UvsQ 2025/2026
Licence de sciences et technologie, santé
LSMAG610 (groupes et géométrie)

Feuille d’exercices numéro 1

1 Petites questions en vrac, pour soi

1.1) Trouver les générateurs de (Z/18Z,+) et du groupe des racines 12° de 'unité.

1.2) Donner trois générateurs différents du groupe des racines 2025° complexes de 'unité.
1.3) Combien y a-t-il d’éléments d’ordre 2 dans un groupe cyclique d’ordre n ?

1.4) Trouver tous les sous-groupes de Z/20Z.

1.5) Compter les homomorphismes de groupes de Z/nZ sur Z/mZ et les expliciter.
Se faire la main sur les exemples Z/21Z — Z/6Z et Z/18Z — Z/6Z.

1.6) Est-il vrai que U,, NU,, = U,an 7 Est-il vrai que le sous-groupe de C* engendré par U, UU,, est Uy,yp ?
Interpréter les résultats obtenus dans le cadre de Z/mZ et Z/nZ.

1.7) Trouver tous les homomorphismes de groupes Q - Q, Q —» Z et Q — Q*.

1.8) Montrer que le groupe additif quotient Q/Z est isomorphe au groupe multiplicatif U de toutes les racines
complexes de I'unité.

1.9) Peut-on trouver un groupe fini d’ordre 168 contenant un sous-groupe d’indice 14 ?

01 0 O
1.10) Quel est I'ordre de C' = 0 8 0 ? dans le groupe GL(4,C) ?
1 0 0 O

2 Quelques gammes dans le désordre

2.1) xy et yr sont conjugués

Si G est n’importe quel groupe et si z,y € G, alors zy et yx sont conjugués.

Application : si A et B sont deux matrices carrées inversibles, alors AB et BA sont semblables. Que se passe-t-il
si on enleve 'hypothese d’inversibilité ?

2.2) Transport de ’ordre

Soit f : G — G’ un homomorphisme de groupes. Montrer que si Uordre de z € G est fini, alors, 'ordre de f(x) est
fini et divise 'ordre de =x.

2.3) Sous-groupes et quotients d’un groupe monogéne

Tout sous-groupe d’un groupe monogene est monogene. Tout quotient d’un groupe monogene est monogene.

2.4) Ordre d’un produit de deux éléments qui commutent
Soient G un groupe, x et y deux éléments de G qui commutent.

(i) Montrer que si les ordres de x et de y sont premiers entre eux, alors l'ordre de xy est fini, égal au produit des
ordres de x et de y.

(ii) On suppose que (z) N (y) = {1}. Alors, 'ordre de zy est fini, égal au PPCM des ordres de z et de y.

2.5) Transport de systéme générateur
Soient f : G — G’ un homomorphisme de groupes, et A une partie de G. Est-il vrai que
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2.6) Tester la normalité sur un systéme générateur

(i) Soit G un groupe engendré par une partie A. On suppose que H est un sous-groupe de G tel que Va € A,
aHa' = H. Le sous-groupe H est-il nécessairement distingué dans G' ?

(ii) Soit G un groupe engendré par une partie A. On suppose que H est un sous-groupe de G tel que Va € A,
aHa™' C H. Le sous-groupe H est-il nécessairement® distingué dans G ?

(iii) Soit G un groupe engendré par une partie A formée d’éléments d’ordres finis. On suppose que H est un
sous-groupe de G tel que Ya € A, aHa~' C H. Le sous-groupe H est-il nécessairement distingué dans G ?

2.7) Combien de générateurs ?
Soit G un groupe fini d’ordre n. Montrer que G' a un systeme générateur de cardinal inférieur ou égal a log, n.

2.8) Groupe d’ordre pair ou impair
(i) Montrer qu'un groupe fini d’ordre pair contient toujours un élément d’ordre 2 (on pourra montrer qu’il y a un
nombre pair d’éléments dont le carré n’est pas 1).

(ii) Montrer si G est un groupe fini d’ordre impair, tout élément a une racine carrée : Vo € G, Iy € G, x = y>.

2.9) Coprimalité de 'ordre et de ’indice

Soient G un groupe et H un sous-groupe distingué de G, d’indice fini.

(i) Soit K un sous-groupe fini de G dont l'ordre est premier avec [G : H]. Montrer que K C H.

(ii) Si G et H sont finis et si |H| et [G : H] sont étrangers, alors H est I'unique sous-groupe d’ordre |H| de G.

2.10) Ordre dans un produit

Soient G et H deux groupes, et (z,y) € G x H. On suppose que x et y sont d’ordres finis m et n respectivement.
Montrer que, dans le groupe produit G x H, I’élément (x,y) est d’ordre fini, égal & PPCM(m,n).

2.11) Produit d’indices
Soient G un groupe, H et K deux sous-groupes de G tels que H C K.

(i) Montrer que [G: H] =[G : K] x [K : H].
(ii) En déduire que si [G : H] = [G : K] et si cet indice est fini, alors H = K.
(iii) Trouver un exemple pour lequel [G: H| =[G : K| et H # K.

2.12) Groupe opposé
Soit G un groupe. On définit sur G la loi opposée par la formule x x y = yx, le dernier produit désignant la loi
de G. Montrer que (G, *) est un groupe, que 'on note G°?. Montrer que les groupes G et G°P sont isomorphes.

3 Produit de deux sous-groupes
Soient G un groupe, H et K deux sous-groupes de G. On note
HK ={hk, he H, ke K}.
3.1) Montrer qu’en général, HK n’est pas un sous-groupe de G.
3.2) On suppose que H N K = {1}. Montrer que Card (HK) = |H| - |K]|.

3.3) Montrer que si H 4G, alors HK est un sous-groupe de G.
3.4) Etudier la réciproque de I'implication du 3.3.

“Voir I’exercice 54.
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4 Décimaux modulo les entiers

Vérifier que I'ensemble DD des nombres décimaux est un sous-groupe additif de R. On note
S10 = {Z €eC, IneN, 20" = 1}

Montrer que S1g est un sous-groupe du groupe multiplicatif C\ {0}. Les groupes D/Z et Sy sont-ils isomorphes ?
Pour aller plus loin, par quoi peut-on remplacer le groupe des décimaux pour obtenir des énoncés analogues ?

5 Groupes 2-élémentaires

Soit G un groupe dont tous les éléments sont d’ordre 1 ou 2.
5.1) Montrer que G est abélien.
5.2) On note G additivement. On note - la loi de composition externe sur G définie par

Z)22.x G — G

0 si e=0
(e.9) +— €9 = .
g si e=1.

Montrer cette loi de composition externe est bien définie et confére & G une structure de Z/27Z-espace vectoriel.
n

5.3) On suppose que G est fini. Montrer qu’il existe n € N tel que G soit isomorphe au groupe (Z/27)

5.4) Montrer que ’ensemble des parties d’un ensemble, muni de la différence symétrique, est un groupe abélien.
Si 'ensemble a un nombre fini n d’éléments, montrer que ce groupe est isomorphe & (Z/2Z)".

6 Sous-groupes d’un groupe a engendrement fini
On dit qu'un groupe est a engendrement fini lorsqu’il admet un systeme générateur fini. Autrement dit, un groupe
I' est & engendrement fini lorsqu’il existe une partie finie de I' qui engendre T".

L’objet de cet exercice est de montrer qu’un sous-groupe d’un groupe a engendrement fini n’est pas nécessairement
a engendrement fini.

6.1) Soit G le sous-ensemble de GL (2,R) défini par

G = {(20” 211)) (n,p, ) €Z3}.

Mountrer que G est un sous-groupe de GL (2, R).

6.2) Sim et p sont des entiers relatifs, calculer

2m 0\ (1 »p ¢ 1 p\ (2™ O
o 1)l 1) ® o 1)\o 1)
. . . 2 0 11
Montrer soigneusement que le groupe G est engendré par les deux matrices <0 1) et (0 1>.
1 P
7|=| = {77 , Zz}.
5| {5 woe

Montrer que Z [%] est un sous-groupe additif de R qui n’est pas a engendrement fini.

6.4) Soit H le sous-ensemble de G défini par

7={(; 1) woez}.

Démontrer que H est un sous-groupe de G isomorphe a Z [%] En déduire que H n’est pas a engendrement fini.

6.3) On note
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7 Groupes cycliques

Soit n un entier naturel non nul. Faire les preuves des résultats du cours suivants.
7.1) Sik € Z, alors la classe de k modulo n engendre Z/nZ si, et seulement si k et n sont premiers entre eux.

7.2) Si G = (g) est un groupe cyclique d’ordre n et si k € Z, alors G = (g*) si, et seulement si k et n sont premiers
entre eux.

. 2ikm . . . .
7.3) Si k € Z, le nombre complexe e"n  est une racine primitive n® de 1'unité si, et seulement si k et n sont
premiers entre eux.

7.4) Sik € Z, alors la classe de k modulo n engendre un sous-groupe d’ordre W(nk) de Z/nZ.

7.5) Ecrire la version du résultat précédent pour le groupe des racines n® complexes de I'unité et pour un groupe
cyclique d’ordre n abstrait.

7.6) Calculer le nombre de sous-groupes d’un groupe cyclique d’ordre n ; les décrire tous. Calculer le nombre de
quotients d’un groupe cyclique d’ordre n ; les décrire tous.

7.7) On note ¢ la fonction d’Euler. Se rappeler pourquoi ¢(mn) = p(m)p(n) lorsque m et n sont étrangers et
pourquoi ¢ (p") = p"~1(p — 1) lorsque p est premier et n > 0. Montrer que pour tout entier naturel non nul n,

o) =nJ] (1-7) 1)

ol le produit porte sur les nombres premiers qui divisent n.
7.8) En utilisant la formule (1), montrer que m|n = p(m)|p(n).

7.9) En utilisant la formule (1), montrer que si m et n sont des entiers naturels non nul et si d est leur PGCD,
alors

p(mn)p(d) = p(m)p(n)d.

8 Matrices triangulaires unipotentes

8.1) Montrer que ’ensemble

1 a b
U= 0 1 ¢, (abc) eR?
0 0 1

est un sous-groupe de SL(3,R) et calculer son centre Z.
8.2) Le groupe Z est-il isomorphe au groupe additif R ?
8.3) Montrer que 'application

I U — R?
1 a b
01 ¢] — (a0
0 0 1

est un homomorphisme de groupes. En déduire que U/Z est isomorphe au groupe additif R?. Le groupe U est-il
isomorphe au groupe additif R x R? ?

8.4) Pour tout nombre réel ¢, on note

U(t) =

O O =
O~ o+
— T

Soit N = {U(t), t € R}. Montrer que N est un sous-groupe de Y. Est-il monogene ?
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9 Groupes d’exposant fini

9.1 Prélude

(i) Montrer que si z € C vérifie |1+ z| = 1+ |z|, alors z € Ry. En déduire que si a et b sont des nombres complexes

non nuls,
a

Qa+m:ku+w)=:(bewg.

(ii) Soient z1,..., 2, des nombres complexes non nuls. Montrer que si |21 + -+ + 2z,| = |21] + -+ - + |24, alors les

nombres z—’f sont tous des réels strictement positifs (on pourra procéder par récurrence sur n).

(iii) Soient n et m des entiers naturels non nuls et soient ws,...,w, des racines m'*™* de l'unité. Montrer que

(Zn:wkzn> = (Vke{l,...,n}, wk:1>.

9.2 Un groupe infini d’exposant fini

iémes

Soient m un entier naturel supérieur ou égal a 2 et U,,, le groupe des racines m complexes de I'unité. On note F
I’ensemble des applications R — U,,,. On munit F de la loi de composition interne définie par (f - g) (z) = f(z)g(x)
pour tous f et g dans F et pour tout x € R. Cela munit F d’une loi de groupe — c’est élémentaire.

(i) On note ¢; la fonction constante égale & 1. Montrer que 7 est ’élément neutre de F ; si f € F, calculer 'inverse
de f dans F.

(ii) Montrer que Vf € F, f™ = §; et que F est infini.

9.3 Tout groupe linéaire d’exposant fini est fini

Soient n et m des entiers naturels non nul et G un sous-groupe de GL (n,C). On note I,, la matrice identité de

dimension n. On suppose que
VAe G, A" =1,.

i) Montrer que pour tout A dans G, les valeurs propres de A sont des racines m'®™ de I'unité.

(
(ii) On note M,, (C) lespace vectoriel de toutes les matrices carrées de taille n & coefficients complexes. Soit T
I’ensemble des traces des éléments de G ; autrement dit,

T = {Tx(A), A€ G}.

Démontrer que T est un ensemble fini.

