le long du demi cercle dx tend vers 0 lorsque R tend vers 400,

puisque, par majoration standard, lorsque R > 1,
eizx dz
/5R 1424

Ve > 0 /+°° et dt L ( oz N x )
x ) = —e¢ sin — + cos — | .
- oo 11 2 V2 NG

TR
—Rf—-1

On en déduit que

“Joseph Fourier, 1786-1830
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eitm dt

T est une fonction

—+o0
Enfin, un changement de variable ¢ ~ —t montre immédiatement que =z € R /
— 00

paire. On en conclut que

8

Ve e R /+oo eite gt T lal < . |x| . T )
X 5 = —=e€ Sl —— COS —= | .
oo 144 2 V2 V2

S

Exemple 3
T gint

Il s’agit de calculer la transformée de Fourier (-Plancherel ) / e dt de la fonction ¢ % en tout point

— 00
x € R\{£1}. Cette intégrale est (semi-)convergente, comme le montre classiquement une intégration par parties
sur un intervalle compact de la forme [—a,b] ou a,b > 0 suivi d’un passage a la limite (a,b) — (400, ,+00).
[Pour intégrer par parties, calculer une primitive de et
Inutile, ici, de chercher une primitive de 'intégrand en termes de fonctions usuelles, il n’y en a pas — c’est un
théoréme qui ressort de la théorie de Galois®™ différentielle, hors de portée du présent discours.
En z = +£1, cette intégrale diverge. En revanche, pour x = 1 et pour x = —1, l'intégrale fR sint

—R ¢
méme une limite lorsque R tend vers +oo.

sint et dériver %, ce qui permet de se ramener & une fonction intégrable sur R.]

et dt a quand

On montre que

R m sl |zl <1
—
lim Rt ) ={ T si =41 (21)
R—+o00 R t
0 si |z|>1.

sin z
z

La fonction z +— présente a l'origine un point régulier : elle se prolonge par continuité en une fonction

iwz
e

entiere valant 1 en 0. En revanche, les fonctions z — <
de l'intervalle d’intégration lors de la décomposition 2isint = e

présentent un poéle simple en 0. Pour éloigner ce pole
i _ =% on change de chemin.

Soit R > 0. On note g le concaténé du segment S(—R,—1), du

demi-cercle dans le demi-plan {z, $(z) < 0} parcouru une fois dans

le sens direct de —1 a 1 dont un paramétrage est par exemple t €

[0, 7] — —e®, puis enfin du segment S(1, R). Le segment S(—R, R) -R —1 1 R

et vg sont évidemment homotopes dans C. En particulier, pour

tout = € R,
R - .
sint sinz
/ ettt :/ —e"¥dz.
-r 1t yr %

Pour tous R > 0 et w € R, on note — cela a du sens puisque le chemin ~yg évite 'origine —

~
IR

Wz

(&

F(R,w) =/m e

si bien que notre intégrale s’écrit

R .

) 1) — -1
/ Slnte’t‘”dt:f(R’x+) f(R,x )
-R

5 (22)
On complete le chemin g pour en faire un lacet, de deux fagons — pour une illustration, voir le dessin ci-
dessous. On note E; le lacet formé de la concaténation de yg et du demi-cercle t € [0,71] — Re’ dans le
demi-plan Jz > 0 et {5 le lacet formé de la concaténation de yr et du demi-cercle ¢t € [0, 7] — Re~™ dans
le demi-plan Sz < 0. La fonction z — e'?#/z étant méromorphe sur C et ne présentant qu’un unique pole —
simple, en 0 —, la formule des résidus montre que, pour tout w € R et pour tout R > 0,

w2z Wz Wz
/ € dz = 2irRes (e ,0) — 27 et / € _dz=o.
ZE z z e;{ z

“Michel Plancherel, 18851967
S Evariste Galois, 1811-1832
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En paramétrant les deux demi-cercles, ces formules montrent que f(R,w) s’écrit de deux fagons : pour tous
R>0et weR,

f(R,w) = 2im — Z/ exp (iwRe') dt = z/ exp (iwRe™") dt.
0 0

Une fois ces expressions acquises, on s’occupe de 'asymptotique, lorsque R tend vers linfini, de f(R,w). Pour
tous w,t € Ret R > 0, {exp (ine”){ = exp R (ine“) = exp (—wRsint). En particulier, lorsque R tend
vers 400, exp (ine“) tend vers 0 dés lors que w et sint ont le méme signe. On applique alors le théoreme de
convergence dominée de Lebesgue aux intégrales ci-dessus, ce qui entraine que

