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LSMA610 (groupes et géométrie)

Feuille d’exercices numéro 1

1 Petites questions en vrac, pour soi

1.1) Trouver les générateurs de (Z/18Z,+) et du groupe des racines 12e de l’unité.

1.2) Donner trois générateurs différents du groupe des racines 2025e complexes de l’unité.

1.3) Combien y a-t-il d’éléments d’ordre 2 dans un groupe cyclique d’ordre n ?

1.4) Trouver tous les sous-groupes de Z/20Z.

1.5) Compter les homomorphismes de groupes de Z/nZ sur Z/mZ et les expliciter.
Se faire la main sur les exemples Z/21Z → Z/6Z et Z/18Z → Z/6Z.

1.6) Est-il vrai que Um ∩ Un = Um∧n ? Est-il vrai que le sous-groupe de C× engendré par Um ∪ Un est Um∨n ?
Interpréter les résultats obtenus dans le cadre de Z/mZ et Z/nZ.

1.7) Trouver tous les homomorphismes de groupes Q → Q, Q → Z et Q → Q×.

1.8) Montrer que le groupe additif quotient Q/Z est isomorphe au groupe multiplicatif U de toutes les racines
complexes de l’unité.

1.9) Peut-on trouver un groupe fini d’ordre 168 contenant un sous-groupe d’indice 14 ?

1.10) Quel est l’ordre de C =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 dans le groupe GL(4,C) ?

2 Quelques gammes dans le désordre

2.1) xy et yx sont conjugués

Si G est n’importe quel groupe et si x, y ∈ G, alors xy et yx sont conjugués.

Application : si A et B sont deux matrices carrées inversibles, alors AB et BA sont semblables. Que se passe-t-il
si on enlève l’hypothèse d’inversibilité ?

2.2) Transport de l’ordre

Soit f : G→ G′ un homomorphisme de groupes. Montrer que si l’ordre de x ∈ G est fini, alors, l’ordre de f(x) est
fini et divise l’ordre de x.

2.3) Sous-groupes et quotients d’un groupe monogène

Tout sous-groupe d’un groupe monogène est monogène. Tout quotient d’un groupe monogène est monogène.

2.4) Ordre d’un produit de deux éléments qui commutent

Soient G un groupe, x et y deux éléments de G qui commutent.

(i) Montrer que si les ordres de x et de y sont premiers entre eux, alors l’ordre de xy est fini, égal au produit des
ordres de x et de y.

(ii) On suppose que ⟨x⟩ ∩ ⟨y⟩ = {1}. Alors, l’ordre de xy est fini, égal au PPCM des ordres de x et de y.

2.5) Transport de système générateur

Soient f : G→ G′ un homomorphisme de groupes, et A une partie de G. Est-il vrai que

f (⟨A⟩) = ⟨f(A)⟩ ?
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2.6) Tester la normalité sur un système générateur

(i) Soit G un groupe engendré par une partie A. On suppose que H est un sous-groupe de G tel que ∀a ∈ A,
aHa−1 = H. Le sous-groupe H est-il nécessairement distingué dans G ?

(ii) Soit G un groupe engendré par une partie A. On suppose que H est un sous-groupe de G tel que ∀a ∈ A,
aHa−1 ⊆ H. Le sous-groupe H est-il nécessairement� distingué dans G ?

(iii) Soit G un groupe engendré par une partie A formée d’éléments d’ordres finis. On suppose que H est un
sous-groupe de G tel que ∀a ∈ A, aHa−1 ⊆ H. Le sous-groupe H est-il nécessairement distingué dans G ?

2.7) Combien de générateurs ?

Soit G un groupe fini d’ordre n. Montrer que G a un système générateur de cardinal inférieur ou égal à log2 n.

2.8) Groupe d’ordre pair ou impair

(i) Montrer qu’un groupe fini d’ordre pair contient toujours un élément d’ordre 2 (on pourra montrer qu’il y a un
nombre pair d’éléments dont le carré n’est pas 1).

(ii) Montrer si G est un groupe fini d’ordre impair, tout élément a une racine carrée : ∀x ∈ G, ∃y ∈ G, x = y2.

2.9) Coprimalité de l’ordre et de l’indice

Soient G un groupe et H un sous-groupe distingué de G, d’indice fini.

(i) Soit K un sous-groupe fini de G dont l’ordre est premier avec [G : H]. Montrer que K ⊆ H.

(ii) Si G et H sont finis et si |H| et [G : H] sont étrangers, alors H est l’unique sous-groupe d’ordre |H| de G.
2.10) Ordre dans un produit

Soient G et H deux groupes, et (x, y) ∈ G×H. On suppose que x et y sont d’ordres finis m et n respectivement.
Montrer que, dans le groupe produit G×H, l’élément (x, y) est d’ordre fini, égal à PPCM(m,n).

2.11) Produit d’indices

Soient G un groupe, H et K deux sous-groupes de G tels que H ⊆ K.

(i) Montrer que [G : H] = [G : K]× [K : H].

(ii) En déduire que si [G : H] = [G : K] et si cet indice est fini, alors H = K.

(iii) Trouver un exemple pour lequel [G : H] = [G : K] et H ̸= K.

2.12) Groupe opposé
Soit G un groupe. On définit sur G la loi opposée par la formule x ⋆ y = yx, le dernier produit désignant la loi
de G. Montrer que (G, ⋆) est un groupe, que l’on note Gop. Montrer que les groupes G et Gop sont isomorphes.

3 Produit de deux sous-groupes

Soient G un groupe, H et K deux sous-groupes de G. On note

HK = {hk, h ∈ H, k ∈ K} .

3.1) Montrer qu’en général, HK n’est pas un sous-groupe de G.

3.2) On suppose que H ∩K = {1}. Montrer que Card (HK) = |H| · |K|.
3.3) Montrer que si H ◁ G, alors HK est un sous-groupe de G.

3.4) Etudier la réciproque de l’implication du 3.3.

�Voir l’exercice 54.
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4 Décimaux modulo les entiers

Vérifier que l’ensemble D des nombres décimaux est un sous-groupe additif de R. On note

S10 = {z ∈ C, ∃n ∈ N, z10
n

= 1}.

Montrer que S10 est un sous-groupe du groupe multiplicatif C \ {0}. Les groupes D/Z et S10 sont-ils isomorphes ?
Pour aller plus loin, par quoi peut-on remplacer le groupe des décimaux pour obtenir des énoncés analogues ?

5 Groupes 2-élémentaires

Soit G un groupe dont tous les éléments sont d’ordre 1 ou 2.

5.1) Montrer que G est abélien.

5.2) On note G additivement. On note · la loi de composition externe sur G définie par

Z/2Z×G −→ G

(ε, g) 7−→ ε · g =

{
0 si ε = 0

g si ε = 1.

Montrer cette loi de composition externe est bien définie et confère à G une structure de Z/2Z-espace vectoriel.

5.3) On suppose que G est fini. Montrer qu’il existe n ∈ N tel que G soit isomorphe au groupe (Z/2Z)n.

5.4) Montrer que l’ensemble des parties d’un ensemble, muni de la différence symétrique, est un groupe abélien.
Si l’ensemble a un nombre fini n d’éléments, montrer que ce groupe est isomorphe à (Z/2Z)n.

6 Sous-groupes d’un groupe à engendrement fini

On dit qu’un groupe est à engendrement fini lorsqu’il admet un système générateur fini. Autrement dit, un groupe
Γ est à engendrement fini lorsqu’il existe une partie finie de Γ qui engendre Γ.

L’objet de cet exercice est de montrer qu’un sous-groupe d’un groupe à engendrement fini n’est pas nécessairement
à engendrement fini.

6.1) Soit G le sous-ensemble de GL (2,R) défini par

G =

{(
2n p

2q

0 1

)
, (n, p, q) ∈ Z3

}
.

Montrer que G est un sous-groupe de GL (2,R).

6.2) Si m et p sont des entiers relatifs, calculer(
2m 0
0 1

)(
1 p
0 1

)
et

(
1 p
0 1

)(
2m 0
0 1

)
.

Montrer soigneusement que le groupe G est engendré par les deux matrices

(
2 0
0 1

)
et

(
1 1
0 1

)
.

6.3) On note

Z
[
1

2

]
=
{ p
2q
, (p, q) ∈ Z2

}
.

Montrer que Z
[
1
2

]
est un sous-groupe additif de R qui n’est pas à engendrement fini.

6.4) Soit H le sous-ensemble de G défini par

H =

{(
1 p

2q

0 1

)
, (p, q) ∈ Z2

}
.

Démontrer que H est un sous-groupe de G isomorphe à Z
[
1
2

]
. En déduire que H n’est pas à engendrement fini.
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7 Groupes cycliques

Soit n un entier naturel non nul. Faire les preuves des résultats du cours suivants.

7.1) Si k ∈ Z, alors la classe de k modulo n engendre Z/nZ si, et seulement si k et n sont premiers entre eux.

7.2) Si G = ⟨g⟩ est un groupe cyclique d’ordre n et si k ∈ Z, alors G = ⟨gk⟩ si, et seulement si k et n sont premiers
entre eux.

7.3) Si k ∈ Z, le nombre complexe e
2ikπ
n est une racine primitive ne de l’unité si, et seulement si k et n sont

premiers entre eux.

7.4) Si k ∈ Z, alors la classe de k modulo n engendre un sous-groupe d’ordre n
PGCD(n,k) de Z/nZ.

7.5) Ecrire la version du résultat précédent pour le groupe des racines ne complexes de l’unité et pour un groupe
cyclique d’ordre n abstrait.

7.6) Calculer le nombre de sous-groupes d’un groupe cyclique d’ordre n ; les décrire tous. Calculer le nombre de
quotients d’un groupe cyclique d’ordre n ; les décrire tous.

7.7) On note φ la fonction d’Euler. Se rappeler pourquoi φ(mn) = φ(m)φ(n) lorsque m et n sont étrangers et
pourquoi φ (pn) = pn−1(p− 1) lorsque p est premier et n ≥ 0. Montrer que pour tout entier naturel non nul n,

φ(n) = n
∏
p|n

(
1− 1

p

)
(1)

où le produit porte sur les nombres premiers qui divisent n.

7.8) En utilisant la formule (1), montrer que m|n =⇒ φ(m)|φ(n).
7.9) En utilisant la formule (1), montrer que si m et n sont des entiers naturels non nul et si d est leur PGCD,
alors

φ(mn)φ(d) = φ(m)φ(n)d.

8 Matrices triangulaires unipotentes

8.1) Montrer que l’ensemble

U =


1 a b
0 1 c
0 0 1

 , (a, b, c) ∈ R3


est un sous-groupe de SL(3,R) et calculer son centre Z.

8.2) Le groupe Z est-il isomorphe au groupe additif R ?