(iil) Soit E le sous-espace vectoriel de M,, (C) engendré par G.
Dire rapidement pourquoi E est de dimension finie.
Soient d la dimension de E et (E4,..., E4) une base de E formée d’éléments de G (pourquoi en existe-t-il 7). Soit
t : G — T< I'application définie par
t:G — T4
A (Tr(AEl),...,Tr(AEd)).

Montrer que si deux éléments A et B de G vérifient ¢t (A) = ¢ (B), alors Tr (AC) = Tr (BC) pour tout C' dans G et
en déduire que Tr (AB’l) = n. Montrer que ¢ est injective (on pourra utiliser le prélude 9.1).

(iv) Montrer que G est fini.
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10 Sous-groupes de type fini de Q ou R

1 3 1
10.1) Montrer que EZ + gZ = TOZ'

10.2) Est-il vrai que si a, b, ¢ et d sont des entiers relatifs non nuls, alors

PGCD (ad, bc)

Z7?
bd

a C
27+ 57 =
pot g

10.3) Montrer que si u, v et w sont des nombres rationnels, le sous-groupe de Q engendré par u, v et w est
monogene.

10.4) Montrer que tout sous-groupe de type fini de Q est monogene.

10.5) Le groupe additif (Q,+) est-il de type fini ?

10.6) Le groupe additif (R, +) contient-il un sous-groupe dense de type fini ?
10.7) Le groupe additif (R, +) est-il de type fini ?

11 Dévissages autour de GL (n)
11.1) Montrer que 'application

f: C*xSL(n,C) — GL(n,C)
(z,A) — zA
est un homomorphisme de groupes.
11.2) Calculer I'image de f.

11.3) Montrer que le noyau de f est isomorphe au groupe U,, des racines n complexes de I'unité.

11.4) Montrer que C* x SL(n,C) contient un sous-groupe distingué H isomorphe & U, tel que GL(n,C) soit
isomorphe au groupe quotient C* x SL(n,C)/H. Autrement dit, montrer qu’on a une suite exacte

1 — Z/nZ — C* x SL(n,C) -5 GL(n,C) — 1.

11.5) Montrer que le résultat subsiste si on remplace C par n’importe quel corps algébriquement clos.

11.6) Montrer que GLT(2,R) = {4 € GL(2,R), det(A) > 0} est un sous-groupe distingué de GL(2,R), et que le
quotient GL(2,R)/ GL™(2,R) est isomorphe & Z/27Z.

11.7) Montrer que I'application f : GLT(2,R) — SL(2,R) x R?* définie par

F(A) = (\ﬂ;iHA,detA>

est un homomorphisme de groupes. Est-ce un isomorphisme ? Pour aller plus loin, établir le méme résultat pour
tous les GL*(n,R) = {A € GL(n,R), det(4) > 0}.

12 Intersection de sous-groupes d’indices finis

Soient G un groupe, H et K deux sous-groupes de G.

12.1) On suppose que H est d’indice fini dans G. Montrer que H N K est un sous-groupe d’indice fini de K et
que
[K:HNK]<|[G: H]. (2)
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12.2) Dans les conditions de la question précédente, montrer que les assertions suivantes sont équivalentes :

(i) inégalité (2) est une égalité

(il) G = KH

(i) G = HK.

12.3) Montrer qu’une intersection finie de sous-groupes d’indices finis de G est encore un sous-groupe d’indice
fini.

12.4) On suppose que les indices de H et de K dans G sont finis et premiers entre eux. Montrer que G = HK =
KH.
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UvsQ 2024/2025
Licence de sciences et technologie, santé
LSMAG610 (groupes et géométrie)

Feuille d’exercices numéro 2

13 Petites questions en vrac, pour soi
13.1) Calculer le support de la permutation de &5 définie par le produit

(5,12,7,8,9)(10, 11,12, 1)(7,2)(3,5,8,2,13,4)(15,5)(3, 11).

13.2) Soit s = (7,11,8,9)(2,1,7,12)(9,2,10,3,7,5,6)(10,8) € &12. Calculer 'orbite de 11 sous action de s.

13.3) Décomposer les permutations suivantes en produit de cycles & supports disjoints.

(.)1234567891011121314
Y117 412 25 14 11 9 10 8 3 6 13

(ii) (7,11,8,9)(2,1,7,12)(9,2,10,3,7,5,6)(10, 8)

13.4) Les permutations (135)(189)(53842)(67) et (173)(394)(61542)(83) sont-elles conjuguées ?

13.5) Soient n et p des entiers naturels tels que 1 < p < n. Quel est le cardinal de la classe de conjugaison d’un
p-cycle de &,, 7

13.6) Trouver tous les sous-groupes d’ordre 15, 20 ou 30 de Us.

13.7) Expliciter les 4 éléments du groupe cyclique Aut (Z/5Z). Calculer les facteurs invariants du groupe abélien
fini Aut (Z/200Z).

13.8) Les groupes Z/686Z x Z/13727 et Z/98Z x 7 /287 x Z/3437Z sont-ils isomorphes ?

13.9) Les groupes O(2) et SO(2) x Z/2Z sont-ils isomorphes ? Les groupes O(3) et SO(3) x Z/2Z sont-ils
isomorphes 7 Généraliser.

La suite exacte 1 — SO — O — Z/2Z — 1 induite par le déterminant est scindée en toute dimension, puisque O contient des réflexions qui
sont d’ordre 2. En dimension impaire, —1I,, est impaire et fournit une section centrale : le produit est direct. En dimension paire supérieure ou

égale a 4, non, le centre de O(2n) est d’ordre 2, celui de SO(2n) x Z/27Z d’ordre 4. En dimension 2, SO(2) X Z/2Z est abélien, mais pas O(2).

14 Quelques gammes dans le désordre

14.1) Toujours produit ?

Est-il vrai que si H est un sous-groupe distingué d’un groupe G, les groupes G et H xG/H sont toujours isomorphes ?
14.2) Deux générateurs de s

Soit G le sous-groupe de &5 engendré par les 3-cycles (123) et (345).

(i) Montrer que G C Us.

(ii) Ecrire (123)(345) en produit de cycles & supports disjoints et montrer que (234) € G.

(iii) Calculer le nombre de 3-cycles de &5. Démontrer que G contient tous les 3-cycles de &5 (on pourra si Pon
veut utiliser plusieurs fois la formule de conjugaison des cycles, méthodiquement mais avec économie).

(iv) Montrer que G = 2s.
14.3) 2, est engendré par les 5-cycles

Soit n un entier naturel supérieur ou égal a 5. Montrer que le sous-groupe H de &,, engendré par les 5-cycles est
distingué dans &,,. En déduire que H égale le groupe alterné 2,,.
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15 Ce qu’engendrent une transposition et un 4-cycle
15.1) Soit A le sous-groupe de &4 engendré par la transposition (12) et le 4-cycle (1234). Montrer que A contient
les transpositions (23) et (34). En déduire que A = Gy.

15.2) Soit B le sous-groupe de &4 engendré par la transposition (12) et le 4-cycle (1324).
(i) Calculer la décomposition du produit (12)(1324) en produit de cycles a supports disjoints.

(ii) On note K = {1, (12)(34), (13)(24), (14)(23)} le groupe de Klein. Montrer que K est un sous-groupe distingué
de B.

(iil) Montrer que les classes de (12) et de (1324) dans le groupe-quotient B/K sont inverses 'une de Pautre.
(iv) En déduire que B est d’ordre 8.
15.3) Soit C le sous-groupe de G5 engendré par la transposition (12) et le 4-cycle (2345). Montrer que C = Gs.

15.4) Soit D le sous-groupe de G4 engendré par la transposition (12) et le 4-cycle (3456). Montrer que D est un
groupe abélien, isomorphe & Z/27Z x 7Z/47. Est-il cyclique ?

15.5) Déduire des questions précédentes que lorsque n > 6, le sous-groupe de &,, engendré par une transposition
et un 4-cycle est soit d’ordre 8, soit isomorphe a &4, soit isomorphe a Ss.

15.6) Les groupes B et D, tous les deux d’ordre 8, sont-ils isomorphes ?

16 Il n’y a que deux groupes d’ordre 6

Montrer que tout groupe d’ordre 6 est isomorphe & Z/6Z ou & S3.

17 Qu’engendrent un Klein et une transposition ?

Soit G le sous-groupe du groupe symétrique G4 engendré par la transposition ¢t = (23) et par le produit k& = (12)(34).
17.1) Montrer que G contient le groupe de Klein.

17.2) Trouver un 4-cycle contenu dans G et lui donner pour nom ec.

17.3) Calculer le conjugué de ¢ par t.

17.4) Montrer que tout élément de G' s’écrit, de maniére unique, sous la forme t%c? ot a € {0,1} et b € {0,1,2,3}.

17.5) Calculer 'ordre de G. Le groupe G est-il abélien ? Est-il distingué dans &4 7

18 Un groupe d’ordre 2(2m + 1) n’est jamais simple
Soient G un groupe fini et f : G — S¢ le plongement canonique de G, defini comme d’habitude par f(x)(y) = xy
pour tous z et y de G.

18.1) Pour tout z € G, quelle est la forme de la décomposition de f(x) en produit de cycles & supports disjoint ?
Calculer sa signature.

18.2) Suffit-il que G soit d’ordre impair pour que f(G) soit un sous-groupe de g ?
18.3) On suppose que G est d’ordre 2n ou n est un entier naturel impair.

(i) Pourquoi G contient-il au moins un élément d’ordre 2 ?

(ii) Soit z un élément d’ordre 2 de G. Calculer la signature de f(z).

(iii) En déduire que G contient un sous-groupe distingué d’ordre n.
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19 Groupes d’ordre 2(2m + 1)

Soit G un groupe fini d’ordre 2n ou n est un entier naturel impair.
19.1) Pourquoi G contient-il au moins un élément d’ordre 2 ?
19.2) Soit z un élément d’ordre 2 de G. On note
c: G — G
xr 2.
Montrer que o est une permutation d’ordre 2 sans point fixe de G et calculer sa signature.

19.3) On note S¢ le groupe des permutations de G. Soit ® : G — G V'application définie par :
Yy € G, Yz € G, ®(y)(z) = yx.

Montrer que ® est un homomorphisme de groupes.

19.4) Onnote f =co®: G — {—1,1}, ol € désigne la signature. Montrer que f est surjectif. En déduire que
G contient un sous-groupe distingué d’ordre n.

. . , . . . , tel
19.5) Existe-t-il un groupe G d’ordre pair qui ne contienne pas de sous-groupe (normal) d’ordre 5+ ?

20 Sous-groupes d’indice p min
Soient G un groupe fini et p le plus petit nombre premier qui divise 'ordre de G. 1l s’agit de montrer que tout
sous-groupe d’indice p de G est distingué.

(i) Soit H un sous-groupe de G d’indice p. Montrer que I'action de G sur I'ensemble (G/H), des classes a gauche
modulo H par translation a gauche induit un homomorphisme de groupes ® : G — &,,.

(ii) Montrer que 'image de ® est un groupe abélien (et méme cyclique).

(iii) En déduire que H <« G.

21 Groupes ayant exactement trois classes de conjugaison
Ot l’on montre que les seuls groupes finis ayant exactement 3 classes de conjugaison sont Z/3Z et Gs.
Soit G un groupe fini d’ordre n ayant exactement trois classes de conjugaison. On note a et b les ordres des groupes
d’isotropie des deux classes qui ne sont pas la classe triviale {1} et on suppose que a < b.
21.1) Montrer que 1 = % + é + %, que aln et que b|n.

21.2) Montrer successivement que a € {1,2,3}, que le cas a = 1 est & rejeter, que @ = 3 implique a=b=n=3
et, enfin, que a = 2 impose (n, a,b) = (6,2, 3).

21.3) Montrer que seul le groupe Z/3Z correspond au cas (n,a,b) = (3,3,3) et que seul le groupe &3 correspond
au cas (n,a,b) = (6,2,3).

22 Le groupe diédral

Pour tout entier naturel non nul n, on note r, : C — C lapplication z — €2™/"z. On note aussi s : C — C
Papplication z — Z — c’est la conjugaison complexe. On note enfin D,, = (r,, s) le sous-groupe de &¢ engendré
par r, et s.

22.1) Montrer que lorsqu’on fait I'identification standard du plan complexe au plan euclidien, tout élément de D,
est une isométrie qui stabilise I’ensemble U,, des racines n® de 'unité.
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22.2) Calculer lordre de 7, et de s.
22.3) Calculer srys en fonction de r,. En déduire que le groupe C,, = (r,,) est un sous-groupe distingué de D,,.
22.4) Montrer que D,, = {ssrﬁ, ee€{0,1}, ke€{0,...,n— 1}}

22.5) Montrer que D,, est un groupe d’ordre 2n, non abélien lorsque n > 3.