2im st w >0

RLHEoof(R’w) =< im si w=0

0 si w<0.

En combinant cette disjonction des cas avec la formule (22), on a démontré les égalités (21) attendues.

5.5 Un exemple de transformation conforme

Le théoreme de transformation conforme de Riemann assure que tout ouvert connexe et simplement connexe
de C, qui ne soit ni vide ni C tout entier, est analytiquement difféomorphe (on dit aussi conforme) au disque
unité. Cerise sur le gateau, on peut écrire des preuves constructives de cet éblouissant résultat. On en donne
ici un petit apercu, sous la forme de I’étude d’une intégrale de Schwarz-Christoffel tres particuliere.

On note D le disque unité ouvert et D son adhérence topologique. On note aussi 7' I'enveloppe convexe du
triplet {1, 7, j2} ol j = exp (Q’T”)7 et T son intérieur topologique. L’objet de ce paragraphe consiste a donner
un difféomorphisme analytique explicite entre D et T.

La fonction S

Si le symbole /- désigne la racine cubique principale, la fonction z Vﬁ est définie et holomorphe sur

Iouvert U = C\ R out R est la réunion des trois demi-droites R = ([1, +oo[) U (j[1, +-00[) U (j2[1, +ocl).

On note S la fonction définie sur U par I'intégrale curviligne

dz
S(z) = _—
\*'"‘\ U ) /[0“’2] \3/(1—23)2

, ! ot le symbole [0 ~ 2] désigne n’importe quel chemin de U dont

\ 1 lorigine est 0 et I'extrémité z. Puisque U est simplement connexe,
\\ 5 la fonction S est bien définie, I'intégrale curviligne ne dépendant pas
17 du chemin choisi. En outre, S est holomorphe : sur le connexe U,
_z2
c’est 'unique primitive de z — (1 - z3) ® qui s’annule en 0.
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L’ouvert U est étoilé par rapport a l'origine. Pour tout z € U, le calcul de S en utilisant la paramétrisation

standard du segment [0, z] — inclus dans U — mene a 1’écriture
1
dt
z) =2 / ——, (23)
0 {/(1—1t323)?

qui montre immédiatement que

Vz e U, S(jz) =75(z). (24)
En outre,

— 1 1 1
VtE[O,l[,Vz€D7 7| = zg PR
(1_t323>§ \1—t3z3|§ (1—t3)§

puisque le dernier membre de cette inégalité est intégrable sur [0, 1], cette inégalité de domination montre que

1 (11
51—t 2/3dt:§B<— 7>z1,77

hm S(z 33

e [t

ol B désigne la fonction Beta d’Euler” — changer de variable sous 'intégrale pour obtenir la deuxi¢me égalité.
On note B cette limite. La formule (24) montre alors que S se prolonge par continuité & D par les formules

S(1) =B, S(j) =3B, $(j*) = *B.