8.3) Montrer que l’application
f : U −→ R21 a b

0 1 c
0 0 1

 7−→ (a, c)

est un homomorphisme de groupes. En déduire que U/Z est isomorphe au groupe additif R2. Le groupe U est-il
isomorphe au groupe additif R× R2 ?

8.4) Pour tout nombre réel t, on note

U(t) =

1 t t2

2
0 1 t
0 0 1

 .

Soit N = {U(t), t ∈ R}. Montrer que N est un sous-groupe de U . Est-il monogène ?
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9 Groupes d’exposant fini

9.1 Prélude

(i) Montrer que si z ∈ C vérifie |1+ z| = 1+ |z|, alors z ∈ R+. En déduire que si a et b sont des nombres complexes
non nuls, (

|a+ b| = |a|+ |b|
)
=⇒

(a
b
∈ R∗

+

)
.

(ii) Soient z1, . . . , zn des nombres complexes non nuls. Montrer que si |z1 + · · · + zn| = |z1| + · · · + |zn|, alors les
nombres zk

z1
sont tous des réels strictement positifs (on pourra procéder par récurrence sur n).

(iii) Soient n et m des entiers naturels non nuls et soient ω1, . . . , ωn des racines mièmes de l’unité. Montrer que(
n∑
k=1

ωk = n

)
=⇒

(
∀k ∈ {1, . . . , n}, ωk = 1

)
.

9.2 Un groupe infini d’exposant fini

Soient m un entier naturel supérieur ou égal à 2 et Um le groupe des racines mièmes complexes de l’unité. On note F
l’ensemble des applications R −→ Um. On munit F de la loi de composition interne définie par (f · g) (x) = f(x)g(x)
pour tous f et g dans F et pour tout x ∈ R. Cela munit F d’une loi de groupe — c’est élémentaire.

(i) On note δ1 la fonction constante égale à 1. Montrer que δ1 est l’élément neutre de F ; si f ∈ F , calculer l’inverse
de f dans F .

(ii) Montrer que ∀f ∈ F , fm = δ1 et que F est infini.

9.3 Tout groupe linéaire d’exposant fini est fini

Soient n et m des entiers naturels non nul et G un sous-groupe de GL (n,C). On note In la matrice identité de
dimension n. On suppose que

∀A ∈ G, Am = In.

(i) Montrer que pour tout A dans G, les valeurs propres de A sont des racines mièmes de l’unité.

(ii) On note Mn (C) l’espace vectoriel de toutes les matrices carrées de taille n à coefficients complexes. Soit T
l’ensemble des traces des éléments de G ; autrement dit,

T = {Tr(A), A ∈ G} .

Démontrer que T est un ensemble fini.

(iii) Soit E le sous-espace vectoriel de Mn (C) engendré par G.
Dire rapidement pourquoi E est de dimension finie.
Soient d la dimension de E et (E1, . . . , Ed) une base de E formée d’éléments de G (pourquoi en existe-t-il ?). Soit
t : G −→ T d l’application définie par

t : G −→ T d

A 7−→
(
Tr (AE1) , . . . ,Tr (AEd)

)
.

Montrer que si deux éléments A et B de G vérifient t (A) = t (B), alors Tr (AC) = Tr (BC) pour tout C dans G et
en déduire que Tr

(
AB−1

)
= n. Montrer que t est injective (on pourra utiliser le prélude 9.1).

(iv) Montrer que G est fini.
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10 Sous-groupes de type fini de Q ou R

10.1) Montrer que
1

2
Z+

3

5
Z =

1

10
Z.

10.2) Est-il vrai que si a, b, c et d sont des entiers relatifs non nuls, alors

a

b
Z+

c

d
Z =

PGCD(ad, bc)

bd
Z ?

10.3) Montrer que si u, v et w sont des nombres rationnels, le sous-groupe de Q engendré par u, v et w est
monogène.

10.4) Montrer que tout sous-groupe de type fini de Q est monogène.

10.5) Le groupe additif (Q,+) est-il de type fini ?

10.6) Le groupe additif (R,+) contient-il un sous-groupe dense de type fini ?

10.7) Le groupe additif (R,+) est-il de type fini ?

11 Dévissages autour de GL (n)

11.1) Montrer que l’application

f : C∗ × SL (n,C) −→ GL (n,C)
(z,A) 7−→ zA

est un homomorphisme de groupes.

11.2) Calculer l’image de f .

11.3) Montrer que le noyau de f est isomorphe au groupe Un des racines nièmes complexes de l’unité.

11.4) Montrer que C∗ × SL(n,C) contient un sous-groupe distingué H isomorphe à Un tel que GL(n,C) soit
isomorphe au groupe quotient C∗ × SL(n,C)/H. Autrement dit, montrer qu’on a une suite exacte

1 −→ Z/nZ −→ C∗ × SL (n,C) f−→ GL (n,C) −→ 1.

11.5) Montrer que le résultat subsiste si on remplace C par n’importe quel corps algébriquement clos.

11.6) Montrer que GL+(2,R) = {A ∈ GL(2,R), det(A) > 0} est un sous-groupe distingué de GL(2,R), et que le
quotient GL(2,R)/GL+(2,R) est isomorphe à Z/2Z.

11.7) Montrer que l’application f : GL+(2,R) → SL(2,R)× R∗
+ définie par

f(A) =

(
A√
detA

,detA

)
est un homomorphisme de groupes. Est-ce un isomorphisme ? Pour aller plus loin, établir le même résultat pour
tous les GL+(n,R) = {A ∈ GL(n,R), det(A) > 0}.

12 Intersection de sous-groupes d’indices finis

Soient G un groupe, H et K deux sous-groupes de G.

12.1) On suppose que H est d’indice fini dans G. Montrer que H ∩K est un sous-groupe d’indice fini de K et
que

[K : H ∩K] ≤ [G : H] . (2)
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12.2) Dans les conditions de la question précédente, montrer que les assertions suivantes sont équivalentes :

(i) l’inégalité (2) est une égalité

(ii) G = KH

(iii) G = HK.

12.3) Montrer qu’une intersection finie de sous-groupes d’indices finis de G est encore un sous-groupe d’indice
fini.

12.4) On suppose que les indices de H et de K dans G sont finis et premiers entre eux. Montrer que G = HK =
KH.
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UVSQ 2024/2025
Licence de sciences et technologie, santé
LSMA610 (groupes et géométrie)

Feuille d’exercices numéro 2

13 Petites questions en vrac, pour soi

13.1) Calculer le support de la permutation de S15 définie par le produit

(5, 12, 7, 8, 9)(10, 11, 12, 1)(7, 2)(3, 5, 8, 2, 13, 4)(15, 5)(3, 11).

13.2) Soit s = (7, 11, 8, 9)(2, 1, 7, 12)(9, 2, 10, 3, 7, 5, 6)(10, 8) ∈ S12. Calculer l’orbite de 11 sous l’action de s.

13.3) Décomposer les permutations suivantes en produit de cycles à supports disjoints.

(i)

[
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 7 4 12 2 5 14 11 9 10 8 3 6 13

]
(ii) (7, 11, 8, 9)(2, 1, 7, 12)(9, 2, 10, 3, 7, 5, 6)(10, 8)

13.4) Les permutations (135)(189)(53842)(67) et (173)(394)(61542)(83) sont-elles conjuguées ?

13.5) Soient n et p des entiers naturels tels que 1 ≤ p ≤ n. Quel est le cardinal de la classe de conjugaison d’un
p-cycle de Sn ?

13.6) Trouver tous les sous-groupes d’ordre 15, 20 ou 30 de A5.

13.7) Expliciter les 4 éléments du groupe cyclique Aut (Z/5Z). Calculer les facteurs invariants du groupe abélien
fini Aut (Z/200Z).

13.8) Les groupes Z/686Z× Z/1372Z et Z/98Z× Z/28Z× Z/343Z sont-ils isomorphes ?

13.9) Les groupes O(2) et SO(2) × Z/2Z sont-ils isomorphes ? Les groupes O(3) et SO(3) × Z/2Z sont-ils
isomorphes ? Généraliser.

La suite exacte 1 → SO → O → Z/2Z → 1 induite par le déterminant est scindée en toute dimension, puisque O contient des réflexions qui

sont d’ordre 2. En dimension impaire, −In est impaire et fournit une section centrale : le produit est direct. En dimension paire supérieure ou

égale à 4, non, le centre de O(2n) est d’ordre 2, celui de SO(2n) × Z/2Z d’ordre 4. En dimension 2, SO(2) × Z/2Z est abélien, mais pas O(2).

14 Quelques gammes dans le désordre

14.1) Toujours produit ?

Est-il vrai que siH est un sous-groupe distingué d’un groupeG, les groupesG etH×G/H sont toujours isomorphes ?

14.2) Deux générateurs de A5

Soit G le sous-groupe de S5 engendré par les 3-cycles (123) et (345).

(i) Montrer que G ⊆ A5.

(ii) Ecrire (123)(345) en produit de cycles à supports disjoints et montrer que (234) ∈ G.

(iii) Calculer le nombre de 3-cycles de S5. Démontrer que G contient tous les 3-cycles de S5 (on pourra si l’on
veut utiliser plusieurs fois la formule de conjugaison des cycles, méthodiquement mais avec économie).

(iv) Montrer que G = A5.

14.3) An est engendré par les 5-cycles

Soit n un entier naturel supérieur ou égal à 5. Montrer que le sous-groupe H de Sn engendré par les 5-cycles est
distingué dans Sn. En déduire que H égale le groupe alterné An.
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15 Ce qu’engendrent une transposition et un 4-cycle

15.1) Soit A le sous-groupe de S4 engendré par la transposition (12) et le 4-cycle (1234). Montrer que A contient
les transpositions (23) et (34). En déduire que A = S4.

15.2) Soit B le sous-groupe de S4 engendré par la transposition (12) et le 4-cycle (1324).

(i) Calculer la décomposition du produit (12)(1324) en produit de cycles à supports disjoints.

(ii) On note K = {1, (12)(34), (13)(24), (14)(23)} le groupe de Klein. Montrer que K est un sous-groupe distingué
de B.

(iii) Montrer que les classes de (12) et de (1324) dans le groupe-quotient B/K sont inverses l’une de l’autre.

(iv) En déduire que B est d’ordre 8.

15.3) Soit C le sous-groupe de S5 engendré par la transposition (12) et le 4-cycle (2345). Montrer que C = S5.

15.4) Soit D le sous-groupe de S6 engendré par la transposition (12) et le 4-cycle (3456). Montrer que D est un
groupe abélien, isomorphe à Z/2Z× Z/4Z. Est-il cyclique ?

15.5) Déduire des questions précédentes que lorsque n ≥ 6, le sous-groupe de Sn engendré par une transposition
et un 4-cycle est soit d’ordre 8, soit isomorphe à S4, soit isomorphe à S5.

15.6) Les groupes B et D, tous les deux d’ordre 8, sont-ils isomorphes ?