22.6) Montrer que D,, est le groupe des isométries qui stabilisent U,, et que C,, est son sous-groupe des isométries
positives. Décrire toutes les rotations et toutes les symétries orthogonales de Dy, .

22.7) Calculer le centre et le groupe dérivé de D,,.

Dessin des axes de symétries des
polygones réguliers dans le cas d’un -
nombre impair ou pair de sommets.

23 Groupe des caracteres d’un groupe

Si G est un groupe, on appelle caractére de G tout homomorphisme de groupes G — C*.
23.1) Si x; et x2 sont des caractéres d’un groupe G, montrer que Papplication
X1X2 - G — Cc*
g — xi@)xz(9)

est encore un caractére de G et que Popération (x1,x2) — Xx1Xx2 confere & l'ensemble des caractéres de G une
structure de groupe. On note G le groupe des caracteres du groupe G.

23.2) Soient G un groupe, N un sous-groupe distingué de G et p : G — G/N la projection canonique. Montrer
que 'application - R
. G/IN — G
X —r Xop
est un homomorphisme injectif de groupes.
23.3) Montrer que 7 est isomorphe & C*.
23.4) Montrer que si un groupe est cyclique, il est isomorphe & son groupe des caracteres.
23.5) Soient M et N deux groupes. Montrer que ’application
F: MxN — Mx N
(w,v)  — Flpv),

ou F(u,v) est définie par F(u,v)(m,n) = p(m)v(n) pour tous (m,n) € M x N, est un isomorphisme de groupes
(on pourra chercher & exprimer Papplication réciproque).

23.6) Montrer que tout groupe abélien fini est isomorphe & son groupe des caracteéres.

23.7) Montrer que tout caractére d’un groupe G est constant sur son sous-groupe dérivé [G, G]. En déduire que

si G est un groupe, alors les groupes de caracteres G et G /|G, G] sont isomorphes.
23.8) Montrer que si G est un groupe fini, alors G et G/[G, G] sont isomorphes.
23.9) Calculer les groupes des caracteres de 24 et de 4. [On trouve respectivement Z/3Z et Z/27.]

23.10) Lorsque n > 5, montrer que le groupe des caracteres de 2, est trivial et que celui de &,, est cyclique
d’ordre 2.
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24 Automorphismes du groupe Z/nZ, inversibles de ’anneau Z/nZ

Soit n un entier naturel non nul.

24.1) Montrer que le groupe Aut (Z/nZ) des automorphismes du groupe Z/nZ est isomorphe au groupe (Z/nZ)™
des inversibles de anneau Z/nZ.

Noter, en particulier, que cela montre que Aut (Z/nZ) est un groupe abélien fini.

24.2) Montrer que si m et n sont premiers entre eux, alors les groupes (Z/mnZ)™ et (Z/mZ)* x (Z/nZ)™ sont
isomorphes.

24.3) En déduire que si n = pJ*...p% ou les pj sont des nombres premiers distincts et les aj des entiers naturels
non nuls, alors

@/nz)* =[] @/virz)*

k=1

24.4) Sip est un nombre premier, alors (Z/pZ)” est cyclique, isomorphe a Z/(p — 1)Z.
Quel théoreme (pas si simple) du cours assure cela ?

24.5) Montrer les assertions suivantes, qui serviront dans la suite.

k
(i) Pour tout nombre premier impair p, pour tout k € N, il existe u € N, premier avec p, tel que (1 + p)’ = 1+upF+t.

(ii) Si p est un nombre premier impair et si a € N*, alors 'ordre de 1 + p dans (Z/p®Z)™ est exactement p®~!.

(iii) Pour tout k& € N; il existe un entier naturel impair u tel que 52" = 1+ u2kt2,
(iv) Si a > 3, l'ordre de 5 dans (Z/2°Z)™ est exactement 242,

24.6) Montrer que si p est un nombre premier supérieur ou égal & 3 et si o € N*| alors le groupe (Z/p"‘Z)X est
cyclique, isomorphe & Z/p®~t(p — 1)Z.

Indication : on pourra chercher un élément du groupe des inversibles qui soit d’ordre p®~!(p — 1). Pour cela, con-
sidérer 'homomorphisme de groupes (Z/p®Z)™ — (Z/pZ)™ qui vient de la factorisation de la projection canonique
7 — 7./pZ via la PUQ, prendre un 2 dans (Z/p®Z)” dont I'image engendre (Z/pZ)™. Dans le groupe cyclique,
(x), dont I'ordre est un multiple de p— 1, prendre un élément y d’ordre p—1. Alors, (1+p)y est d’ordre p®~1(p—1)
dans (Z/p*Z)".

24.7) Calculer (Z/2Z)™ et (Z/4Z)™. Montrer que si a > 3, alors le groupe (Z/2%Z)” est non cyclique et que ses
facteurs invariants sont 2 et 2%~2 ; autrement dit, (Z/2°Z)" ~ 7Z/27 x Z/2°%Z.

Indication : considérer I’homomorphisme de groupes surjectif f : (Z/2°7)* — (Z/AZ)* ~ {—1,1} qui vient de la
factorisation de la projection canonique Z — Z/47 via la PUQ. Son noyau est d’ordre 2¢~2 et contient 5, dont
l'ordre est précisément 292, Donc ce noyau est cyclique, engendré par 5. Par ailleurs, —1 # 1 dans Z/2°Z et
donc I’homomorphisme de groupes (—1) x (5) — (Z/2°Z)*, (¢, z) + ex, qui est injectif, est un isomorphisme de
groupes — remarquer qu’on a noté —1 et 5 les classes modulo 2 des nombres entiers —1 et 5.

24.8) Calculer les composantes de torsion du GAF (Z/nZ)™, pour tout entier naturel non nul n.

25 Bases dans les réseaux

Soit n un entier naturel non nul. Siey,..., e, € Z", on dit que (ey,...,e,) est une Z-base de Z™ lorsque tout vecteur
de Z™ s’écrit de maniere unique comme combinaison linéaire de e, ..., e,, a coefficients entiers. Par exemple, la
base canonique de R™ est une Z-base de Z™.

25.1) Montrer que toute Z-base de Z™ est une base du R-espace vectoriel R™ mais que tout n-uplet de vecteurs
de Z™ qui est une base de R™ n’est pas une Z-base de Z".

25.2) On note (cq,...,c,) la base canonique de R™. Soient ey,...,e, € Z™ Montrer que (eq,...,e,) est une
Z-base de Z" si, et seulement s’il existe P € M,, (Z) telle que det P = +1 et ‘e, = P, pour tout k € {1,...,n}.
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25.3) Soient ey, ..., e, € R™ Soit Vol (ey,...,e,) le volume du parallélépipede des ey, : ¢’est la mesure de Lebesgue
dans R™ de

n

> [0, 1]ex.

k=1
Montrer, en s’appuyant sur la formule de changement de variables sous une intégrale, que

Vol (ey,...,e,) = ’det (C1seercn) (el,...,en)‘ :

25.4) Soient ey, ...,e, € Z™. Montrer que (e1,...,e,) est une Z-base de Z" si, et seulement si Vol (eq, ..., e,) = 1.

25.5) Soit X = (a,b) € Z% Montrer que X se complete en une Z-base de Z? si, et seulement si a et b sont
premiers entre eux.

25.6) Soit X = (a1,...,a,) € Z™. Montrer que X se complete en une Z-base de Z™ si, et seulement si les ay sont
premiers entre eux (dans leur ensemble).

26 Classes de conjugaison des transvections dans SL

Soit V' un espace vectoriel de dimension finie n sur un corps F.

26.1) Montrer que deux dilatations de GL(V') sont conjuguées si, et seulement si elles ont le méme rapport.
26.2) Montrer que toutes les transvections sont conjuguées dans GL(V).

26.3) Montrer que si n > 3, toutes les transvections de SL(V) sont conjuguées dans SL(V).

1 -1
0 1
pour n = 2, il n’est pas vrai que toutes les transvections de SL(V') sont conjuguées dans SL(V).

. 1 1 . . s
26.4) Montrer que les deux matrices (O 1) et ne sont pas conjuguées dans SL (2, R). En déduire que

26.5) On suppose que n = 2. Montrer que toute matrice de transvection est conjuguée dans SL (2,F) & une

matrice de la forme ) oua € F\ {0} et que si a,b € F\ {0}, les deux matrices (1 a) et (1 ll)) sont

1 a
0 1
conjuguées dans SL (2,F) si, et seulement si § est un carré dans F.

0 1 0

26.6) Calculer le nombre de classes de conjugaisons des transvections dans SL (2,F) pour F = C, R, Q ou F, ou
q est la puissance d’un nombre premier.

27 Eléments sur les groupes arithmétiques de congruence

On note PSL (2,Z) le quotient de SL (2,Z) par son centre {—1Iz, I2}. Si G est un sous-groupe de SL (2,Z), on note
PG son image par la projection canonique SL (2,Z) — PSL(2,Z). Autrement dit, PG est le groupe des classes
modulo {—1Is, I5} des éléments de G.

Pour tout entier naturel non nul N, on note SL (2,Z/NZ) le groupe des matrices 2 x 2 & coefficients dans Z/NZ
dont le déterminant égale 1.

27.1) S’assurer que SL(2,Z/NZ) est bien un groupe pour la multiplication matricielle.
27.2) On note 7 'application de réduction modulo N

m: SL(2,Z) — SL(2,Z/NZ)

G2~ G

ou T désigne la classe modulo N de 'entier z. Montrer rapidement que p est un homomorphisme de groupes.

27.3) Ou l'on montre que 7 est surjectif.

(i) Soient n et d deux entiers naturels non nuls. On suppose que d|n. Montrer que la projection canonique
7 — 7,/dZ induit un homomorphisme de groupes (Z/nZ)” — (Z/dZ)*. Montrer que ce dernier est sujectif.
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(ii) Déduire de (i) Passertion suivante : si x, y et z sont des entiers premiers entre eux et si x # 0, il existe k € Z

tel que PGCD (z,y + kz) = 1.
(iii) Déduire de (ii) la surjectivité de .
27.4) Montrer que SL (2,Z/NZ) est engendré par les classes modulo N des matrices ((1) 1) et (_01 (1)>

27.5) Pour tout entier naturel non nul N, on note

r(zv):{(‘; 2>GSL(2,Z), a=d=1[N] et b:czo[zv]},

To(N) = {(Z 2) €SL(2,Z), b=0 [N]},

rl(zv):{(‘bl fi)eSL(Z,Z), a=d=1I[N] et sz[N]}

Autrement dit, T'(IV) est 'ensemble des matrices de SL (2, Z) qui sont congrues & Is modulo N, T'g(IV) est ’ensemble
des matrices de SL (2,Z) qui sont trigonales supérieures modulo N et T'; (IV) est le sous-ensemble des matrices de
To(N) dont les éléments diagonaux sont congrus & 1 modulo N.

Montrer que T'(N), To(N) et T’y (V) sont des sous-groupes de I'(1) = SL (2, 7Z).

27.6) Dans la chaine
D) € I} (V) € To(N) € SL(2,2)

montrer que I'(IV) <SL (2,Z), que 'y (V) «To(N), mais que I'g(N) et T'1(N) ne sont pas distingués dans SL (2, Z).
27.7) Montrer que I'(N), T'o(N) et I'1 (V) sont d’indices finis dans I'(1) = SL (2, Z).

28 Dans SL; (C), les centralisateurs non idiots sont abéliens
Pour tout M € SL(2,C), on note Z(M) le centralisateur de M dans SL (2,C), & savoir
Z(M)={N € SL(2,C), MN = NM}.

28.1) Montrer que Z(M) est un sous-groupe de SL (2,C), pour tout M € SL (2,C).
28.2) Montrer que pour tout M € SL(2,C) et pour tout P € GL (2,C), on a I'égalité

Z(PMP™') =PZ(M)P™".

28.3) Montrer que tout élément de SL (2, C) est semblable & une matrice de 1'une des cing formes suivantes :

11 a 0 N
+1s, i(o 1), (0 1/a> ounacC\{-1,0,1}

— on pourra raisonner sur le polynéme caractéristique.

28.4) Montrer que le centralisateur de T' = <(1) }) est Z(T) = {i <é ?) , @€ (C}.

28.5) Soit a € C\ {0}. Calculer le centralisateur de <8 1(/)a>'

28.6) On note C le groupe additif (C, +) et C* le groupe multiplicatif (C \ {0}, x). On note aussi S = (8 _OZ>
Mountrer que Z(T') est isomorphe au groupe Z/27Z x C et que Z(S) est isomorphe & C*.