Comment S transforme le cercle unité
On note encore S le prolongement par continuité de S a UU {1,j,j2} qui vient d’ etre établi. On calcule 'image
par S du cercle unité 9D.
Pour tout 6 € |0, 2% [, on calcule 'angle au point S(1) J e ()
entre le point S (e”) et Porigine S(0) = 0, ¢’est-a-dire S >
L0 _ -z
I’argument du nombre complexe %(15)(1) Puisque 1 — B =5(1)
S(1) est un réel strictement positif, cet angle orienté de

vecteurs est aussi arg (S(1) — S (e?)). ;2

On calcule S(1) — S (e). Puisque S(z) est aussi I'intégrale curviligne le long du segment [0, 1] suivi de I'arc de
cercle unité joignant 1 & e*?, on obtient :

O et
S(1) — 5 () = —/ at

0 (1—edit)s

. . i . 3it . 3t_m [ . .
Or, lorsque 0 <t <6 < %’T, il vient 1 —e3®* = —2ie*2 sin % = 2sin 32tel( 2 2), si bien que, puisque sin % >0, la
z . =
détermination principale de la racine cubique s’écrit (1 — 63”) = ﬁel(fwi). En reportant cela dans
S1n 7

I'intégrale, on obtient

S0 -5 (e) = F [ bt
0 {/2sin¥
Cette derniere intégrale étant un nombre réel strictement positif lorsque 0 < 0 < =F, cela montre que 1’angle

orienté entre les vecteurs S(0) — S(1) et S (e”) — S(1) a une mesure principale constante, égale & —% — voir
une illustration sur le dessin ci-dessus.

L@)T'(y)

1
“Célébrissime, B est la fonction B(z,y) = / t*71 1 — )Y ldt = .
0 Dz +y)
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Lo . ¢t N
Si on ajoute a cela le fait que — est une fonction stricte-
0

jB {¢/2sin =
J ment croissante de 8, on obtient que S induit un homéomorphisme
de larc de cercle (compact) {ew, 0<o< %”} sur le segment
[B,jB]. La formule (24) permet de “faire tourner” ce résultat.

On obtient ainsi que, par restriction,

Ak

S induit un homéomorphisme du cercle 0D
sur le triangle équilatéral OT .

Comment S transforme le disque unité
Il résulte du corollaire page 71 sur le nombre de zéros et de poles d’une fonction méromorphe que, puisque S est
continue sur D et holomorphe dans D, pour tout w € C, le nombre de solutions dans D de I’équation S(z) = w
égale
1 S'(z)dz

2ir )., S(z) —w
ott le chemin v : [0,27] — C, t > e est une paramétrisation du cercle unité parcouru une fois dans le sens
direct — a vrai dire, pour obtenir cela, il est prudent d’écrire la formule en intégrant sur des cercles de rayons
strictement inférieurs a 1, puis de passer a la limite en faisant tendre ces rayons vers 1. Or, il ressort de ’étude
ci-dessus que la composée S o7y est continue sur [0,27] et de classe C* sur chacun des intervalles ]0, 27” H 2{, 4?” [
et ] 4{, 27 [ Autrement dit, .S o~y est encore un chemin de C. Toujours en vertu de ce qui précede, son support
est 0T — parcouru une fois dans le sens direct. Il suffit alors d’écrire le changement de variable et de reconnaitre

la formule de l'indice :

L/ "(z)dz 1 T (Son) (t)dt 1 dz
2ir ), S(z)—w 2w Jo Sox(t)—w  2im Jgo, z—w

= Indgo, (w).

Cela permet de montrer que S est injective sur D et que I'image de D par S est T tout entier. En effet, si
z9 € D, alors le nombre de solutions dans D de 'équation f(z) = f (z0) est 'indice de S o qui est 0 ou 1
puisque So-y est un lacet simple qui parcourt le triangle 9T dans le sens direct. Cela montre I'injectivité. Enfin,
si w € T, le nombre de solutions dans D de ’équation f(z) = w est lindice de w par rapport & S oy, qui
est 1 : cela démontre que T' C S(D). L’inclusion inverse peut se faire par un argument de connexité comme
suit. L’image de D par S est un connexe de C qui contient 0 et est contenu dans le complémentaire de 0T :
cette image est dans T'. Ainsi, on a montré la surjectivité.

On a montré que S est une application holomorphe et bijective D — T. C’est donc un difféomorphisme
analytique entre D et T', comme le garantit la proposition de la page 55.

Conclusion

L’application de Schwarz-Christoffel S induit un difféomorphisme analytique entre D et T
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