16 Il n’y a que deux groupes d’ordre 6

Montrer que tout groupe d’ordre 6 est isomorphe à Z/6Z ou à S3.

17 Qu’engendrent un Klein et une transposition ?

SoitG le sous-groupe du groupe symétriqueS4 engendré par la transposition t = (23) et par le produit k = (12)(34).

17.1) Montrer que G contient le groupe de Klein.

17.2) Trouver un 4-cycle contenu dans G et lui donner pour nom c.

17.3) Calculer le conjugué de c par t.

17.4) Montrer que tout élément de G s’écrit, de manière unique, sous la forme tacb où a ∈ {0, 1} et b ∈ {0, 1, 2, 3}.
17.5) Calculer l’ordre de G. Le groupe G est-il abélien ? Est-il distingué dans S4 ?

18 Un groupe d’ordre 2(2m+ 1) n’est jamais simple

Soient G un groupe fini et f : G→ SG le plongement canonique de G, defini comme d’habitude par f(x)(y) = xy
pour tous x et y de G.

18.1) Pour tout x ∈ G, quelle est la forme de la décomposition de f(x) en produit de cycles à supports disjoint ?
Calculer sa signature.

18.2) Suffit-il que G soit d’ordre impair pour que f(G) soit un sous-groupe de AG ?

18.3) On suppose que G est d’ordre 2n où n est un entier naturel impair.

(i) Pourquoi G contient-il au moins un élément d’ordre 2 ?

(ii) Soit z un élément d’ordre 2 de G. Calculer la signature de f(z).

(iii) En déduire que G contient un sous-groupe distingué d’ordre n.
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19 Groupes d’ordre 2(2m+ 1)

Soit G un groupe fini d’ordre 2n où n est un entier naturel impair.

19.1) Pourquoi G contient-il au moins un élément d’ordre 2 ?

19.2) Soit z un élément d’ordre 2 de G. On note

σ : G −→ G
x 7−→ zx.

Montrer que σ est une permutation d’ordre 2 sans point fixe de G et calculer sa signature.

19.3) On note SG le groupe des permutations de G. Soit Φ : G −→ SG l’application définie par :

∀y ∈ G, ∀x ∈ G, Φ(y)(x) = yx.

Montrer que Φ est un homomorphisme de groupes.

19.4) On note f = ε ◦ Φ : G −→ {−1, 1}, où ε désigne la signature. Montrer que f est surjectif. En déduire que
G contient un sous-groupe distingué d’ordre n.

19.5) Existe-t-il un groupe G d’ordre pair qui ne contienne pas de sous-groupe (normal) d’ordre |G|
2 ?

20 Sous-groupes d’indice p min

Soient G un groupe fini et p le plus petit nombre premier qui divise l’ordre de G. Il s’agit de montrer que tout
sous-groupe d’indice p de G est distingué.

(i) Soit H un sous-groupe de G d’indice p. Montrer que l’action de G sur l’ensemble (G/H)g des classes à gauche
modulo H par translation à gauche induit un homomorphisme de groupes Φ : G→ Sp.

(ii) Montrer que l’image de Φ est un groupe abélien (et même cyclique).

(iii) En déduire que H ◁ G.

21 Groupes ayant exactement trois classes de conjugaison

Où l’on montre que les seuls groupes finis ayant exactement 3 classes de conjugaison sont Z/3Z et S3.

Soit G un groupe fini d’ordre n ayant exactement trois classes de conjugaison. On note a et b les ordres des groupes
d’isotropie des deux classes qui ne sont pas la classe triviale {1} et on suppose que a ≤ b.

21.1) Montrer que 1 = 1
n + 1

a + 1
b , que a|n et que b|n.

21.2) Montrer successivement que a ∈ {1, 2, 3}, que le cas a = 1 est à rejeter, que a = 3 implique a = b = n = 3
et, enfin, que a = 2 impose (n, a, b) = (6, 2, 3).

21.3) Montrer que seul le groupe Z/3Z correspond au cas (n, a, b) = (3, 3, 3) et que seul le groupe S3 correspond
au cas (n, a, b) = (6, 2, 3).

22 Le groupe diédral

Pour tout entier naturel non nul n, on note rn : C → C l’application z 7→ e2iπ/nz. On note aussi s : C → C
l’application z 7→ z — c’est la conjugaison complexe. On note enfin Dn = ⟨rn, s⟩ le sous-groupe de SC engendré
par rn et s.

22.1) Montrer que lorsqu’on fait l’identification standard du plan complexe au plan euclidien, tout élément de Dn

est une isométrie qui stabilise l’ensemble Un des racines ne de l’unité.
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22.2) Calculer l’ordre de rn et de s.

22.3) Calculer srns en fonction de rn. En déduire que le groupe Cn = ⟨rn⟩ est un sous-groupe distingué de Dn.

22.4) Montrer que Dn =
{
sεrkn, ε ∈ {0, 1} , k ∈ {0, . . . , n− 1}

}
.

22.5) Montrer que Dn est un groupe d’ordre 2n, non abélien lorsque n ≥ 3.

22.6) Montrer que Dn est le groupe des isométries qui stabilisent Un et que Cn est son sous-groupe des isométries
positives. Décrire toutes les rotations et toutes les symétries orthogonales de D2n.

22.7) Calculer le centre et le groupe dérivé de Dn.

Dessin des axes de symétries des
polygones réguliers dans le cas d’un
nombre impair ou pair de sommets.

23 Groupe des caractères d’un groupe

Si G est un groupe, on appelle caractère de G tout homomorphisme de groupes G→ C×.

23.1) Si χ1 et χ2 sont des caractères d’un groupe G, montrer que l’application

χ1χ2 : G −→ C×

g 7−→ χ1(g)χ2(g)

est encore un caractère de G et que l’opération (χ1, χ2) 7→ χ1χ2 confère à l’ensemble des caractères de G une

structure de groupe. On note Ĝ le groupe des caractères du groupe G.

23.2) Soient G un groupe, N un sous-groupe distingué de G et p : G → G/N la projection canonique. Montrer
que l’application

Φ : Ĝ/N −→ Ĝ
χ 7−→ χ ◦ p

est un homomorphisme injectif de groupes.

23.3) Montrer que Ẑ est isomorphe à C×.

23.4) Montrer que si un groupe est cyclique, il est isomorphe à son groupe des caractères.

23.5) Soient M et N deux groupes. Montrer que l’application

F : M̂ × N̂ −→ M̂ ×N

(µ, ν) 7−→ F (µ, ν),

où F (µ, ν) est définie par F (µ, ν)(m,n) = µ(m)ν(n) pour tous (m,n) ∈ M ×N , est un isomorphisme de groupes
(on pourra chercher à exprimer l’application réciproque).

23.6) Montrer que tout groupe abélien fini est isomorphe à son groupe des caractères.

23.7) Montrer que tout caractère d’un groupe G est constant sur son sous-groupe dérivé [G,G]. En déduire que

si G est un groupe, alors les groupes de caractères Ĝ et ̂G/[G,G] sont isomorphes.

23.8) Montrer que si G est un groupe fini, alors Ĝ et G/[G,G] sont isomorphes.

23.9) Calculer les groupes des caractères de A4 et de S4. [On trouve respectivement Z/3Z et Z/2Z.]

23.10) Lorsque n ≥ 5, montrer que le groupe des caractères de An est trivial et que celui de Sn est cyclique
d’ordre 2.
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24 Automorphismes du groupe Z/nZ, inversibles de l’anneau Z/nZ
Soit n un entier naturel non nul.

24.1) Montrer que le groupe Aut (Z/nZ) des automorphismes du groupe Z/nZ est isomorphe au groupe (Z/nZ)×

des inversibles de l’anneau Z/nZ.
Noter, en particulier, que cela montre que Aut (Z/nZ) est un groupe abélien fini.

24.2) Montrer que si m et n sont premiers entre eux, alors les groupes (Z/mnZ)× et (Z/mZ)× × (Z/nZ)× sont
isomorphes.

24.3) En déduire que si n = pa11 . . . parr où les pk sont des nombres premiers distincts et les ak des entiers naturels
non nuls, alors

(Z/nZ)× ≃
r∏

k=1

(Z/pakk Z)×

24.4) Si p est un nombre premier, alors (Z/pZ)× est cyclique, isomorphe à Z/(p− 1)Z.
Quel théorème (pas si simple) du cours assure cela ?

24.5) Montrer les assertions suivantes, qui serviront dans la suite.

(i) Pour tout nombre premier impair p, pour tout k ∈ N, il existe u ∈ N, premier avec p, tel que (1 + p)
pk

= 1+upk+1.

(ii) Si p est un nombre premier impair et si α ∈ N∗, alors l’ordre de 1 + p dans (Z/pαZ)× est exactement pα−1.

(iii) Pour tout k ∈ N, il existe un entier naturel impair u tel que 52
k

= 1 + u2k+2.

(iv) Si α ≥ 3, l’ordre de 5 dans (Z/2αZ)× est exactement 2α−2.

24.6) Montrer que si p est un nombre premier supérieur ou égal à 3 et si α ∈ N∗, alors le groupe (Z/pαZ)× est
cyclique, isomorphe à Z/pα−1(p− 1)Z.
Indication : on pourra chercher un élément du groupe des inversibles qui soit d’ordre pα−1(p− 1). Pour cela, con-
sidérer l’homomorphisme de groupes (Z/pαZ)× → (Z/pZ)× qui vient de la factorisation de la projection canonique
Z → Z/pZ via la PUQ, prendre un x dans (Z/pαZ)× dont l’image engendre (Z/pZ)×. Dans le groupe cyclique,
⟨x⟩, dont l’ordre est un multiple de p−1, prendre un élément y d’ordre p−1. Alors, (1+p)y est d’ordre pα−1(p−1)
dans (Z/pαZ)×.

24.7) Calculer (Z/2Z)× et (Z/4Z)×. Montrer que si α ≥ 3, alors le groupe (Z/2αZ)× est non cyclique et que ses
facteurs invariants sont 2 et 2α−2 ; autrement dit, (Z/2αZ)× ≃ Z/2Z× Z/2α−2Z.
Indication : considérer l’homomorphisme de groupes surjectif f : (Z/2αZ)× → (Z/4Z)× ≃ {−1, 1} qui vient de la
factorisation de la projection canonique Z → Z/4Z via la PUQ. Son noyau est d’ordre 2α−2 et contient 5, dont
l’ordre est précisément 2α−2. Donc ce noyau est cyclique, engendré par 5. Par ailleurs, −1 ̸= 1 dans Z/2αZ et
donc l’homomorphisme de groupes ⟨−1⟩ × ⟨5⟩ → (Z/2αZ)×, (ε, x) 7→ εx, qui est injectif, est un isomorphisme de
groupes — remarquer qu’on a noté −1 et 5 les classes modulo 2α des nombres entiers −1 et 5.

24.8) Calculer les composantes de torsion du GAF (Z/nZ)×, pour tout entier naturel non nul n.