28.7) Déduire des questions précédentes que Z(M) est un groupe abélien, pour tout M € SL (2,C) \ {—1Is, I2}.
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29 Simplicité de PSL sauf deux cas sporadiques

L’objet de cet exercice est de montrer le résultat suivant :

Théoréme
Soient n un entier naturel supérieur ou égal a 2 et F un corps.

(i) PSL (2,2/2Z) ~ &s.

(1) PSL(2,Z/3Z) ~ Uy.

(#ii) Dans tous les autres cas, PSL (n,F) est un groupe simple.
29.1) On suppose que n > 3.

(i) Soit G un sous-groupe distingué de SL (F") contenant strictement le centre Z de SL (n,F). Montrer qu’il existe
g € Get heF™\ {0} tels que g(h) ¢ Fh.

(ii) Soient g et h comme dans la question précédente ; on note k = g(h). Montrer qu’il existe une transvection
t € SL (n,F) de droite Fh et un hyperplan H de F™ qui contient le plan engendré par h et k.

(iii) Dans les conditions des deux questions précédentes, on note ¢ = [g,t] = gtg~'t~1. Montrer que ¢ € G \ {id},
que 'image de ¢ — id est incluse dans H, et que H est stable par c.

(iv) On suppose que t' € SL (n,F) est une transvection d’hyperplan H qui ne commute pas avec c. Montrer que
[c,t'] est une transvection non triviale contenue dans G.

(v) On suppose au contraire que ¢ commute avec toutes les transvections d’hyperplan H. Montrer que ¢ est une
transvection.

(vi) Déduire des questions précédentes que PSL (n,F) est simple.

29.2) On suppose que n = 2 et que Card (F) > 7.

(i) Montrer que le centre Z de SL(2,F) est contenu dans {+I>}. Soit G un sous-groupe distingué de SL (2,F)
contenant strictement Z.

(ii) Soient a € F\ {—1,0,1} et b € F\ {0}. Montrer qu’il existe s € SL (2, F) tel que

1 b\ s (@ 0
0 1) |7\0 1/a)|’
(iii) On suppose que g € G \ {£I>} a une valeur propre a différente de —1 et de 1. Montrer que g est conjugué

dans SL (2,F) a la matrice diag (a,1/a). En déduire que G = SL (2, F).

(iv) On suppose que g = (Z 2) € G\{%I2}, o1 b # 0. Montrer qu'il existe t € SL (2,TF) telle que t ~*g~'tg admette

(0> pour vecteur propre, associé & une valeur propre différente de 1 et de —1. En déduire que G = SL (2, F).

(v) On suppose que g = + (é i) € G avec ¢ # 0. En notant i = (

G = SL(2,F).
(vi) Démontrer que PSL (2, F) est simple.

0 1
-1 0

1

), calculer igi~". En déduire que

29.3) En admettant les isomorphismes classiques suivants (voir la feuille d’exercice numéro 3) :
PSL (2,Z/2Z) ~ &3, PSL(2,Z/3Z) ~ A4, PSL(2,F4) ~ A5, PSL(2,F5) ~ Us,

démontrer le théoreme annoncé.
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UvsQ 2024/2025
Licence de sciences et technologie, santé
LSMAG610 (groupes et géométrie)

Feuille d’exercices numéro 3

30 Petites questions en vrac, pour soi

30.1) GL (n,R) est-il isomorphe a SL (n,R) x R* ? Est-il produit direct interne de SL (n,R) et du sous-groupe
{zI,, © € R*} de GL (n,R) ? Est-il produit direct interne de SL (n, R) et du sous-groupe {diag(z,1,...,1), v € R*}
de GL (n,R) x R* 7

30.2) Calculer tous les Sylow de 2, et de &,,, pour n = (2,3,) 4 et 5.

30.3) Le groupe 2y est-il isomorphe & un produit semi-direct (Z/27)* x Z/3Z ?

30.4) Il n’y a pas de groupe simple d’ordre 196.

30.5) Les groupes GL (3,Z/2Z) et GL (4,Z/27) contiennent-il des sous-groupe d’ordre 9 ?

31 Quelques gammes

31.1) Un peu de Hg

(i) Faire la liste des éléments d’ordre 4 de Hg. Calculer les classes de conjugaison dans Hg. Montrer que tous les
sous-groupes de Hg sont normaux.

(ii) Calculer le groupe des commutateurs de Hg et les facteurs invariants du quotient Hg/ {—1,1}.

(iii) Soit G' un groupe engendré par deux éléments = et y qui vérifient x* = 1, 22 = y? # 1 et ayz~! = y~ L.
Montrer que G est isomorphe a Hg.

(iv) Montrer que Hg n’est pas produit semi-direct de deux groupes non triviaux.

31.2) Groupes d’ordre 2p

Soit G un groupe fini d’ordre 2p o p est un nombre premier impair.

(i) Montrer que G contient un sous-groupe H d’ordre p, un sous-groupe K d’ordre 2, tels que H <G, G = HK et
HnNnK=/{1}.

(ii) Montrer que G est isomorphe au groupe cyclique Z/2pZ ou au groupe diédral Ds,.

32 Sur les p-Sylow du groupe G,

Si p est un entier naturel non nul, on note &, le groupe des permutations de {1,--- ,p}.

32.1) D’abord dans &7

i) Calculer I'ordre commun & tous les 7-Sylow de &7.

(
(ii) Montrer que tout 7-cycle de &7 est dans un unique 7-Sylow.
(iii) Combien &7 contient-il de 7-cycles ?

(

iv) En utilisant ce qui précede, calculer le nombre de 7-Sylow de &7.

(v) On fait agir &7 par conjugaison sur 'ensemble de ses 7-Sylow. Dire quel théoréme du cours permet d’affirmer
que cette action n’a qu'une seule orbite et calculer I'ordre du groupe d’isotropie du 7-Sylow qui contient le 7-cycle
(1234567).

32.2) Ou l’on généralise
Soit p un nombre premier. Montrer que (p —2)! =1 mod (p), puis que le groupe symétrique &, admet toujours
un sous-groupe d’ordre p(p — 1).
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32.3) Pour aller plus loin
Montrer, lorsque p est premier, que tout sous-groupe d’ordre p(p — 1) de &,, est le normalisateur du sous-groupe
engendré par un p-cycle.

33 D’autres gammes, sur les polynomes symétriques
Si n est un entier naturel non nul, on note og, o1, 02 ... les polyndémes symétriques élémentaires et Sy, S1, Sz ...
les polynémes de Newton de anneau de polynémes Z[X1,. .., X,].

33.1) On suppose, dans cette question, que n = 2. Calculer o3 en fonction de Sz, ;1 et 0o. En déduire & la main
I’écriture de S3 en fonction des oy.

33.2) On suppose que n > 2. Soit P(X1,...,Xn) =32 5 izj X2X;.
(i) Combien P a-t-il de monoémes ?
(ii) Montrer que P est symétrique.

(iii) Calculer o109 en fonction de P et de o3. En déduire I'expression de P en fonction des o, — on pourra si Uon
veut commencer par le cas n = 3.

(iv) Calculer S S5 en fonction de S5 et de P. Trouver le polynéme Q & trois indéterminées tel que S3 = Q(o1, 02, 03).
33.3) En généralisant les démarches des questions précédentes, calculer

Z X2X, X,

1,7,k distincts
a partir du développement du produit o053, puis Z(i ), it X2X J2 a partir du calcul de o2. Arriver ainsi au calcul
de Sy en fonction des oy, (et comparer aux formules de Newton du cours).

33.4) Calculer
>, XXX

1,7,k distincts
en fonction des o (on pourra considérer & part les cas ot n < 5).

33.5) On suppose ici que n = 3. Montrer que (2X7 — X2 — X3)(2X2 — X3 — X1)(2X3 — X7 — X3) est symétrique
et I’exprimer comme un polynome en les oy.

33.6) Méme question pour n = 4 et (X1X2 + X3X4)(X1X3 + X2X4)(X1X4 + X2X3).

34 Pourquoi “le” groupe diédral
Soit n un entier naturel supérieur ou égal & 3. On note D,, le groupe des isométries du plan (vectoriel) complexe
qui stabilisent les points dont les affixes sont les racines n® de I'unité, et C,, son sous-groupe positif.

34.1) Montrer que la suite exacte induite par le déterminant
1—C, — D, 25 {1,-1} — 1 (3)
est scindée, ou, autrement dit, que D,, est un produit semi-direct Z/nZ xZ/2Z. Trouver toutes les sections possibles

de cette suite exacte et expliciter les actions de {1, —1} ~ Z/27Z sur C,, induites par ces sections.

34.2) Montrer que pour toutes r,r’ € D, \ Cp, il existe (une unique) xk € C,, telle que ' = rk. En déduire
que toutes les sections de (3) fournissent la méme action Z/2Z — Aut (Cy,) et, ainsi, le méme produit semi-direct
Dy, ~ Z/nZ x Z,)2Z.

34.3) Expliciter l'action de {1, —1} sur C,, qui fournit le produit semi-direct de D,,.

34.4) Soient n un entier naturel supérieur ou égal a 3 et G un groupe d’ordre 2n engendré par deux éléments r
et s qui vérifient : »™ = 52 =1 et srs = r~!. Montrer que G est isomorphe & D,,.
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34.5) Montrer que &3 ~ D3 (mais que &, % D,, sin > 4).

34.6) Dans 'anneau des fractions rationnelles Q(X), montrer que le groupe engendré par les homographies % et
1 — X, pour la substitution, est isomorphe a &s.

[Autre point de vue : considérer les mémes homographies vues comme transformations de C\ {0, 1}, la loi de groupe étant alors la composition

des applications.]

35 Birapport

Si F(X1, Xs, X3, X4) est une fraction rationnelle & coefficients rationnels & quatre indéterminées X7, Xo, X3 et Xy
et si 0 € G4, on note
0 F (X1, X2, X3,X4) = F (Xo(1), Xo(2), Xo(3), Xo(a)) -

35.1) Montrer que cela définit une action a gauche du groupe &4 sur le corps des fractions rationnelles Q (X1, Xo, X3, X4).

35.2) On note B la fraction rationnelle birapport, définie par

Xs— X,
X=X Xu—Xo X3-X,

B(X13X27X37X4)_ )(3_)(2 X X4_X1 - X47X1 :
Xy — X5

Montrer que le groupe de Klein est un sous-groupe du groupe d’isotropie de B.

35.3) En considérant 'action des transpositions (12), (13) et (14) ainsi que celle des 3-cycles (124) et (142),
montrer que l'orbite de B sous I'action de &4 contient les cing autres fractions distinctes

1 B 1 1
B’ B—1’1*B’ 1—3’1*?

35.4) Calculer le groupe d’isotropie et 'orbite de B sous l'action de &,.

36 CS pour que deux produit semi-directs soient isomorphes

Soient N et @ deux groupes, et ¢ : Q@ — Aut(N) et ¢ : Q — Aut(N) deux actions de @ sur N par automorphismes.
36.1) On suppose que :
(i) & € Aut(N) est un automorphisme de N
(i) les actions ¢ et 1) sont conjuguées par a au sens ot 1(q) = @ o ©(q) o a™!, pour tout q € Q.
Montrer que dans ces conditions, ’application

Nx,Q — NxuQ

(n,q)  +— (an),q)

est un isomorphisme de groupes.
Slogan Conjuguer l’action de Q sur N par un automorphisme de N ne change pas un produit semi-direct N X Q.

36.2) On suppose que :
(i) B € Aut(Q) est un automorphisme de @

(ii) ¥ = po .

Montrer que dans ces conditions, ’application

Nxy@ — Nx,Q
(na) = (n,5(q))

est un isomorphisme de groupes.

Slogan Composer laction de Q sur N par un automorphisme de Q@ ne change pas un produit semi-direct N x Q.
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37 Il n’y a que cinq groupes d’ordre 8

Montrer que tout groupe d’ordre 8 est isomorphe & un et un seul des groupes de la liste suivante :
7.)87, 7.)27. x 7.JAZ, (Z/2Z7)*, Ds, Hs

ou Dg est le groupe diédral et Hg est le groupe quaternionique.

38 Il n’y a pas de groupe simple d’ordre 15309

Soit G un groupe d’ordre 15309 = 37 x 7.
38.1) Montrer que le nombre de 3-sous-groupes de Sylow de G est inclus dans ensemble {1, 7}.

38.2) On suppose que G est simple et a sept 3-sous-groupes de Sylow. Montrer comment l'action de G par
conjugaison sur I’ensemble de ses 3-sous-groupes de Sylow induit un homomorphisme injectif de groupes G — &7.
Comparer les ordres de G et de &7 et conclure a une contradiction.

38.3) Montrer qu’il n’y a pas de groupe simple d’ordre 15309.

39 Un sous-groupe de GL (2, Fs)

On note F3 le corps Z/3Z. Dans le groupe linéaire GL (2,F3), on note

(L1 (L 0
7’—1068—_1_1.

On note R (resp. S) le sous-groupe de GL (2,F3) engendré par r (resp. s) et G le sous-groupe engendré par {r, s}.
39.1) Calculer l'ordre de R et celui de S.

39.2) Montrer que R<G et que RN S est le groupe trivial.

39.3) En déduire lordre de G.

[On pourra montrer que I’ensemble des po ot p € R et o € S est un sous-groupe de G et raisonner dessus.]

39.4) Quel est l'indice de G dans GL (2,F3) ?

40 Un peu de Pauli

On note P le sous-groupe de GL (2, C) engendré par les trois matrices

(0 1 (0 =i g (L0
G1=11 0)2=\i o) 3= o 1)

40.1) Calculer les ordres de o1, 03 et o3.

40.2) Calculer 010903 et en déduire que il est dans le centre de P. On note H le sous-groupe de P engendré
par ils.

40.3) Montrer que le groupe-quotient P/H est engendré par les classes modulo H de oy et o3.
40.4) En déduire que P/H est un groupe abélien d’ordre 4 et calculer ses facteurs invariants.
40.5) Montrer que P est un groupe fini et calculer son ordre.

40.6) On note Q@ = PN SL(2,C). Calculer I'indice [P : Q] et montrer que tout élément de P s’écrit de maniere
unique sous la forme g ot € € {0,1} et ot ¢ € Q.

40.7) Montrer que Q n’est pas abélien et qu’il contient au moins trois éléments d’ordre 4.

40.8) Montrer que Q est isomorphe au groupe quaternionique Hsg.
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41 Pas de gros symétrique dans ’alterné

Soit n un entier naturel supérieur ou égal & 2. On note G,, le groupe symétrique de n objets et 2, son sous-groupe
des permutations paires.

On cherche a montrer que le groupe alterné A, 1 ne contient aucun sous-groupe isomorphe a G,,.

41.1) Montrer que 24 n’a pas de sous-groupe isomorphe & G3.

41.2) Montrer, par des considérations d’ordres, que si 2,11 contient un sous-groupe isomorphe a &,,, alors n est
nécessairement impair.

41.3) Soit m un entier supérieur ou égal & 3. On suppose que G est un sous-groupe de s, isomorphe & Soppy_1.

(i) On note (As;,/G), I'ensemble des classes a gauches modulo G des éléments de sy, Calculer le cardinal de
(ngm/G)g en fonction de m.

ii) On fait agir Ao, sur (s, /G) par translation & gauche et on note ¢ : s, — &,, 'homomorphisme de
g
groupes que cette action induit. Montrer que ¢ est nécessairement injectif.

41.4) Déduire de ce qui précede que 2,1 n’a pas de sous-groupe isomorphe & &,,.

42 Exposant d’un groupe

Si G est un groupe, son exposant est, lorsqu’il existe, le plus petit entier naturel non nul e qui vérifie : Vo € G,
x¢ = 1. Si un tel nombre n’existe pas, on dit que G est d’exposant infini.

42.1) Soit G un groupe. Montrer que {n € Z, V& € G, z™ = 1} est un sous-groupe de Z. On note eq le générateur
positif ou nul de ce groupe. Montrer que si eg # 0, alors G est d’exposant fini égal a eg. Montrer que si eg = 0,
alors G est d’exposant infini.

42.2) Soient G un groupe et M € N*. On suppose que tout élément de G est d’ordre fini et que M est un majorant
des ordres des éléments de G. Montrer que I'exposant de G est le PPCM des ordres de ses éléments.

42.3) Montrer que (Q/Z,+) est d’exposant infini alors que tous ses éléments sont d’ordres finis.
42.4) Montrer que I'exposant de &,, est PPCM {2,3,...,n}.

42.5) Soit G un groupe abélien fini d’exposant e.

(i) Montrer, en utilisant le théoreme de structure des GAF, que G contient un élément d’ordre e.

(ii) Faire une preuve directe du résultat précédent en suivant les indications ci-dessous.

[Soit € G, dont I'ordre m est maximum. On montre que l'ordre de tout élément de G divise m, ce qui suffit & prouver que m = e et, ainsi,

que z convient. Soit y € G ; on note n son ordre. Pour montrer que n|m, il suffit de montrer que pour tout nombre premier p, v,(n) < vp(m).

n
pVpP (n)

Soit p un nombre premier. En notation additive, calculer 'ordre de p”?™)z et celui de —=%—y ; en déduire I'ordre de p"?(™z + y et
2op ()

conclure en utilisant la maximalité de m.]

42.6) Utiliser ce qui précede pour établir une nouvelle preuve du théoréme suivant : si G est un sous-groupe fini
du groupe multiplicatif d’un corps commutatif, alors G est cyclique.

42.7) Montrer qu’un groupe (non abélien) ne contient pas nécessairement un élément dont ’ordre soit I’exposant
du groupe.

42.8) On note

S= € SL(3,Z/3Z), a,b,c € Z/3Z

OO =
O = Q
— 0 o

Montrer que S est un sous-groupe non abélien de SL (3,Z/3Z) dont exposant est 3, et qui contient un élément
d’ordre 3. Calculer lordre de S*.

“On pourra se rappeler, c’est écrit dans le cours, que S est un 3-Sylow de GL (3,F3).
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(i) Calculer le centre de S, montrer que le quotient §/Z est isomorphe & (Z/37)* et montrer que la suite exacte
1—Z—>8—8/Z—1

n'est pas scindée (d’ailleurs, il n'y a pas de produit semi-direct Z/3Z x (Z/3Z)* qui ne soit pas direct, vérifier cela).

1 a b
(ii) Soit f : S = Z/3Z, |0 1 ¢ | — c. Montrer que f est un homomorphisme de groupes, que son noyau est
0 0 1

isomorphe & (Z/3Z)°, et que la suite exacte
1 — (2/32)° — S L7232 — 1

qu’il induit est scindée. Examiner le produit semi-direct S ~ (Z/?)Z)2 X Z,/3Z sous toutes les coutures.

43 Ordre maximal dans GL (n,F,)

On note F7 le corps F7; = Z/77Z. On note également My (F7) espace des matrices carrées 2 x 2 a coefficients dans
F; et GL (2,F7) le groupe de ces matrices qui sont inversibles.

L’objet de cette partie consiste a montrer que GL (2,F7) contient un élément d’ordre 7> — 1 = 48 et que tout
élément de GL (2,F7) a un ordre inférieur ou égal a 48%.

43.1) Décomposer le cardinal de My (F7) et 'ordre du groupe GL (2,F7) en produits de facteurs premiers.
43.2) Soit g € My (F7). En faisant la division euclidienne de tout P € F7[X] par le polynome caractéristique de g
et en utilisant le théoréme de Cayley-Hamilton, montrer que le cardinal du sous-ensemble

{P(9), P eF7[X]}

de My (F7) est inférieur ou égal a 49.
43.3) Soit g € GL (2,F7). En considérant I’ensemble {gk, ke N}, montrer que l'ordre de g est au plus 48.

43.4) Soit v = ((1) _:13) € GL (2,F7). Calculer 4®. En déduire l'ordre de v dans GL (2,F7).
43.5) Montrer que l'ordre maximal d’un élément de GL (2,F7) est 72 — 1.

43.6) Est-il vrai que l'ordre de tout élément de GL (2,F7) divise 48 ?

44 Groupes d’ordre p?, pg ou pq

44.1) Soient G un groupe et H un sous-groupe du centre de G, tel que le groupe-quotient G/H soit cyclique.
Montrer que G est abélien.

44.2) Soit p un nombre premier. Montrer que les seuls groupes d’ordre p? sont Z/p?Z et (Z/pZ)Z.

44.3) Soient p et ¢ deux nombres premiers. Montrer qu’il n’y a pas de groupe simple d’ordre p?q.

44.4) Soient p et ¢ deux nombres premiers distincts et G un groupe d’ordre pg. On suppose que p < q. Montrer
que :

(i) Sip fq—1, alors G est cyclique, isomorphe & Z/pqZ

(ii) si p|g — 1, alors G est ou bien cyclique ou bien isomorphe & 'unique produit semi-direct Z/qZ x Z/pZ.

44.5) Soit G un groupe d’ordre 24. En faisant agir G sur ses 2-Sylow par conjugaison, montrer que G n’est pas
simple.

“Ce résultat se généralise en remplagant F7 par n’importe quel corps fini Fy et GL (2,F7) par GL (n,Fy), n > 1.
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45 Matrices inversibles trigonales par blocs

Soit F un corps. Soient n, d et e des entiers naturels non nuls tels que n = d + e.

45.1) Montrer que 'ensemble de matrices décrites par blocs sous la forme

Toe = {(g‘ g) AcCL(dF), CeGL(e,F), BeMd,e(nr)},

ou 0 désigne ici la matrice nulle de l'espace M. 4 (F) des matrices & e lignes et d colonnes et & coefficients dans F,
est un sous-groupe de GL (n,F).

45.2) Montrer que Papplication
p: Tae —  GL(d,F) x GL (e, )

(g‘ g) — (4,0)

est un homomorphisme de groupes dont on calculera 'image et le noyau.

45.3) Montrer que Ty est isomorphe & un produit semi-direct F4¢ x, (GL (d,F)x GL (e, F) ) On précisera quelle
est 'action de ce produit semi-direct et on I’examinera sous toutes les coutures.

46 Sous-groupe d’indice fini d’un groupe infini

Soit G un groupe nfini. On suppose que G contient un sous-groupe H différent de G dont l'indice dans G est fini.

46.1) On note n = [G : H]|. Montrer que l'action de G par translation & gauche sur les classes & gauche modulo
H induit un homomorphisme de groupes non injectif

v:G— G,

46.2) Montrer que

ker (¢) = ﬂ rHx ™t
zeG

et en déduire que ker (¢) # G.
46.3) Montrer que G n’est pas simple.

47 Sous-groupes normaux d’un p-groupe, p-sous-groupes d’un groupe

Soit p un nombre premier.

47.1) Soient a un entier naturel et G un p-groupe d’ordre p®. Montrer que G contient un sous-groupe distingué
d’ordre p°, pour tout b € {0,...,a}.

[On pourra raisonner par récurrence sur a.)]

47.2) Soient m un entier naturel non nul et G un groupe d’ordre p®m ol p ne divise pas m. Montrer que G
contient un sous-groupe d’ordre p’, pour tout b € {0,...,a}.

48 Plus loin que Burnside ; un groupe fini n’est pas union de conjugués
d’un sous-groupe strict

Soit G un groupe fini opérant sur un ensemble fini non vide X. Pour tout g € G, on note X9 I’ensemble des points
de X fixés par g. On note enfin 2 '’ensemble des orbites de ’action. On rappelle la formule de Burnside :

Z Card X9,
geG

1
Card Q) = —
|G|
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obtenue en calculant de deux fagons le cardinal de la variété d’incidence {(g,z) € G x X, g-z = z}.

48.1) On suppose que X a au moins deux éléments distincts. Montrer que ¢ - (z,y) = (9 z,g - y) définit une
action de G sur X x X. Déduire alors de la formule de Burnside que

> (Card X9)* > 2|G|.

geG

Montrer que ’égalité a lieu si, et seulement si I'action de G sur X est 2-transitive, ce qui signifie que

V(z,y), (@',y) € X2, (z,y) # (2/,y) =g €G, 2’ =g-zety =g-y.

48.2) On suppose que l'action est transitive et on note Z 1'ordre des groupes d’isotropie (ils sont tous conjugués).
On note aussi D Pensemble des éléments de G qui ne fixent aucun élément de X. Montrer que Z < Card D.

[On pourra majorer la somme Z (Card X9 — 1) (Card X7 — Card X)7 puis la minorer a ’aide de la question précédente.]
geG

48.3) Soient G un groupe fini et H un sous-groupe strict de G. On note

U= |JgHg™"
geG
la réunion des conjugués de G. Montrer que CardUd < |G| — |H|. En déduire que G n’est pas la réunion des

conjugués de H.

1

[On pourra faire agir G par conjugaison sur X = {gH97 , g € G} et appliquer la question précédente a cette action en montrant, avec les

notations de ladite question, que D C G \ U et que |H| < Z.]

48.4) Dans les conditions de la question précédente, en remarquant que le cardinal de { gHg ', g€ G} est plus

petit que l'indice de H dans G, montrer aussi que CardU < |G| — [G : H] + 1 — ce qui permet encore d’aboutir &
la conclusion que U C G.

48.5) Trouver un groupe (infini) qui soit I'union des conjugués d’un sous-groupe propre.

[On pourra chercher du c6té du groupe linéaire.]