25 Bases dans les réseaux

Soit n un entier naturel non nul. Si e1, . . . , en ∈ Zn, on dit que (e1, . . . , en) est une Z-base de Zn lorsque tout vecteur
de Zn s’écrit de manière unique comme combinaison linéaire de e1, . . . , en, à coefficients entiers. Par exemple, la
base canonique de Rn est une Z-base de Zn.

25.1) Montrer que toute Z-base de Zn est une base du R-espace vectoriel Rn mais que tout n-uplet de vecteurs
de Zn qui est une base de Rn n’est pas une Z-base de Zn.

25.2) On note (c1, . . . , cn) la base canonique de Rn. Soient e1, . . . , en ∈ Zn. Montrer que (e1, . . . , en) est une
Z-base de Zn si, et seulement s’il existe P ∈ Mn (Z) telle que detP = ±1 et tek = P tck, pour tout k ∈ {1, . . . , n}.
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25.3) Soient e1, . . . , en ∈ Rn. Soit Vol (e1, . . . , en) le volume du parallélépipède des ek : c’est la mesure de Lebesgue
dans Rn de

n∑
k=1

[0, 1]ek.

Montrer, en s’appuyant sur la formule de changement de variables sous une intégrale, que

Vol (e1, . . . , en) =
∣∣det (c1,...,cn) (e1, . . . , en)∣∣ .

25.4) Soient e1, . . . , en ∈ Zn. Montrer que (e1, . . . , en) est une Z-base de Zn si, et seulement si Vol (e1, . . . , en) = 1.

25.5) Soit X = (a, b) ∈ Z2. Montrer que X se complète en une Z-base de Z2 si, et seulement si a et b sont
premiers entre eux.

25.6) Soit X = (a1, . . . , an) ∈ Zn. Montrer que X se complète en une Z-base de Zn si, et seulement si les ak sont
premiers entre eux (dans leur ensemble).

26 Classes de conjugaison des transvections dans SL

Soit V un espace vectoriel de dimension finie n sur un corps F.

26.1) Montrer que deux dilatations de GL(V ) sont conjuguées si, et seulement si elles ont le même rapport.

26.2) Montrer que toutes les transvections sont conjuguées dans GL(V ).

26.3) Montrer que si n ≥ 3, toutes les transvections de SL(V ) sont conjuguées dans SL(V ).

26.4) Montrer que les deux matrices

(
1 1
0 1

)
et

(
1 −1
0 1

)
ne sont pas conjuguées dans SL (2,R). En déduire que

pour n = 2, il n’est pas vrai que toutes les transvections de SL(V ) sont conjuguées dans SL(V ).

26.5) On suppose que n = 2. Montrer que toute matrice de transvection est conjuguée dans SL (2,F) à une

matrice de la forme

(
1 a
0 1

)
où a ∈ F \ {0} et que si a, b ∈ F \ {0}, les deux matrices

(
1 a
0 1

)
et

(
1 b
0 1

)
sont

conjuguées dans SL (2,F) si, et seulement si ab est un carré dans F.

26.6) Calculer le nombre de classes de conjugaisons des transvections dans SL (2,F) pour F = C, R, Q ou Fq où
q est la puissance d’un nombre premier.

27 Eléments sur les groupes arithmétiques de congruence

On note PSL (2,Z) le quotient de SL (2,Z) par son centre {−I2, I2}. Si G est un sous-groupe de SL (2,Z), on note
PG son image par la projection canonique SL (2,Z) → PSL (2,Z). Autrement dit, PG est le groupe des classes
modulo {−I2, I2} des éléments de G.
Pour tout entier naturel non nul N , on note SL (2,Z/NZ) le groupe des matrices 2 × 2 à coefficients dans Z/NZ
dont le déterminant égale 1.

27.1) S’assurer que SL (2,Z/NZ) est bien un groupe pour la multiplication matricielle.

27.2) On note π l’application de réduction modulo N

π : SL (2,Z) −→ SL (2,Z/NZ)(
a c
b d

)
7−→

(
a c

b d

)
où x désigne la classe modulo N de l’entier x. Montrer rapidement que p est un homomorphisme de groupes.

27.3) Où l’on montre que π est surjectif.

(i) Soient n et d deux entiers naturels non nuls. On suppose que d|n. Montrer que la projection canonique
Z → Z/dZ induit un homomorphisme de groupes (Z/nZ)× → (Z/dZ)×. Montrer que ce dernier est sujectif.
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(ii) Déduire de (i) l’assertion suivante : si x, y et z sont des entiers premiers entre eux et si x ̸= 0, il existe k ∈ Z
tel que PGCD(x, y + kz) = 1.

(iii) Déduire de (ii) la surjectivité de π.

27.4) Montrer que SL (2,Z/NZ) est engendré par les classes modulo N des matrices

(
1 1
0 1

)
et

(
0 1
−1 0

)
.

27.5) Pour tout entier naturel non nul N , on note

Γ(N) =

{(
a c
b d

)
∈ SL (2,Z) , a = d = 1 [N ] et b = c = 0 [N ]

}
,

Γ0(N) =

{(
a c
b d

)
∈ SL (2,Z) , b = 0 [N ]

}
,

Γ1(N) =

{(
a c
b d

)
∈ SL (2,Z) , a = d = 1 [N ] et b = 0 [N ]

}
Autrement dit, Γ(N) est l’ensemble des matrices de SL (2,Z) qui sont congrues à I2 modulo N , Γ0(N) est l’ensemble
des matrices de SL (2,Z) qui sont trigonales supérieures modulo N et Γ1(N) est le sous-ensemble des matrices de
Γ0(N) dont les éléments diagonaux sont congrus à 1 modulo N .

Montrer que Γ(N), Γ0(N) et Γ1(N) sont des sous-groupes de Γ(1) = SL (2,Z).

27.6) Dans la châıne
Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL (2,Z)

montrer que Γ(N) ◁ SL (2,Z), que Γ1(N) ◁ Γ0(N), mais que Γ0(N) et Γ1(N) ne sont pas distingués dans SL (2,Z).

27.7) Montrer que Γ(N), Γ0(N) et Γ1(N) sont d’indices finis dans Γ(1) = SL (2,Z).

28 Dans SL2 (C), les centralisateurs non idiots sont abéliens

Pour tout M ∈ SL (2,C), on note Z(M) le centralisateur de M dans SL (2,C), à savoir

Z(M) = {N ∈ SL (2,C) , MN = NM} .

28.1) Montrer que Z(M) est un sous-groupe de SL (2,C), pour tout M ∈ SL (2,C).

28.2) Montrer que pour tout M ∈ SL (2,C) et pour tout P ∈ GL (2,C), on a l’égalité

Z
(
PMP−1

)
= PZ(M)P−1.

28.3) Montrer que tout élément de SL (2,C) est semblable à une matrice de l’une des cinq formes suivantes :

±I2, ±
(
1 1
0 1

)
,

(
a 0
0 1/a

)
où a ∈ C \ {−1, 0, 1}

— on pourra raisonner sur le polynôme caractéristique.

28.4) Montrer que le centralisateur de T =

(
1 1
0 1

)
est Z(T ) =

{
±
(
1 α
0 1

)
, α ∈ C

}
.

28.5) Soit a ∈ C \ {0}. Calculer le centralisateur de

(
a 0
0 1/a

)
.

28.6) On note C le groupe additif (C,+) et C× le groupe multiplicatif (C \ {0} ,×). On note aussi S =

(
i 0
0 −i

)
.

Montrer que Z(T ) est isomorphe au groupe Z/2Z× C et que Z(S) est isomorphe à C×.

28.7) Déduire des questions précédentes que Z(M) est un groupe abélien, pour tout M ∈ SL (2,C) \ {−I2, I2}.
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29 Simplicité de PSL sauf deux cas sporadiques

L’objet de cet exercice est de montrer le résultat suivant :

Théorème

Soient n un entier naturel supérieur ou égal à 2 et F un corps.

(i) PSL (2,Z/2Z) ≃ S3.

(ii) PSL (2,Z/3Z) ≃ A4.

(iii) Dans tous les autres cas, PSL (n,F) est un groupe simple.

29.1) On suppose que n ≥ 3.

(i) Soit G un sous-groupe distingué de SL (Fn) contenant strictement le centre Z de SL (n,F). Montrer qu’il existe
g ∈ G et h ∈ Fn \ {0} tels que g(h) /∈ Fh.
(ii) Soient g et h comme dans la question précédente ; on note k = g(h). Montrer qu’il existe une transvection
t ∈ SL (n,F) de droite Fh et un hyperplan H de Fn qui contient le plan engendré par h et k.

(iii) Dans les conditions des deux questions précédentes, on note c = [g, t] = gtg−1t−1. Montrer que c ∈ G \ {id},
que l’image de c− id est incluse dans H, et que H est stable par c.

(iv) On suppose que t′ ∈ SL (n,F) est une transvection d’hyperplan H qui ne commute pas avec c. Montrer que
[c, t′] est une transvection non triviale contenue dans G.

(v) On suppose au contraire que c commute avec toutes les transvections d’hyperplan H. Montrer que c est une
transvection.

(vi) Déduire des questions précédentes que PSL (n,F) est simple.

29.2) On suppose que n = 2 et que Card (F) ≥ 7.

(i) Montrer que le centre Z de SL (2,F) est contenu dans {±I2}. Soit G un sous-groupe distingué de SL (2,F)
contenant strictement Z.

(ii) Soient a ∈ F \ {−1, 0, 1} et b ∈ F \ {0}. Montrer qu’il existe s ∈ SL (2,F) tel que(
1 b
0 1

)
=

[
s,

(
a 0
0 1/a

)]
.

(iii) On suppose que g ∈ G \ {±I2} a une valeur propre a différente de −1 et de 1. Montrer que g est conjugué
dans SL (2,F) à la matrice diag (a, 1/a). En déduire que G = SL (2,F).

(iv) On suppose que g =

(
a c
b d

)
∈ G\{±I2}, où b ̸= 0. Montrer qu’il existe t ∈ SL (2,F) telle que t−1g−1tg admette(

1
0

)
pour vecteur propre, associé à une valeur propre différente de 1 et de −1. En déduire que G = SL (2,F).

(v) On suppose que g = ±
(
1 c
0 1

)
∈ G avec c ̸= 0. En notant i =

(
0 1
−1 0

)
, calculer igi−1. En déduire que

G = SL (2,F).
(vi) Démontrer que PSL (2,F) est simple.

29.3) En admettant les isomorphismes classiques suivants (voir la feuille d’exercice numéro 3) :

PSL (2,Z/2Z) ≃ S3, PSL (2,Z/3Z) ≃ A4, PSL (2,F4) ≃ A5, PSL (2,F5) ≃ A5,

démontrer le théorème annoncé.
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LSMA610 (groupes et géométrie)

Feuille d’exercices numéro 3

30 Petites questions en vrac, pour soi

30.1) GL (n,R) est-il isomorphe à SL (n,R) × R× ? Est-il produit direct interne de SL (n,R) et du sous-groupe
{xIn, x ∈ R×} de GL (n,R) ? Est-il produit direct interne de SL (n,R) et du sous-groupe {diag(x, 1, . . . , 1), x ∈ R×}
de GL (n,R)× R× ?