49 Du co6té de chez Jordan et Frobenius

49.1 Une inégalité de Jordan

Soient GG un groupe fini et H un sous-groupe de G.
(i) Soient g,¢" € G. Montrer que gH = ¢'H si, et seulement s’il existe h € H tel que g’ = gh.
(ii) Soient g, g’ € G. Montrer que si gH = g'H, alors gHg™! = ¢’ Hg'~ L.

(iii) On note R C G un systeéme de représentants des classes & gauche modulo H. Autrement dit, pour tout g € G,
il existe un unique r € R tel que gH = rH. Montrer que

U (gHg '\ {1}) = J (rEr'\{1}).

geG reR

(iv) Déduire de ce qui précede I'inégalité de Jordan

Card LJgHg_1 <|G|-[G:H]+1 (4)
9€G

(v) Montrer que si H # G, alors G n’est pas la réunion des conjugués de H.
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49.2 L’inégalité de Jordan est optimale

Soient F un corps fini de cardinal ¢ et F* son groupe multiplicatif. Pour tous (a,b) € F* x [F, on note gq
I’application
Ja,b : F — F

x — ax+b.
On note aussi G = {gqp, a € F*, b e F}.
(i) Montrer que tout élément de G est une permutation de F.
(ii) Montrer que G est un sous-groupe du groupe symétrique Gy et calculer son ordre.

(iii) Pour tous (a,b) € F* x F, on note h, 'homothétie h, = gq,0 et &, la translation t, = g1 . Montrer que les
sous-ensembles
H={hq, a€F*} et T ={t;, beF}
sont des sous-groupes de G.
(iv) Les groupes H et T sont-ils distingués dans G ?
(v) Soient ¢,t' € T. Montrer que
(tHEY) N (HE) £ {1} =t =1

(vi) En déduire que le couple (G, H) réalise 1'égalité dans 'inégalité (4).

50 Automorphismes du groupe symétrique

Pour tout n > 2, on note Aut&,, le groupe des automorphismes du groupe &,,, et Int S,, son sous-groupe des
automorphismes intérieurs.

50.1) Soient G un groupe, Int G le groupe de ses automorphismes intérieurs et Z(G) le centre de G. Montrer que
G/Z(G) est un groupe isomorphe a Int G.
50.2) Montrer que Int §,, ~ &,,, pour tout n > 3.

50.3) Soit f € Aut&,,. Montrer que f est intérieur si, et seulement si f transforme toute transposition en une
transposition.

50.4) Sim € N, calculer 'ordre du centralisateur d’un produit de m transpositions & supports disjoints.
50.5) Montrer que Aut &,, = Int &,, pour tout n # 6.

50.6) Le cas singulier de Gg

(i) Montrer que le nombre de 5-Sylow de G5 est 6.

(ii) Montrer que l'action de &5 par conjugaison sur ses 5-Sylow induit un homomorphisme injectif de groupes
® : 65 — S dont I'image, que 'on notera G, n’est pas le stabilisateur d’un point de {1,...,6}.

(iii) Montrer que l'action de G4 par translation a gauche sur 'ensemble X des classes & gauche de &g modulo G
induit un isomorphisme de groupes ¥ : G5 — S x. Montrer que 'image de G par ¥ est le fixateur de G dans Gx.

(iv) Déduire de ¥ un automorphisme de &g qui n’est pas intérieur.
(v) En conclure que Aut &g # Int Gg.

51 Automorphismes du groupe SL (2, F3)

On note F3 le corps a trois éléments F3 = Z/3Z. On note aussi selon l'usage GL (2,F3) le groupe des matrices
carrées 2 x 2 & coefficents dans F3 inversibles et SL (2, F3) son sous-groupe des matrices dont le déterminant égale 1.

Si G est un groupe, on notera Aut(G) le groupe des automorphismes de G.

L’objet de cette exercice consiste ¢ montrer que Aut (SL (2,F3)) est isomorphe au groupe symétrique S,.
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51.1) On note T' = (é }) et U = <} (1)> Calculer 'ordre de SL (2,F3), ordre de T' et 'ordre de U dans
SL(2,F3).

On pourra utiliser — c’est une conséquence du cours sur le groupe modulaire — que T et U engendrent SL (2,F3).

51.2) Déduire de la question précédente que le nombre de 3-Sylow de SL (2,F3) est 4. On note Ss I'ensemble des
3-Sylow de SL (2, F3).

51.3) Montrer que I'image d’un 3-Sylow de SL (2,F3) par un automorphisme de SL (2,F3) est encore un 3-Sylow
de SL (2,F3). En déduire une action du groupe Aut (SL (2,F3)) sur S5. On notera
®: Aut (SL(2,F3)) — Gs,

I’homomorphisme de groupes induit par cette action.

51.4) Montrer que les 3-Sylow de SL (2,F3) sont

S1=(T) , Sa=(U) , S3=(UTU") et Sy = (U’TU?).

51.5) Montrer que si g € ker @, alors g(T') € {T,T?} et g(U) € {U,U?}.
51.6) Calculer 'ordre de TU et celui de TU?.
51.7) Déduire des questions précédentes que @ est injectif.

0 1
11
I'image de ® contient une permutation impaire.

51.8) On note A = ) € GL (2,F3). Calculer les conjugués de Sy, Sa, S3 et Sy par A et en déduire que

51.9) Soit G un groupe. Expliciter un isomorphisme entre le groupe des isomorphismes intérieurs de G et le
groupe-quotient G/Z(G) de G par son centre Z(G).

51.10) Montrer que 'image de ® contient le groupe alterné g, .

51.11) Déduire de tout ce qui préceéde que ® est surjectif, puis que Aut (SL(2,F3)) est isomorphe au groupe
symétrique Sy.

52 Groupe dérivé de SL (2,Z)

On note I' = SL (2,Z) le groupe des matrices 2 x 2 & coefficients entiers dont le déterminant égale 1. Si x et y sont
deux matrices de I', on note

[2,y] = ayz "ty
le commutateur de = et y. On note aussi D(I") le groupe dérivé de I', qui est le sous-groupe de I' engendré par ses
commutateurs.

— Les deuxr matrices S = (? _01> etT = ((1) 1) engendrent I' ; c’est un résultat du cours, on le redit ici. —

0 -1

52.1) On note R = ST = (1 1

). Calculer I'ordre de S et 'ordre de R.
52.2) Montrer que le groupe IT" est engendré par S et R.

52.3) En déduire que I'image de tout homomorphisme de groupes I' — C* est incluse dans le groupe Ujs des
racines douziemes de l'unité.

N. Pouyanne, M. Abad Aldonza UVSQ 2026, LSMA610

25/38



52.4) On note A et B les deux matrices de T’

A:[S,R}:(f 1) et B:[S‘l,R‘l]:G ;)

Montrer que le sous-groupe (4, B) de ' engendré par A et B est inclus dans D(T').
52.5) Montrer que (A, B) est un sous-groupe distingué de T'.

[Pas si simple | On pourra par exemple montrer, en passant, que RAR™ ! = A_lB‘]
52.6) Montrer que AST? = B. En déduire que I' = (A, B, T).
52.7) Montrer que le groupe quotient I'/ (A, B) est monogene.

52.8) Montrer que si G est un groupe dont on note D(G) le groupe dérivé et si H est un sous-groupe distingué
de G dont le quotient G/H est abélien, alors D(G) C H.

[On pourra considérer I'image de D(G) par la projection canonique G — G/H.]
52.9) En déduire que D(T") = (A, B).

52.10) Montrer que [A, B _1] = —T5. En admettant que le centre de D(T') est trivial™®, en déduire que le quotient
I'/D(T) est isomorphe & Uys.

53 Quelques groupes classiques

Si V est un espace vectoriel, on note P (V') 'espace projectif de V qui est ’ensemble de ses droites.
53.1) Si g est la puissance d’un nombre premier, calculer Card P (IFZ)

53.2) Montrer que Paction naturelle de GL(2,F) sur P (IF?I) induit un homomorphisme injectif de groupes

PGL (2,F,) — Ggu1. (5)

53.3) Montrer que les groupes GL (2,Fs), SL(2,Fs), PGL (2,F3) et PSL (2,F3) sont tous isomorphes & &3.
53.4) En appliquant (5), montrer que PGL (2,F3) ~ &4 et que PSL (2,F3) ~ 2.

53.5) Montrer que SL (2,F3) n’est pas isomorphe & Sy.

53.6) Montrer que —I5 est 'unique élément d’ordre 2 de SL (2,F3), que SL (2,F3) contient un unique 2-Sylow qui
est isomorphe a Hg. En déduire un isomorphisme

SL (Q,Fg) ~ Hg X Z/3Z

oll ’on étudiera ’action sous toutes les coutures.

53.7) Montrer que GL (2,F3) est un produit semi-direct SL (2,F3) x Z/2Z.

53.8) Montrer que le centre de SL(2,F4) est trivial et que les groupes SL (2,F4), PSL (2,F4) et PGL (2,F4) sont
isomorphes. Montrer que PSL (2,Fy) ~ 5.

53.9) On veut montrer que PSL (2,F5) est isomorphe & 2As.

(i) Soit H un sous-groupe d’indice 6 de G¢. En faisant agir G sur ensemble des classes & gauche de &g modulo
H par translation a gauche, montrer que H est isomorphe a G5.

[Montrer, plus généralement, que tout sous-groupe d’indice n de &,, est isomorphe & &,,_1, pour tout n > 3.]

(ii) En déduire que PGL (2,F5) ~ &5, puis que PSL (2,F5) ~ 2s.

2 (’est, par exemple, une conséquence du fait que D(T') est un groupe libre & 2 générateurs A et B. Voir par exemple page 31 pour
un exemple de technique de preuve de ce type de résultat.

N. Pouyanne, M. Abad Aldonza UVSQ 2026, LSMA610 26/38



54 Semi-stabilité par conjugaison

On note ¢ et u les deux matrices t = ((1) %) et u = <§ ?), et G le sous-groupe de SL (2,Z) qu’elles engendrent.
54.1) Calculer lordre de t et 'ordre de u dans G.

54.2) On note H le sous-groupe de G engendré par {t"ut™", n € N\ {0}}. Montrer que H est la réunion de {I>}
et de ’ensemble

{tmou"‘)tmlum o tMeyetMet s p e N

2p+3
(Mos- o M1, ) € (Z\ {0},
p+1
mo > 1, mpp1 < -1, ka = 0}.
k=0

54.3) Montrer que tHt~! C H.

L’objet de la suite de cette partie consiste ¢ montrer que t ' Ht ¢ H.

54.4) On fait agir G sur I'ensemble My ; des vecteurs-colonne de dimension 2 & coeflicients réels par l'action
naturelle donnée par le produit matriciel :

_[a ¢ [z o ar + cy
Vg—(b d)eG,Vv-(y)EMgl,g v_(bx+dy)'

On note A et B les parties de My définies par

A= {@) € Moy, |z| > |y| > 0} ot B= {@) € Moy, Jyl > |a| > 0}_
Dessiner A et B.

54.5) Montrer que t" - B C A et u” - A C B, pour tout n € Z\ {0}.
54.6) Montrer que h- B C A, pour tout h € H \ {I2}.

54.7) En déduire que u ¢ H.

54.8) Montrer que t 'Ht Z H.

55 Commutateurs de SO (3, F5)

55.1 Carrés et commutateurs

Si G est un groupe, on note D(G) son groupe dérivé et C(G) le sous-groupe de G engendré par ses carrés :
C(G) = ({22, £ € G}).

55.1) Montrer que C(G) et D(G) sont des sous-groupes distingués de G.

55.2) Montrer que le groupe quotient G/C(G) n’a que des éléments d’ordre 1 ou 2. En déduire que G/C(G) est
abélien et que, lorsqu’il est fini, il est isomorphe & un groupe produit de la forme (Z/2Z)" ou r € N.

55.3) En considérant la projection canonique G — G/C(G), montrer que D(G) C C(G).
55.4) Montrer que si un groupe G est engendré par ses éléments d’ordre 2, alors D(G) = C(G).
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55.2 Sur le groupe SO (3,F;)

On note F5 le corps Z/5Z. Selon 'usage, on note aussi O (3,F5) le sous-groupe de GL (3,F5) formé des matrices
orthogonales et SO (3,F5) son sous-groupe des matrices orthogonales de déterminant 1 :

O(3,F5) ={A€GL(3,F5), "A=A""} et SO(3,F5) ={A4€0(3,F5), det(A)=1}.

On note également V' le F5-espace vectoriel des vecteurs-colonne a 3 lignes et a coefficients dans F5. On note enfin
¢ la forme quadratique standard sur V et (-|-) sa forme polaire, définies par : V(z,y,2) € (F5)°, V(z/, 1/, %) € (F5),

!

x x x
gly| =22+ +2%et < yl||v >:mx'+yy’+zz’.
z z 2!