30.2) Calculer tous les Sylow de An et de Sn, pour n = (2, 3, ) 4 et 5.

30.3) Le groupe A4 est-il isomorphe à un produit semi-direct (Z/2Z)2 ⋊ Z/3Z ?

30.4) Il n’y a pas de groupe simple d’ordre 196.

30.5) Les groupes GL (3,Z/2Z) et GL (4,Z/2Z) contiennent-il des sous-groupe d’ordre 9 ?

31 Quelques gammes

31.1) Un peu de H8

(i) Faire la liste des éléments d’ordre 4 de H8. Calculer les classes de conjugaison dans H8. Montrer que tous les
sous-groupes de H8 sont normaux.

(ii) Calculer le groupe des commutateurs de H8 et les facteurs invariants du quotient H8/ {−1, 1}.
(iii) Soit G un groupe engendré par deux éléments x et y qui vérifient x4 = 1, x2 = y2 ̸= 1 et xyx−1 = y−1.
Montrer que G est isomorphe à H8.

(iv) Montrer que H8 n’est pas produit semi-direct de deux groupes non triviaux.

31.2) Groupes d’ordre 2p

Soit G un groupe fini d’ordre 2p où p est un nombre premier impair.

(i) Montrer que G contient un sous-groupe H d’ordre p, un sous-groupe K d’ordre 2, tels que H ◁ G, G = HK et
H ∩K = {1}.
(ii) Montrer que G est isomorphe au groupe cyclique Z/2pZ ou au groupe diédral D2p.

32 Sur les p-Sylow du groupe Sp

Si p est un entier naturel non nul, on note Sp le groupe des permutations de {1, · · · , p}.
32.1) D’abord dans S7

(i) Calculer l’ordre commun à tous les 7-Sylow de S7.

(ii) Montrer que tout 7-cycle de S7 est dans un unique 7-Sylow.

(iii) Combien S7 contient-il de 7-cycles ?

(iv) En utilisant ce qui précède, calculer le nombre de 7-Sylow de S7.

(v) On fait agir S7 par conjugaison sur l’ensemble de ses 7-Sylow. Dire quel théorème du cours permet d’affirmer
que cette action n’a qu’une seule orbite et calculer l’ordre du groupe d’isotropie du 7-Sylow qui contient le 7-cycle
(1234567).

32.2) Où l’on généralise
Soit p un nombre premier. Montrer que (p − 2)! = 1 mod (p), puis que le groupe symétrique Sp admet toujours
un sous-groupe d’ordre p(p− 1).
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32.3) Pour aller plus loin
Montrer, lorsque p est premier, que tout sous-groupe d’ordre p(p − 1) de Sp est le normalisateur du sous-groupe
engendré par un p-cycle.

33 D’autres gammes, sur les polynômes symétriques

Si n est un entier naturel non nul, on note σ0, σ1, σ2 . . . les polynômes symétriques élémentaires et S0, S1, S2 . . .
les polynômes de Newton de l’anneau de polynômes Z[X1, . . . , Xn].

33.1) On suppose, dans cette question, que n = 2. Calculer σ3
1 en fonction de S3, σ1 et σ2. En déduire à la main

l’écriture de S3 en fonction des σk.

33.2) On suppose que n ≥ 2. Soit P (X1, . . . , Xn) =
∑

(i,j), i ̸=j X
2
iXj .

(i) Combien P a-t-il de monômes ?

(ii) Montrer que P est symétrique.

(iii) Calculer σ1σ2 en fonction de P et de σ3. En déduire l’expression de P en fonction des σk — on pourra si l’on
veut commencer par le cas n = 3.

(iv) Calculer S1S2 en fonction de S3 et de P . Trouver le polynômeQ à trois indéterminées tel que S3 = Q(σ1, σ2, σ3).

33.3) En généralisant les démarches des questions précédentes, calculer∑
i,j,k distincts

X2
iXjXk

à partir du développement du produit σ1σ3, puis
∑

(i,j), i ̸=j X
2
iX

2
j à partir du calcul de σ2

2 . Arriver ainsi au calcul

de S4 en fonction des σk (et comparer aux formules de Newton du cours).

33.4) Calculer ∑
i,j,k distincts

X2
iX

2
jX

2
k

en fonction des σk (on pourra considérer à part les cas où n ≤ 5).

33.5) On suppose ici que n = 3. Montrer que (2X1 −X2 −X3)(2X2 −X3 −X1)(2X3 −X1 −X2) est symétrique
et l’exprimer comme un polynôme en les σk.

33.6) Même question pour n = 4 et (X1X2 +X3X4)(X1X3 +X2X4)(X1X4 +X2X3).

34 Pourquoi “le” groupe diédral

Soit n un entier naturel supérieur ou égal à 3. On note Dn le groupe des isométries du plan (vectoriel) complexe
qui stabilisent les points dont les affixes sont les racines ne de l’unité, et Cn son sous-groupe positif.

34.1) Montrer que la suite exacte induite par le déterminant

1 −→ Cn −→ Dn
det−→ {1,−1} −→ 1 (3)

est scindée, ou, autrement dit, que Dn est un produit semi-direct Z/nZ⋊Z/2Z. Trouver toutes les sections possibles
de cette suite exacte et expliciter les actions de {1,−1} ≃ Z/2Z sur Cn induites par ces sections.

34.2) Montrer que pour toutes r, r′ ∈ Dn \ Cn, il existe (une unique) κ ∈ Cn telle que r′ = rκ. En déduire
que toutes les sections de (3) fournissent la même action Z/2Z → Aut (Cn) et, ainsi, le même produit semi-direct
Dn ≃ Z/nZ ⋊ Z/2Z.

34.3) Expliciter l’action de {1,−1} sur Cn qui fournit le produit semi-direct de Dn.

34.4) Soient n un entier naturel supérieur ou égal à 3 et G un groupe d’ordre 2n engendré par deux éléments r
et s qui vérifient : rn = s2 = 1 et srs = r−1. Montrer que G est isomorphe à Dn.
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34.5) Montrer que S3 ≃ D3 (mais que Sn ̸≃ Dn si n ≥ 4).

34.6) Dans l’anneau des fractions rationnelles Q(X), montrer que le groupe engendré par les homographies 1
X et

1−X, pour la substitution, est isomorphe à S3.

[Autre point de vue : considérer les mêmes homographies vues comme transformations de C \ {0, 1}, la loi de groupe étant alors la composition

des applications.]

35 Birapport

Si F (X1, X2, X3, X4) est une fraction rationnelle à coefficients rationnels à quatre indéterminées X1, X2, X3 et X4

et si σ ∈ S4, on note
σ · F (X1, X2, X3, X4) = F

(
Xσ(1), Xσ(2), Xσ(3), Xσ(4)

)
.

35.1) Montrer que cela définit une action à gauche du groupeS4 sur le corps des fractions rationnellesQ (X1, X2, X3, X4).

35.2) On note B la fraction rationnelle birapport, définie par

B (X1, X2, X3, X4) =
X3 −X1

X3 −X2
× X4 −X2

X4 −X1
=

X3 −X1

X3 −X2

X4 −X1

X4 −X2

.

Montrer que le groupe de Klein est un sous-groupe du groupe d’isotropie de B.

35.3) En considérant l’action des transpositions (12), (13) et (14) ainsi que celle des 3-cycles (124) et (142),
montrer que l’orbite de B sous l’action de S4 contient les cinq autres fractions distinctes

1

B
,

B

B − 1
, 1−B ,

1

1−B
, 1− 1

B
.

35.4) Calculer le groupe d’isotropie et l’orbite de B sous l’action de S4.

36 CS pour que deux produit semi-directs soient isomorphes

Soient N et Q deux groupes, et φ : Q→ Aut(N) et ψ : Q→ Aut(N) deux actions de Q sur N par automorphismes.

36.1) On suppose que :

(i) α ∈ Aut(N) est un automorphisme de N

(ii) les actions φ et ψ sont conjuguées par α au sens où ψ(q) = α ◦ φ(q) ◦ α−1, pour tout q ∈ Q.

Montrer que dans ces conditions, l’application

N ×φQ −→ N ×ψ Q

(n, q) 7−→ (α(n), q)

est un isomorphisme de groupes.

Slogan Conjuguer l’action de Q sur N par un automorphisme de N ne change pas un produit semi-direct N ⋊Q.

36.2) On suppose que :

(i) β ∈ Aut(Q) est un automorphisme de Q

(ii) ψ = φ ◦ β.
Montrer que dans ces conditions, l’application

N ×ψ Q −→ N ×φQ

(n, q) 7−→ (n, β(q))

est un isomorphisme de groupes.

Slogan Composer l’action de Q sur N par un automorphisme de Q ne change pas un produit semi-direct N ⋊Q.
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37 Il n’y a que cinq groupes d’ordre 8

Montrer que tout groupe d’ordre 8 est isomorphe à un et un seul des groupes de la liste suivante :

Z/8Z, Z/2Z× Z/4Z, (Z/2Z)3 , D8, H8

où D8 est le groupe diédral et H8 est le groupe quaternionique.

38 Il n’y a pas de groupe simple d’ordre 15309

Soit G un groupe d’ordre 15309 = 37 × 7.

38.1) Montrer que le nombre de 3-sous-groupes de Sylow de G est inclus dans l’ensemble {1, 7}.
38.2) On suppose que G est simple et a sept 3-sous-groupes de Sylow. Montrer comment l’action de G par
conjugaison sur l’ensemble de ses 3-sous-groupes de Sylow induit un homomorphisme injectif de groupes G −→ S7.
Comparer les ordres de G et de S7 et conclure à une contradiction.

38.3) Montrer qu’il n’y a pas de groupe simple d’ordre 15309.

39 Un sous-groupe de GL (2,F3)

On note F3 le corps Z/3Z. Dans le groupe linéaire GL (2,F3), on note

r =

(
1 1
1 0

)
et s =

(
1 0
−1 −1

)
.

On note R (resp. S) le sous-groupe de GL (2,F3) engendré par r (resp. s) et G le sous-groupe engendré par {r, s}.
39.1) Calculer l’ordre de R et celui de S.

39.2) Montrer que R ◁ G et que R ∩ S est le groupe trivial.

39.3) En déduire l’ordre de G.

[On pourra montrer que l’ensemble des ρσ où ρ ∈ R et σ ∈ S est un sous-groupe de G et raisonner dessus.]

39.4) Quel est l’indice de G dans GL (2,F3) ?

40 Un peu de Pauli

On note P le sous-groupe de GL (2,C) engendré par les trois matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
et σ3 =

(
1 0
0 −1

)
.

40.1) Calculer les ordres de σ1, σ2 et σ3.

40.2) Calculer σ1σ2σ3 et en déduire que iI2 est dans le centre de P. On note H le sous-groupe de P engendré
par iI2.

40.3) Montrer que le groupe-quotient P/H est engendré par les classes modulo H de σ1 et σ3.

40.4) En déduire que P/H est un groupe abélien d’ordre 4 et calculer ses facteurs invariants.

40.5) Montrer que P est un groupe fini et calculer son ordre.

40.6) On note Q = P ∩ SL (2,C). Calculer l’indice [P : Q] et montrer que tout élément de P s’écrit de manière
unique sous la forme iεq où ε ∈ {0, 1} et où q ∈ Q.

40.7) Montrer que Q n’est pas abélien et qu’il contient au moins trois éléments d’ordre 4.

40.8) Montrer que Q est isomorphe au groupe quaternionique H8.
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41 Pas de gros symétrique dans l’alterné

Soit n un entier naturel supérieur ou égal à 2. On note Sn le groupe symétrique de n objets et An son sous-groupe
des permutations paires.

On cherche à montrer que le groupe alterné An+1 ne contient aucun sous-groupe isomorphe à Sn.

41.1) Montrer que A4 n’a pas de sous-groupe isomorphe à S3.

41.2) Montrer, par des considérations d’ordres, que si An+1 contient un sous-groupe isomorphe à Sn, alors n est
nécessairement impair.

41.3) Soit m un entier supérieur ou égal à 3. On suppose que G est un sous-groupe de A2m isomorphe à S2m−1.

(i) On note (A2m/G)g l’ensemble des classes à gauches modulo G des éléments de A2m. Calculer le cardinal de
(A2m/G)g en fonction de m.

(ii) On fait agir A2m sur (A2m/G)g par translation à gauche et on note φ : A2m → Sm l’homomorphisme de
groupes que cette action induit. Montrer que φ est nécessairement injectif.

41.4) Déduire de ce qui précède que An+1 n’a pas de sous-groupe isomorphe à Sn.

42 Exposant d’un groupe

Si G est un groupe, son exposant est, lorsqu’il existe, le plus petit entier naturel non nul e qui vérifie : ∀x ∈ G,
xe = 1. Si un tel nombre n’existe pas, on dit que G est d’exposant infini.

42.1) Soit G un groupe. Montrer que {n ∈ Z, ∀x ∈ G, xn = 1} est un sous-groupe de Z. On note eG le générateur
positif ou nul de ce groupe. Montrer que si eG ̸= 0, alors G est d’exposant fini égal à eG. Montrer que si eG = 0,
alors G est d’exposant infini.

42.2) Soient G un groupe etM ∈ N∗. On suppose que tout élément de G est d’ordre fini et queM est un majorant
des ordres des éléments de G. Montrer que l’exposant de G est le PPCM des ordres de ses éléments.

42.3) Montrer que (Q/Z,+) est d’exposant infini alors que tous ses éléments sont d’ordres finis.

42.4) Montrer que l’exposant de Sn est PPCM {2, 3, . . . , n}.
42.5) Soit G un groupe abélien fini d’exposant e.

(i) Montrer, en utilisant le théorème de structure des GAF, que G contient un élément d’ordre e.

(ii) Faire une preuve directe du résultat précédent en suivant les indications ci-dessous.

[Soit x ∈ G, dont l’ordre m est maximum. On montre que l’ordre de tout élément de G divise m, ce qui suffit à prouver que m = e et, ainsi,

que x convient. Soit y ∈ G ; on note n son ordre. Pour montrer que n|m, il suffit de montrer que pour tout nombre premier p, vp(n) ≤ vp(m).

Soit p un nombre premier. En notation additive, calculer l’ordre de pvp(m)x et celui de n

p
vp(n)

y ; en déduire l’ordre de pvp(m)x + n

p
vp(n)

y et

conclure en utilisant la maximalité de m.]

42.6) Utiliser ce qui précède pour établir une nouvelle preuve du théorème suivant : si G est un sous-groupe fini
du groupe multiplicatif d’un corps commutatif, alors G est cyclique.

42.7) Montrer qu’un groupe (non abélien) ne contient pas nécessairement un élément dont l’ordre soit l’exposant
du groupe.

42.8) On note

S =


1 a b
0 1 c
0 0 1

 ∈ SL (3,Z/3Z) , a, b, c ∈ Z/3Z

 .

Montrer que S est un sous-groupe non abélien de SL (3,Z/3Z) dont l’exposant est 3, et qui contient un élément
d’ordre 3. Calculer l’ordre de S�.

�On pourra se rappeler, c’est écrit dans le cours, que S est un 3-Sylow de GL (3,F3).
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(i) Calculer le centre de S, montrer que le quotient S/Z est isomorphe à (Z/3Z)2 et montrer que la suite exacte

1 −→ Z −→ S −→ S/Z −→ 1

n’est pas scindée (d’ailleurs, il n’y a pas de produit semi-direct Z/3Z⋊ (Z/3Z)2 qui ne soit pas direct, vérifier cela).

(ii) Soit f : S → Z/3Z,

1 a b
0 1 c
0 0 1

 7→ c. Montrer que f est un homomorphisme de groupes, que son noyau est

isomorphe à (Z/3Z)2, et que la suite exacte

1 −→ (Z/3Z)2 −→ S f−→ Z/3Z −→ 1

qu’il induit est scindée. Examiner le produit semi-direct S ≃ (Z/3Z)2 ⋊ Z/3Z sous toutes les coutures.

43 Ordre maximal dans GL (n,Fq)
On note F7 le corps F7 = Z/7Z. On note également M2 (F7) l’espace des matrices carrées 2× 2 à coefficients dans
F7 et GL (2,F7) le groupe de ces matrices qui sont inversibles.

L’objet de cette partie consiste à montrer que GL (2,F7) contient un élément d’ordre 72 − 1 = 48 et que tout
élément de GL (2,F7) a un ordre inférieur ou égal à 48�.

43.1) Décomposer le cardinal de M2 (F7) et l’ordre du groupe GL (2,F7) en produits de facteurs premiers.

43.2) Soit g ∈ M2 (F7). En faisant la division euclidienne de tout P ∈ F7[X] par le polynôme caractéristique de g
et en utilisant le théorème de Cayley-Hamilton, montrer que le cardinal du sous-ensemble

{P (g), P ∈ F7[X]}

de M2 (F7) est inférieur ou égal à 49.

43.3) Soit g ∈ GL (2,F7). En considérant l’ensemble
{
gk, k ∈ N

}
, montrer que l’ordre de g est au plus 48.

43.4) Soit γ =

(
0 −3
1 −1

)
∈ GL (2,F7). Calculer γ

8. En déduire l’ordre de γ dans GL (2,F7).

43.5) Montrer que l’ordre maximal d’un élément de GL (2,F7) est 7
2 − 1.

43.6) Est-il vrai que l’ordre de tout élément de GL (2,F7) divise 48 ?

44 Groupes d’ordre p2, pq ou p2q

44.1) Soient G un groupe et H un sous-groupe du centre de G, tel que le groupe-quotient G/H soit cyclique.
Montrer que G est abélien.

44.2) Soit p un nombre premier. Montrer que les seuls groupes d’ordre p2 sont Z/p2Z et (Z/pZ)2.

44.3) Soient p et q deux nombres premiers. Montrer qu’il n’y a pas de groupe simple d’ordre p2q.

44.4) Soient p et q deux nombres premiers distincts et G un groupe d’ordre pq. On suppose que p < q. Montrer
que :

(i) Si p ̸ | q − 1, alors G est cyclique, isomorphe à Z/pqZ
(ii) si p|q − 1, alors G est ou bien cyclique ou bien isomorphe à l’unique produit semi-direct Z/qZ ⋊ Z/pZ.

44.5) Soit G un groupe d’ordre 24. En faisant agir G sur ses 2-Sylow par conjugaison, montrer que G n’est pas
simple.

�Ce résultat se généralise en remplaçant F7 par n’importe quel corps fini Fq et GL (2,F7) par GL (n,Fq), n ≥ 1.
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45 Matrices inversibles trigonales par blocs

Soit F un corps. Soient n, d et e des entiers naturels non nuls tels que n = d+ e.

45.1) Montrer que l’ensemble de matrices décrites par blocs sous la forme

Td,e =
{(

A B
0 C

)
, A ∈ GL (d,F) , C ∈ GL (e,F) , B ∈ Md,e (F)

}
,

où 0 désigne ici la matrice nulle de l’espace Me,d (F) des matrices à e lignes et d colonnes et à coefficients dans F,
est un sous-groupe de GL (n,F).

45.2) Montrer que l’application

p : Td,e −→ GL (d,F)×GL (e,F)(
A B
0 C

)
7−→ (A,C)

est un homomorphisme de groupes dont on calculera l’image et le noyau.

45.3) Montrer que Td,e est isomorphe à un produit semi-direct Fde×φ
(
GL (d,F)×GL (e,F)

)
. On précisera quelle

est l’action de ce produit semi-direct et on l’examinera sous toutes les coutures.

46 Sous-groupe d’indice fini d’un groupe infini

Soit G un groupe infini. On suppose que G contient un sous-groupe H différent de G dont l’indice dans G est fini.

46.1) On note n = [G : H]. Montrer que l’action de G par translation à gauche sur les classes à gauche modulo
H induit un homomorphisme de groupes non injectif

φ : G→ Sn.

46.2) Montrer que

ker (φ) =
⋂
x∈G

xHx−1

et en déduire que ker (φ) ̸= G.

46.3) Montrer que G n’est pas simple.

47 Sous-groupes normaux d’un p-groupe, p-sous-groupes d’un groupe

Soit p un nombre premier.

47.1) Soient a un entier naturel et G un p-groupe d’ordre pa. Montrer que G contient un sous-groupe distingué
d’ordre pb, pour tout b ∈ {0, . . . , a}.
[On pourra raisonner par récurrence sur a.]

47.2) Soient m un entier naturel non nul et G un groupe d’ordre pam où p ne divise pas m. Montrer que G
contient un sous-groupe d’ordre pb, pour tout b ∈ {0, . . . , a}.

48 Plus loin que Burnside ; un groupe fini n’est pas union de conjugués
d’un sous-groupe strict

Soit G un groupe fini opérant sur un ensemble fini non vide X. Pour tout g ∈ G, on note Xg l’ensemble des points
de X fixés par g. On note enfin Ω l’ensemble des orbites de l’action. On rappelle la formule de Burnside :

CardΩ =
1

|G|
∑
g∈G

CardXg,
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obtenue en calculant de deux façons le cardinal de la variété d’incidence {(g, x) ∈ G×X, g · x = x}.
48.1) On suppose que X a au moins deux éléments distincts. Montrer que g · (x, y) = (g · x, g · y) définit une
action de G sur X ×X. Déduire alors de la formule de Burnside que∑

g∈G
(CardXg)

2 ≥ 2|G|.