Si v et w sont dans V', on dit que v est unitaire lorsque g(v) = 1 et que v et w sont orthogonauz lorsque (v|w) = 0.

On admettra — ou non, c’est élémentaire — que pour toute A € GL (3,F5), les assertions suivantes sont équivalentes :
(i) A est orthogonale
(ii) ¢ (Av) = ¢(v), pour tout v € V

(iil) les vecteurs-colonne de A sont unitaires et deux & deux orthogonaux.

Par exemple, si on note

10 0 10 0 00 1 01 0 2 1 1
Do=|0 1 0],R={00 —-1|,P=(1 00|, 7=|1 0 0)et M=[1 2 1],
0 0 -1 01 0 010 00 1 11 2

alors Do, R, P, =T et —M sont dans SO (3,F5).

Pour finir, on admet — ou non, c’est un calcul élémentaire — que les vecteurs unitaires de V' sont ceux de la liste
suivante :

+'(1,0,0), +%0,1,0), +%0,0,1), (42,41, £1), (£1,+2,+1), et (&1, +1,£2).
55.5) On note e; = (1,0,0). On note aussi
S={AeS0O(3,F;), dx € F5, Aey =ze1} et F={A€SO(3,F;5), Ae; =e1}.
On admettra — ou non, c’est un calcul élémentaire — que S est le sous-groupe de SO (3,F5) engendré par Ds et R.
(i) Montrer que le groupe engendré par R est distingué dans S.
(ii) En déduire l'ordre de S.
(iii) Faire la liste des éléments de S et en déduire que F' est le sous-groupe de S engendré par R.

55.6) Montrer que 'action naturelle de GL (3,F5) sur V induit une action transitive de SO (3,F5) sur 'ensemble
des vecteurs unitaires de V.

55.7) En déduire que |SO (3,F5)| = 120.
55.8) On admet encore — ou non, c¢’est un calcul élémentaire — que S = {A € SO (3,F5), AR? = R?A}. Montrer
que SO (3,F5) contient exactement 15 matrices d’ordre 2 conjuguées a R2.

55.9) On admet enfin — ou non, c’est un calcul élémentaire — que le groupe des matrices de SO (3,F5) qui
commutent avec P est le sous-groupe de SO (3, F5) engendré par P et —M. Démontrer que ce groupe est isomorphe
& Z/6Z et en déduire le nombre de matrices de SO (3,F5) qui sont conjuguées & P.

55.10) On admet — ga, ce n’est pas si simple — que —M € SO (3,F5)\ D (SO (3,F5)). On admet enfin — c’est &
la fois classique et élémentaire, comparer au cours sur le groupe orthogonal euclidien — que SO (3,F5) est engendré
par ses éléments d’ordre 2.

(i) Montrer que I'ordre du groupe SO (3,F5) /D (SO (3,F5)) est dans I'ensemble {2, 4, 8}.
(ii) Montrer que P est dans D (SO (3,F5)).
(iii) En déduire™ que SO (3,F5) /D (SO (3,Fs)) ~ Z/2Z.

“La situation est bien différente du cas réel puisque SO (3,R) est simple, égal & son groupe des commutateurs.
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56 Tétraedre, cube (et octaédre), icosaédre (et dodécaedre)

Pour mieuz se représenter les polyedres réguliers et leurs isométries, on pourra se référer aux dessins des toutes
derniéres pages de cette liste d’exercices.

56.1) On note T le groupe des isométries (vectorielles) qui stabilisent un tétraédre régulier de R3 et 7+ son
sous-groupe positif. En faisant agir 7T sur les sommets du tétracdre, montrer que 71 ~ 4, puis que T ~ &,.
En passant, faire la liste des 24 isométries de 7.

56.2) On note C le groupe des isométries (vectorielles) qui stabilisent un cube de R? et C* son sous-groupe positif.
En faisant agir C* sur les diagonales du cube, montrer que C* ~ Gy, puis que C ~ &4 x Z/27. En passant, faire
la liste des 48 isométries de C.

56.3) On note Z le groupe des isométries (vectorielles) qui stabilisent un dodécaedre régulier de R3 et Z+ son
sous-groupe positif. En faisant agir ZT sur les cinq cubes inscrits dans le dodécaédre, montrer que Z+ ~ s, puis
que C ~ A5 x Z/2Z. En passant, faire la liste des 120 isométries de Z.

57 Sous-groupes finis de GL(2,R) et de GL(3,R)

Soit n un entier naturel non nul.

57.1) Soit V un espace euclidien de dimension n. Se rappeler pourquoi V' admet toujours une base orthonormée
et en quoi cela implique que le groupe O(V') est isomorphe & O(n).

57.2) Soit G un sous-groupe fini de GL (n,R). On note (:|-) le produit scalaire standard sur R™, ou plutét sur
M, 1 (R). En considérant I’application bilinéaire (-|-)¢ sur M, 1 (R) définie par

1
geG

montrer que G est isomorphe — et méme conjugué — & un sous-groupe fini de O(n).

57.3) Montrer que tout sous-groupe fini de GL(2,R) est cyclique ou isomorphe & un groupe diédral.
[On sait par ailleurs, c’est dans le cours, que le groupe direct d’un m-gone régulier est cyclique d’ordre n et que son groupe total est diédral

d’ordre 2n.]

57.4) Soient G un sous-groupe fini non trivial de SO(3) et S? la sphere unité de R* — ou plutot de Ms 1 (R).

(i) On note X I'ensemble des points de S? qui sont fixés par au moins un élément de G'\ {I3}. Montrer que X est
fini et que I’action naturelle de G sur R? induit une action de G sur X.

(ii) Pour chaque orbite w pour 'action de G sur X de la question précédente, on note n, 'ordre commun des
groupes d’isotropie des éléments de w. On note aussi {2 'ensemble des orbites de cette action. En calculant de
deux fagons le cardinal de ’ensemble fini

Z={(g,%) € (G\{I3}) x S, gz =ua},

()5 (-2)

weR

montrer que
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(iii) En remarquant d’abord que tous les n,, sont supérieurs ou égaux & 2 et donc que 2 n’a pas plus de trois
éléments, résoudre I’équation arithmétique (6) en montrant que ses solutions sont celles du tableau suivant.

|G| #Q ny | ng | N3
n>2 2 n|n

2n,n>21| 3 212 | n

12 3 21313

24 3 213 |4

60 3 21315

[On peut montrer, par ailleurs, que ces différents cas sont tous atteints par une unique classe de conjugaison de sous-groupes de SO(3).
Notamment, les trois derniéres lignes du tableau correspondent aux groupes positifs du tétraeédre, du cube (ou de loctaedre) et de 'icosaedre
(ou du dodécaedre). Pour les deux premiéres lignes, le groupe se représente comme le groupe des rotations d’un polygone régulier & n sommets
qui est cyclique d’ordre n (les deux orbites de points fixes, qui sont des singletons, sont diamétralement opposées sur I’axe orthogonal au plan
du polygone) ; pour la deuxi¢me ligne qui correspond au groupe diédral, il s’agit d’ajoindre & ce groupe cyclique une rotation d’angle 7 qui

échange les deux points antipodaux — son axe est n’importe laquelle des droites engendrées par I'un des points fixes de l'orbite & n éléments.]

58 Un peu de topologie de groupes linéaires

Soit n un entier naturel non nul. Les groupes de matrices évoqués ci-dessous sont des sous-ensembles d’espaces
vectoriels normés de dimension finie M,, (R) ou M,, (C). La topologie a laquelle il est fait référence est leur
topologie usuelle, a savoir la topologie des normes.

58.1) Montrer que SO(n) est compact et connexe par arcs (donc connexe).
58.2) Montrer que GL (n,C) est connexe par arcs, mais que GL (n,R) a deux composantes connexes.

58.3) Montrer que SU(2) est compact, connexe et simplement connexe.

59 Du groupe modulaire, vers les pavages hyperboliques

On note S, T et U les matrices de SL (2, Z)

0 —1 11 1 -1
=) el )

et s, t et u leurs classes respectives dans PSL (2,Z).

59.1) On note H = {z € C, im(z) > 0} le demi-plan de Poincaré. Montrer que PSL (2,7Z) agit fidélement par
homographies sur H, via la formule
a ¢ az+c
cr=—
b d cz+d

59.2) Soit g € PSL(2,Z). Montrer que le nombre entier |Tr(g)| est bien défini et que les assertions suivantes sont
équivalentes :

(i) g a au moins un point fixe dans H

(ii) g a un unique point fixe dans H

(iii) |Tr(g)| € {0,1}.

59.3) Soit A ={z € C, |z| >1et |Rz| < 1}. Montrer que A est un domaine fondamental de I'action de PSL (2, Z)
sur H, au sens ol :
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(i) A est un ouvert connexe de H ; 1
3 A tA
(ii) Vg,¢' € PSL(2,Z), gANgA#D=g=7¢"; |
(i) H=|J A |

g€PSL(2,2) '
En outre, trouver une partie A de A qui soit un J ul
systéme de représentants de 1’action de PSL (2,7) W2 AlutA
sur H.

0 1

[Pour (iii), si z € H, on pourra d’abord montrer que I’ensemble des g € PSL (2,Z) tels que J(gz) > (z) est fini, puis translater par une

puissance de t un point de l’orbite de z dont la partie imaginaire est maximale.]
59.4) Calculer les ordres de s et u dans PSL (2,7Z) et montrer que
PSL (2,Z) = (s, u).

59.5) Ou l'on montre que tout élément de PSL (2,7) s’écrit de maniére unique sous la forme d’un produit

(su®) (su®?)...(su%") (1)
ou  u® (su®) (su®)...(su) )
ou  (su™)(su®)...(su)s (#i1) @
ou  u% (su®) (su®)...(su)s (iv)

ot n >0 etap €{1,2}, pour tout k € {0,...n} — sin =0, le produit (su®) (su)...(su’) désigne le neutre de
PSL (2,7Z). Autrement dit, il n’y a aucune relation entre s et u.

(i) Montrer que application ((Z 2) , x) — (Z c> - = S définit une action de PSL (2,Z) sur R\ Q.

(ii) On note P lensemble des irrationnels strictement positifs et et A' 'ensemble des irrationnels strictement
négatifs. Montrer que s-P C N, que u- N C P et que u? - N C P. En déduire qu'un produit de la forme (7) ne
peut étre trivial que s’il vient de de (7)(i) avec n = 0.

(iii) Montrer I'unicité de 1’écriture sous la forme (7) attendue™.
59.6) Montrer que dans PSL (2,Z), le produit de deux commutateurs n’est en général pas un commutateur.

59.7) On note I'(2) le sous-groupe (distingué) de PSL (2, Z) formé des classes de matrices de SL (2,Z) qui valent I
modulo 2 (voir feuille d’exercices numéro 2). Montrer que

PSL (2,Z) /T(2) ~ Gs.

59.8) Montrer que Ry = {1, s, t, ut,u,uz} est un systéme de représentants des classes d’éléments de PSL (2, Z)
modulo I'(2), stable par passage a 'inverse.

59.9) On note A, l'intérieur (topologique) de U g-A — voir le dessin ci-dessus. Montrer que A, est un domaine
gER2
fondamental de I’action de I'(2) sur H, au sens ol :

(i) Ag est un ouvert connexe de H ;
(i) Vg,9' €T(2), gA2 NG D2 # D= g =g ;
(i) = |J gB2

g€l (2)

“L’unicité de cette écriture montre que le groupe modulaire PSL (2,7) est le produit libre des groupes (s) ~ Z/27Z et (u) ~ Z/3Z.
Cette notion est fondamentale dans ’étude de la topologie des variétés ou encore dans ce qui gravite autour des pavages hyperboliques
du demi-plan de Poincaré.
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60 Projection stéréographique et revétement double SU(2) — SO(3)
On note S? la sphere unité de 'espace euclidien standard R3 :
S? ={(z,y,2) €R®, 2® +y> + 22 =1}

et N =(0,0,1) son pole nord.

60.1) On appelle projection stéréographique la projection de S? sur son plan équatorial : si M € S?\ {N}, le
projeté m(M) de M est I'intersection de la droite (NM) avec le plan équatorial P = {(z,y,z) € R, 2 =0}. Par
ailleurs, on identifie le plan équatorial au plan complexe au moyen de 'isométrie i : P — C, (z,y,0) — z +iy. On
la note p : S? — C la composée de la projection stéréographique et de Iisométrie i. Calculer p(x,y, ), pour tout

(z,y,2) € S2\ {N}.