Montrer que l’égalité a lieu si, et seulement si l’action de G sur X est 2-transitive, ce qui signifie que

∀(x, y), (x′, y′) ∈ X2, (x, y) ̸= (x′, y′) =⇒ ∃g ∈ G, x′ = g · x et y′ = g · y.

48.2) On suppose que l’action est transitive et on note I l’ordre des groupes d’isotropie (ils sont tous conjugués).
On note aussi D l’ensemble des éléments de G qui ne fixent aucun élément de X. Montrer que I ≤ CardD.

[On pourra majorer la somme
∑
g∈G

(
CardX

g − 1
) (

CardX
g − CardX

)
, puis la minorer à l’aide de la question précédente.]

48.3) Soient G un groupe fini et H un sous-groupe strict de G. On note

U =
⋃
g∈G

gHg−1

la réunion des conjugués de G. Montrer que CardU ≤ |G| − |H|. En déduire que G n’est pas la réunion des
conjugués de H.

[On pourra faire agir G par conjugaison sur X =
{
gHg−1, g ∈ G

}
et appliquer la question précédente à cette action en montrant, avec les

notations de ladite question, que D ⊆ G \ U et que |H| ≤ I.]

48.4) Dans les conditions de la question précédente, en remarquant que le cardinal de
{
gHg−1, g ∈ G

}
est plus

petit que l’indice de H dans G, montrer aussi que CardU ≤ |G| − [G : H] + 1 — ce qui permet encore d’aboutir à
la conclusion que U ⊊ G.

48.5) Trouver un groupe (infini) qui soit l’union des conjugués d’un sous-groupe propre.

[On pourra chercher du côté du groupe linéaire.]

49 Du côté de chez Jordan et Frobenius

49.1 Une inégalité de Jordan

Soient G un groupe fini et H un sous-groupe de G.

(i) Soient g, g′ ∈ G. Montrer que gH = g′H si, et seulement s’il existe h ∈ H tel que g′ = gh.

(ii) Soient g, g′ ∈ G. Montrer que si gH = g′H, alors gHg−1 = g′Hg′−1.

(iii) On note R ⊆ G un système de représentants des classes à gauche modulo H. Autrement dit, pour tout g ∈ G,
il existe un unique r ∈ R tel que gH = rH. Montrer que⋃

g∈G

(
gHg−1 \ {1}

)
=
⋃
r∈R

(
rHr−1 \ {1}

)
.

(iv) Déduire de ce qui précède l’inégalité de Jordan

Card

⋃
g∈G

gHg−1

 ≤ |G| − [G : H] + 1 (4)

(v) Montrer que si H ̸= G, alors G n’est pas la réunion des conjugués de H.
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49.2 L’inégalité de Jordan est optimale

Soient F un corps fini de cardinal q et F× son groupe multiplicatif. Pour tous (a, b) ∈ F× × F, on note ga,b
l’application

ga,b : F −→ F
x 7−→ ax+ b.

On note aussi G = {ga,b, a ∈ F×, b ∈ F}.
(i) Montrer que tout élément de G est une permutation de F.

(ii) Montrer que G est un sous-groupe du groupe symétrique SF et calculer son ordre.

(iii) Pour tous (a, b) ∈ F× × F, on note ha l’homothétie ha = ga,0 et tb la translation tb = g1,b. Montrer que les
sous-ensembles

H =
{
ha, a ∈ F×} et T = {tb, b ∈ F}

sont des sous-groupes de G.

(iv) Les groupes H et T sont-ils distingués dans G ?

(v) Soient t, t′ ∈ T . Montrer que (
tHt−1

)
∩
(
t′Ht′−1

)
̸= {1} =⇒ t = t′.

(vi) En déduire que le couple (G,H) réalise l’égalité dans l’inégalité (4).

50 Automorphismes du groupe symétrique

Pour tout n ≥ 2, on note AutSn le groupe des automorphismes du groupe Sn, et IntSn son sous-groupe des
automorphismes intérieurs.

50.1) Soient G un groupe, IntG le groupe de ses automorphismes intérieurs et Z(G) le centre de G. Montrer que
G/Z(G) est un groupe isomorphe à IntG.

50.2) Montrer que IntSn ≃ Sn, pour tout n ≥ 3.

50.3) Soit f ∈ AutSn. Montrer que f est intérieur si, et seulement si f transforme toute transposition en une
transposition.

50.4) Si m ∈ N, calculer l’ordre du centralisateur d’un produit de m transpositions à supports disjoints.

50.5) Montrer que AutSn = IntSn pour tout n ̸= 6.

50.6) Le cas singulier de S6

(i) Montrer que le nombre de 5-Sylow de S5 est 6.

(ii) Montrer que l’action de S5 par conjugaison sur ses 5-Sylow induit un homomorphisme injectif de groupes
Φ : S5 → S6 dont l’image, que l’on notera G, n’est pas le stabilisateur d’un point de {1, . . . , 6}.
(iii) Montrer que l’action de S6 par translation à gauche sur l’ensemble X des classes à gauche de S6 modulo G
induit un isomorphisme de groupes Ψ : S6 → SX . Montrer que l’image de G par Ψ est le fixateur de G dans SX .

(iv) Déduire de Ψ un automorphisme de S6 qui n’est pas intérieur.

(v) En conclure que AutS6 ̸= IntS6.

51 Automorphismes du groupe SL (2,F3)

On note F3 le corps à trois éléments F3 = Z/3Z. On note aussi selon l’usage GL (2,F3) le groupe des matrices
carrées 2×2 à coefficents dans F3 inversibles et SL (2,F3) son sous-groupe des matrices dont le déterminant égale 1.

Si G est un groupe, on notera Aut(G) le groupe des automorphismes de G.

L’objet de cette exercice consiste à montrer que Aut (SL (2,F3)) est isomorphe au groupe symétrique S4.
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51.1) On note T =

(
1 1
0 1

)
et U =

(
1 0
1 1

)
. Calculer l’ordre de SL (2,F3), l’ordre de T et l’ordre de U dans

SL (2,F3).

On pourra utiliser — c’est une conséquence du cours sur le groupe modulaire — que T et U engendrent SL (2,F3).

51.2) Déduire de la question précédente que le nombre de 3-Sylow de SL (2,F3) est 4. On note S3 l’ensemble des
3-Sylow de SL (2,F3).

51.3) Montrer que l’image d’un 3-Sylow de SL (2,F3) par un automorphisme de SL (2,F3) est encore un 3-Sylow
de SL (2,F3). En déduire une action du groupe Aut (SL (2,F3)) sur S3. On notera

Φ : Aut (SL (2,F3)) −→ SS3

l’homomorphisme de groupes induit par cette action.

51.4) Montrer que les 3-Sylow de SL (2,F3) sont

S1 = ⟨T ⟩ , S2 = ⟨U⟩ , S3 =
〈
UTU−1

〉
et S4 =

〈
U2TU−2

〉
.

51.5) Montrer que si g ∈ kerΦ, alors g(T ) ∈
{
T, T 2

}
et g(U) ∈

{
U,U2

}
.

51.6) Calculer l’ordre de TU et celui de TU2.

51.7) Déduire des questions précédentes que Φ est injectif.

51.8) On note A =

(
0 1
1 1

)
∈ GL (2,F3). Calculer les conjugués de S1, S2, S3 et S4 par A et en déduire que

l’image de Φ contient une permutation impaire.

51.9) Soit G un groupe. Expliciter un isomorphisme entre le groupe des isomorphismes intérieurs de G et le
groupe-quotient G/Z(G) de G par son centre Z(G).

51.10) Montrer que l’image de Φ contient le groupe alterné AS3
.

51.11) Déduire de tout ce qui précède que Φ est surjectif, puis que Aut (SL (2,F3)) est isomorphe au groupe
symétrique S4.

52 Groupe dérivé de SL (2,Z)
On note Γ = SL (2,Z) le groupe des matrices 2× 2 à coefficients entiers dont le déterminant égale 1. Si x et y sont
deux matrices de Γ, on note

[x, y] = xyx−1y−1

le commutateur de x et y. On note aussi D(Γ) le groupe dérivé de Γ, qui est le sous-groupe de Γ engendré par ses
commutateurs.

— Les deux matrices S =

(
0 −1
1 0

)
et T =

(
1 1
0 1

)
engendrent Γ ; c’est un résultat du cours, on le redit ici. —

52.1) On note R = ST =

(
0 −1
1 1

)
. Calculer l’ordre de S et l’ordre de R.

52.2) Montrer que le groupe Γ est engendré par S et R.

52.3) En déduire que l’image de tout homomorphisme de groupes Γ −→ C× est incluse dans le groupe U12 des
racines douzièmes de l’unité.
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52.4) On note A et B les deux matrices de Γ

A = [S,R] =

(
2 1
1 1

)
et B = [S−1, R−1] =

(
1 1
1 2

)
.

Montrer que le sous-groupe ⟨A,B⟩ de Γ engendré par A et B est inclus dans D(Γ).

52.5) Montrer que ⟨A,B⟩ est un sous-groupe distingué de Γ.
[Pas si simple ! On pourra par exemple montrer, en passant, que RAR−1 = A−1B.]

52.6) Montrer que AST 3 = B. En déduire que Γ = ⟨A,B, T ⟩.
52.7) Montrer que le groupe quotient Γ/ ⟨A,B⟩ est monogène.

52.8) Montrer que si G est un groupe dont on note D(G) le groupe dérivé et si H est un sous-groupe distingué
de G dont le quotient G/H est abélien, alors D(G) ⊆ H.
[On pourra considérer l’image de D(G) par la projection canonique G → G/H.]

52.9) En déduire que D(Γ) = ⟨A,B⟩.
52.10) Montrer que

[
A,B−1

]
= −T 6. En admettant que le centre de D(Γ) est trivial�, en déduire que le quotient

Γ/D(Γ) est isomorphe à U12.

53 Quelques groupes classiques

Si V est un espace vectoriel, on note P (V ) l’espace projectif de V qui est l’ensemble de ses droites.

53.1) Si q est la puissance d’un nombre premier, calculer CardP
(
Fnq
)
.

53.2) Montrer que l’action naturelle de GL (2,Fq) sur P
(
F2
q

)
induit un homomorphisme injectif de groupes

PGL (2,Fq) −→ Sq+1. (5)

53.3) Montrer que les groupes GL (2,F2), SL (2,F2), PGL (2,F2) et PSL (2,F2) sont tous isomorphes à S3.

53.4) En appliquant (5), montrer que PGL (2,F3) ≃ S4 et que PSL (2,F3) ≃ A4.

53.5) Montrer que SL (2,F3) n’est pas isomorphe à S4.