- L ~

Z { m(B)'y
m(4)

60.2) Montrer que p est un homéomorphisme
p:S*\{N} —C

dont on calculera la réciproque. Montrer que lim,|_, 4 p~1(2) existe et vaut N. En déduire que p se prolonge en
une bijection

p:S? — CU{oo}
ou le symbole co désigne 'image de N par p.
[Il n’est pas difficile de prolonger la topologie usuelle de C en une topologie de C U {oo} qui fasse de p une homéomorphisme entre les deux
compacts S? et CU {oc}. Le bon cadre pour décrire cet homéomorphisme consiste & remplacer ’artificiel C U {oco} par la droite projective

complexe qui est I’ensemble des droites du C-espace vectoriel C2. On choisit de ne pas en parler davantage ici.]

60.3) On munit le C-espace vectoriel C? de son produit hermitien standard

((z,9)|(z,1)) =Ty + =L,

dont la norme est application C? — Ry, (z,y) — ||(z,y)|| = V{(=,y)|(z,y)) = v/|z|? + |y|2. Un endomorphisme
u de C? est dit unitaire lorsque c’est une isométrie pour cette norme, c’est-a-dire lorsque |Ju(v)|| = ||v||, pour tout
v € C2. On note SU ((C2) I'ensemble des endomorphismes unitaires de C? dont le déterminant égale 1. Montrer
que SU ((C2) est un sous-groupe de SL ((C2).

60.4) Soit u un endomorphisme de C2. Montrer que les assertions suivantes sont équivalentes.

(1) w est unitaire

(ii) Dans toute base orthonormée de C2, la matrice M de u vérifie M M = I

(iii) Il existe une base orthonormée de C? dans laquelle la matrice M de u vérifie M N = Is.

60.5) Si M € M,y (C), la matrice U est appelée transconjuguée de M. Vérifier rapidement que t(M) = M.
Une matrice inversible dont l'inverse égale sa transconjuguée est dite unitaire. Montrer que ’ensemble SU(2) des
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matrices 2 X 2 unitaires est un sous-groupe de SL (2,C), (non canoniquement) isomorphe au groupe SU ((C2)7 et
que toute matrice de SU(2) s’écrit sous la forme C}L —uv) ot u,v € C vérifient |u|? + [v|? = 1.

60.6) On note SO (R3) le groupe des rotations de ’espace euclidien R?. Montrer que 1’action naturelle de SO (R?’)
sur R3 induit une action fidele et transitive de SO (R?’) sur S2.

60.7) Avec les conventions usuelles sur le maniement du symbole oo, montrer que I'application

SU(2) x CU{o0} — CU{o0}

( (u —v) > uz — 70

_ |,% — —
vou vz t+u
définit une action transitive de SU(2) sur C U {oo} — c’est Paction par homographies. Calculer le noyau de

I’homomorphisme de groupes SU(2) — Scufoc}, 9 - 04 que cette action définit.

60.8) Soit @ : SU(2) — Gg2 l'application définie par ®(g) = p~' o oy o p, pour toute g € SU(2). Vérifier que ®
est un homomorphisme de groupes.

60.9) Montrer, par un calcul patient, que pour toute g € SU(2), la bijection ®(g) est la restriction & S? d'une
isométrie positive de R3 et qu’en identifiant toute isométrie de R? & sa matrice dans la base canonique, ® s’écrit :
Va,b,c,d € R vérifiant a® +b> 4+ % +d%? =1,

SU(2) 2, SO(3)
a?—b?—c2+d? 2(—ab+ cd 2(ac+ bd
a+ib —c+id ( ) ( ) (8)
i " — 2(ab+ cd) a?—b*+c*—d? 2(—ad + be)
ct+id a—i
2(—ac+ bd) 2(ad + be) a? +v* —c? — d?

[Ce calcul n’est pas miraculeux et trouve deux interprétations géométriques classiques et néanmoins magnifiques : 'une du c6té du corps gauche

des quaternions, lié & la géométrie de R® ; 'autre du coté des algébres de Lie des deux groupes SU(2) et SO(3). On ne s’y attarde pas ici @]
. t t t
60.10) Soient b, ¢, d € R tels que b2 +c?+d? = 1. Montrer que les vecteurs-colonne ‘(d, ¢, b), (—=b,0,d) et (—¢, d, 0)

ib  —c+ zd)i En déduire que le @ : SU(2) — SO(3) est surjectif.

sont des vecteurs propres de ® (C +id _ib

60.11) Montrer que ® induit un isomorphisme de groupes PSL(2) — SO(3).

60.12) Déduire de cet isomorphisme une classification des sous-groupes finis de SU(2) — et aussi de GL (2,C), a
conjugaison pres.

61 Commutateurs de GL et SL

Soient n un entier naturel supérieur ou égal a 2 et F un corps.
61.1) Montrer que D (SL (n,F)) = SL (n,F), si (n,F) ¢ {(2,F2), (2,F3)}.

61.2) Montrer les assertions suivantes.

(i) D (SL(2,F2)) = <<(1) 1)> ~7/3Z ;

(ii)D(SL(Q,]Fg)):<((1) 01),(1 11>>:H8.

61.3) Montrer les assertions suivantes.

(i) D(GL (n,F)) = SL (n,F), si (n,F) # (2,F3) ;

(ii) D (GL (2, Fy)) = <<(1’ 1)> ~ 7,/3Z.
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62 Conjugués vs isomorphes

Pour tout entier naturel non nul, on note &,, le groupe des permutations de ensemble {1,...n} et 2, son sous-
groupe des permutations paires.

62.1 D’abord dans G

62.1) On note F' = {0 € Gg, o(5) =5 et 0(6) = 6}. Vérifier a toute allure que F est un sous-groupe de Sg.
Montrer que {1,2,3,4} est stable par tout élement de F' et expliciter un isomorphisme de groupes entre F' et Gy.

62.2) On note I : G — {0, 1} la fonction indicatrice du complémentaire de g dans Gg. Autrement dit,

0sioeAg

On note également G = {00 (56)/(?), o € F}, ot (56) désigne comme d’habitude la transposition de &g qui
échange les nombres 5 et 6.

(i) Montrer que I(o7) = I(0) + I(7) [mod 2] pour tous 0,7 € Gg.
(ii) Montrer que G est un sous-groupe de Gg.

(iii) Les groupes F et G sont-ils isomorphes ? Sont-ils conjugués ?

62.2 Elargir au cas général

Montrer que pour tout n > 2, le groupe &,,+2 contient au moins deux classes de conjugaison de sous-groupes
isomorphes a &,,.

63 Action doublement transitive

Lorsqu’un groupe G agit (& gauche) sur un ensemble X & au moins 2 éléments, on dit que action est doublement
transitive lorsque
V(z,y,2,t) € X, s #yet 24t = Jg€G, g-x=zetg-y=t.

On dit aussi que G agit doublement transitivement sur X.
63.1) Montrer que laction naturelle du groupe alterné 24 sur {1,2,3,4} est doublement transitive.

63.2) Soit G un groupe fini agissant doublement transitivement sur un ensemble fini X de cardinal n > 2. On
considere I’action naturelle de G sur X2, définie par

Vg€ G, V(z,y) € X?, g (z,y) = (9 2,9 y)

— vérifier que c’est une action est élémentaire. Montrer que cette action admet exactement deux orbites, qui sont
la diagonale D = {(z,z), # € X} et son complémentaire X2\ D. En déduire que l'ordre de G est un multiple de
n(n —1).

63.3) Soient ¢ la puissance d’un nombre premier et F, “le” corps & ¢ éléments, dont on note Fy le groupe des

inversibles. Pour tout (a,b) € F x F,, on note f,; I'application affine

fa,b: Fq — Fq
r +— ax-+b.

On note aussi A = {fa,b, acFy, be Fq} ; c’est un sous-groupe du groupe &y, des permutations de [, cela se
vérifie aussitot.

(i) Calculer l'ordre de A.
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(ii) Montrer que l'action naturelle de A sur F, — définie par f -z = f(z) pour tous f € Aet x € Fy —, est
doublement transitive.

(iii) Montrer que les éléments de A\ {idg, } sont de deux types : ceux qui fixent exactement un élément de F, d’'un
coté, ceux qui ne fixent aucun élément de Iy de I'autre.

La suite de cette partie consiste & montrer que si un groupe d’ordre n?> —n agit doublement transitivement
sur un ensemble a n éléments, alors n est nécessairement la puissance d’un nombre premier.

63.4) Pour toute la suite, soient n un entier naturel, G un groupe fini d’ordre n?>—n et X un ensemble
a n éléments sur lequel G agit doublement transitivement — on notera que n > 2, nécessairement.

Montrer que 'action de G sur X est transitive, et en déduire que pour tout x € X, le groupe d’isotropie
GIZ{QEG, g{E:(L’}

est d’ordre n — 1.

63.5) Comme dans la question 2.2), on considere I'action naturelle de G' sur X2, qui admet exactement deux
orbites, & savoir la diagonale D et X2\ D. Démontrer que le groupe d’isotropie de tout élément de X2\ D est
trivial et en déduire que G est partitionné en ses trois sous ensembles suivants :

o {1}
e ’ensemble des éléments de G qui fixent un unique point de X
e I'ensemble des éléments de G qui ne fixent aucun point de X.

On note T" la réunion de {1} et des éléments de G' qui ne fixent aucun point de X.

63.6) En calculant de deux fagons le cardinal de lensemble {(g,2) € G x X, ¢g-x =z}, montrer que I a n
éléments.

63.7) Pour tout g € G, on note CONJg(g) sa classe de conjugaison dans G et Ci(g) son centralisateur, défini
comme d’habitude par
Calg) ={h € G, hg = gh}.

Soit v € I'\ {1}. Montrer que v ne commute avec aucun élément de G \ I" et qu’il n’est conjugué & aucun élément
de G\T. En déduire que
Ce(y) =T et CONJg(y)=T\{1}.

63.8) Déduire de la question précédente les trois assertions suivantes :
e ' est un sous-groupe de G

o I" est abélien, d’ordre n

e ['aG.

63.9) Montrer que n est la puissance d’un nombre premier.

[On pourra montrer, en utilisant la théorie de Sylow, que si p et ¢ sont deux nombres premiers qui divisent n, ils sont égaux.]

64 Classes de congruence de matrices symétriques

On note My (F3) I'ensemble des matrices & 2 lignes et 2 colonnes et & coefficients dans le corps F3 = Z/3Z. On
note S I'ensemble des matrices symétriques de My (F3) et G = GL (2,F3) le groupe des matrices inversibles de
My (F3). Si M € My (F3), on note "M la transposée de M. Enfin, pour toute M € My (F3) et pour toute P € G,
on note

P-M = PM'P.

64.1) Montrer que lapplication
GxS — S

(P,M) —s P-M
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définit une action a gauche de G sur S.
64.2) Calculer le cardinal de S et 'ordre de G.

64.3) Pour toute S € S, on appelle classe de congruence de S Vorbite de S sous 'action de G définie par (9).
Montrer que deux matrices d’'une méme classe de congruence ont le méme rang.

64.4) (i) Dans F3, résoudre I'équation 22 + y? = 1 dont x et y sont les inconnues.

(ii) Calculer le groupe d’isotropie de I sous 'action (9) et en déduire que la classe de congruence de I> contient 6
éléments.

64.5) On note D = (é _01> €s.

(i) Dans F3, résoudre 1’équation 2% — 32 = 1 dont z et y sont les inconnues.
(ii) Calculer le groupe d’isotropie de D sous 'action (9) et en déduire le cardinal de la classe de congruence de D.

1 0
0 0

64.7) Montrer que les orbites de R et de —R sont distinctes.

64.6) Calculer le groupe d’isotropie de R = ( ) € S et le cardinal de la classe de congruence de R.

64.8) On dit que deux matrices A et B sont congruentes lorsqu’il existe une matrice inversible P telle que
B = PA'P. Démontrer soigneusement que toute matrice symétrique de Mo (F3) est congruente a 'une exactement
des cinq matrices de la liste :

Oz, Ir, R, — R, D

ou on a noté Oz la matrice nulle de My (F3).

64.9) (i) Est-il vrai que deux matrices de rang 2 de S sont toujours congruentes ?
(ii) Est-il vrai que toute matrice de rang 1 de S est congruente & R ou & —R 7

(iii) Combien S contient-il de matrices inversibles ?
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65 Sans paroles : les cinq polyedres réguliers

A v
e

¢@
fe

R
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66 Sans paroles : les isométries des polyedres réguliers

bAAL Y

8 rotations 3 rotations 6 symétries 6 anti-rotations
9 rotations 8 rotations 6 rotations

3 symétries 6 symétries 6 anti-rotations 1 anti-rotation 8 anti-rotations
(symétrie centrale)

24 rotations 20 rotations 15 rotations

15 symétries 24 anti-rotations 1 anti-rotation 20 anti-rotations
(symétrie centrale)
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