53.6) Montrer que −I2 est l’unique élément d’ordre 2 de SL (2,F3), que SL (2,F3) contient un unique 2-Sylow qui
est isomorphe à H8. En déduire un isomorphisme

SL (2,F3) ≃ H8 ⋊ Z/3Z

où l’on étudiera l’action sous toutes les coutures.

53.7) Montrer que GL (2,F3) est un produit semi-direct SL (2,F3)⋊ Z/2Z.

53.8) Montrer que le centre de SL (2,F4) est trivial et que les groupes SL (2,F4), PSL (2,F4) et PGL (2,F4) sont
isomorphes. Montrer que PSL (2,F4) ≃ A5.

53.9) On veut montrer que PSL (2,F5) est isomorphe à A5.

(i) Soit H un sous-groupe d’indice 6 de S6. En faisant agir S6 sur l’ensemble des classes à gauche de S6 modulo
H par translation à gauche, montrer que H est isomorphe à S5.

[Montrer, plus généralement, que tout sous-groupe d’indice n de Sn est isomorphe à Sn−1, pour tout n ≥ 3.]

(ii) En déduire que PGL (2,F5) ≃ S5, puis que PSL (2,F5) ≃ A5.

�C’est, par exemple, une conséquence du fait que D(Γ) est un groupe libre à 2 générateurs A et B. Voir par exemple page 31 pour
un exemple de technique de preuve de ce type de résultat.
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54 Semi-stabilité par conjugaison

On note t et u les deux matrices t =

(
1 2
0 1

)
et u =

(
1 0
2 1

)
, et G le sous-groupe de SL (2,Z) qu’elles engendrent.

54.1) Calculer l’ordre de t et l’ordre de u dans G.

54.2) On note H le sous-groupe de G engendré par {tnut−n, n ∈ N \ {0}}. Montrer que H est la réunion de {I2}
et de l’ensemble {

tm0un0tm1un1 . . . tmpunptmp+1 , p ∈ N,

(m0, . . . ,mp+1, n0, . . . , np) ∈ (Z \ {0})2p+3
,

m0 ≥ 1, mp+1 ≤ −1,

p+1∑
k=0

mk = 0

}
.

54.3) Montrer que tHt−1 ⊆ H.

L’objet de la suite de cette partie consiste à montrer que t−1Ht ̸⊆ H.

54.4) On fait agir G sur l’ensemble M2,1 des vecteurs-colonne de dimension 2 à coefficients réels par l’action
naturelle donnée par le produit matriciel :

∀g =

(
a c
b d

)
∈ G, ∀v =

(
x
y

)
∈ M2,1, g · v =

(
ax+ cy
bx+ dy

)
.

On note A et B les parties de M2,1 définies par

A =

{(
x
y

)
∈ M2,1, |x| > |y| > 0

}
et B =

{(
x
y

)
∈ M2,1, |y| > |x| > 0

}
.

Dessiner A et B.

54.5) Montrer que tn ·B ⊆ A et un ·A ⊆ B, pour tout n ∈ Z \ {0}.
54.6) Montrer que h ·B ⊆ A, pour tout h ∈ H \ {I2}.
54.7) En déduire que u /∈ H.

54.8) Montrer que t−1Ht ̸⊆ H.

55 Commutateurs de SO (3,F5)

55.1 Carrés et commutateurs

Si G est un groupe, on note D(G) son groupe dérivé et C(G) le sous-groupe de G engendré par ses carrés :

C(G) =
〈{
x2, x ∈ G

}〉
.

55.1) Montrer que C(G) et D(G) sont des sous-groupes distingués de G.

55.2) Montrer que le groupe quotient G/C(G) n’a que des éléments d’ordre 1 ou 2. En déduire que G/C(G) est
abélien et que, lorsqu’il est fini, il est isomorphe à un groupe produit de la forme (Z/2Z)r où r ∈ N.

55.3) En considérant la projection canonique G −→ G/C(G), montrer que D(G) ⊆ C(G).

55.4) Montrer que si un groupe G est engendré par ses éléments d’ordre 2, alors D(G) = C(G).
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55.2 Sur le groupe SO (3,F5)

On note F5 le corps Z/5Z. Selon l’usage, on note aussi O (3,F5) le sous-groupe de GL (3,F5) formé des matrices
orthogonales et SO (3,F5) son sous-groupe des matrices orthogonales de déterminant 1 :

O (3,F5) =
{
A ∈ GL (3,F5) ,

tA = A−1
}

et SO (3,F5) = {A ∈ O(3,F5) , det(A) = 1} .

On note également V le F5-espace vectoriel des vecteurs-colonne à 3 lignes et à coefficients dans F5. On note enfin
q la forme quadratique standard sur V et ⟨·|·⟩ sa forme polaire, définies par : ∀(x, y, z) ∈ (F5)

3
, ∀(x′, y′, z′) ∈ (F5)

3
,

q

xy
z

 = x2 + y2 + z2 et

〈xy
z

 |

x′y′
z′

〉 = xx′ + yy′ + zz′.

Si v et w sont dans V , on dit que v est unitaire lorsque q(v) = 1 et que v et w sont orthogonaux lorsque ⟨v|w⟩ = 0.

On admettra — ou non, c’est élémentaire — que pour touteA ∈ GL (3,F5), les assertions suivantes sont équivalentes :

(i) A est orthogonale

(ii) q (Av) = q(v), pour tout v ∈ V

(iii) les vecteurs-colonne de A sont unitaires et deux à deux orthogonaux.

Par exemple, si on note

D2 =

−1 0 0
0 1 0
0 0 −1

 , R =

1 0 0
0 0 −1
0 1 0

 , P =

0 0 1
1 0 0
0 1 0

 , T =

0 1 0
1 0 0
0 0 1

 et M =

2 1 1
1 2 1
1 1 2

 ,

alors D2, R, P , −T et −M sont dans SO (3,F5).

Pour finir, on admet — ou non, c’est un calcul élémentaire — que les vecteurs unitaires de V sont ceux de la liste
suivante :

±t(1, 0, 0), ± t
(0, 1, 0), ± t

(0, 0, 1),
t
(±2,±1,±1),

t
(±1,±2,±1), et

t
(±1,±1,±2).

55.5) On note e1 =
t
(1, 0, 0). On note aussi

S = {A ∈ SO (3,F5) , ∃x ∈ F5, Ae1 = xe1} et F = {A ∈ SO (3,F5) , Ae1 = e1} .

On admettra — ou non, c’est un calcul élémentaire — que S est le sous-groupe de SO (3,F5) engendré par D2 et R.

(i) Montrer que le groupe engendré par R est distingué dans S.

(ii) En déduire l’ordre de S.

(iii) Faire la liste des éléments de S et en déduire que F est le sous-groupe de S engendré par R.

55.6) Montrer que l’action naturelle de GL (3,F5) sur V induit une action transitive de SO (3,F5) sur l’ensemble
des vecteurs unitaires de V .

55.7) En déduire que |SO (3,F5)| = 120.

55.8) On admet encore — ou non, c’est un calcul élémentaire — que S =
{
A ∈ SO (3,F5) , AR

2 = R2A
}
. Montrer

que SO (3,F5) contient exactement 15 matrices d’ordre 2 conjuguées à R2.

55.9) On admet enfin — ou non, c’est un calcul élémentaire — que le groupe des matrices de SO (3,F5) qui
commutent avec P est le sous-groupe de SO (3,F5) engendré par P et −M . Démontrer que ce groupe est isomorphe
à Z/6Z et en déduire le nombre de matrices de SO (3,F5) qui sont conjuguées à P .

55.10) On admet — ça, ce n’est pas si simple — que −M ∈ SO (3,F5) \D (SO (3,F5)). On admet enfin — c’est à
la fois classique et élémentaire, comparer au cours sur le groupe orthogonal euclidien — que SO (3,F5) est engendré
par ses éléments d’ordre 2.

(i) Montrer que l’ordre du groupe SO (3,F5) /D (SO (3,F5)) est dans l’ensemble {2, 4, 8}.
(ii) Montrer que P est dans D (SO (3,F5)).

(iii) En déduire� que SO (3,F5) /D (SO (3,F5)) ≃ Z/2Z.
�La situation est bien différente du cas réel puisque SO (3,R) est simple, égal à son groupe des commutateurs.
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56 Tétraèdre, cube (et octaèdre), icosaèdre (et dodécaèdre)

Pour mieux se représenter les polyèdres réguliers et leurs isométries, on pourra se référer aux dessins des toutes
dernières pages de cette liste d’exercices.

56.1) On note T le groupe des isométries (vectorielles) qui stabilisent un tétraèdre régulier de R3 et T + son
sous-groupe positif. En faisant agir T + sur les sommets du tétraèdre, montrer que T + ≃ A4, puis que T ≃ S4.
En passant, faire la liste des 24 isométries de T .

56.2) On note C le groupe des isométries (vectorielles) qui stabilisent un cube de R3 et C+ son sous-groupe positif.
En faisant agir C+ sur les diagonales du cube, montrer que C+ ≃ S4, puis que C ≃ S4 × Z/2Z. En passant, faire
la liste des 48 isométries de C.
56.3) On note I le groupe des isométries (vectorielles) qui stabilisent un dodécaèdre régulier de R3 et I+ son
sous-groupe positif. En faisant agir I+ sur les cinq cubes inscrits dans le dodécaèdre, montrer que I+ ≃ A5, puis
que C ≃ A5 × Z/2Z. En passant, faire la liste des 120 isométries de I.

57 Sous-groupes finis de GL(2,R) et de GL(3,R)
Soit n un entier naturel non nul.

57.1) Soit V un espace euclidien de dimension n. Se rappeler pourquoi V admet toujours une base orthonormée
et en quoi cela implique que le groupe O(V ) est isomorphe à O(n).

57.2) Soit G un sous-groupe fini de GL (n,R). On note ⟨·|·⟩ le produit scalaire standard sur Rn, ou plutôt sur
Mn,1 (R). En considérant l’application bilinéaire ⟨·|·⟩G sur Mn,1 (R) définie par

∀X,Y ∈ Mn,1 (R) , ⟨X|Y ⟩G =
1

|G|
∑
g∈G

⟨gX|gY ⟩,

montrer que G est isomorphe — et même conjugué — à un sous-groupe fini de O(n).

57.3) Montrer que tout sous-groupe fini de GL(2,R) est cyclique ou isomorphe à un groupe diédral.

[On sait par ailleurs, c’est dans le cours, que le groupe direct d’un n-gone régulier est cyclique d’ordre n et que son groupe total est diédral

d’ordre 2n.]

57.4) Soient G un sous-groupe fini non trivial de SO(3) et S2 la sphère unité de R3 — ou plutôt de M3,1 (R).
(i) On note X l’ensemble des points de S2 qui sont fixés par au moins un élément de G \ {I3}. Montrer que X est
fini et que l’action naturelle de G sur R3 induit une action de G sur X.

(ii) Pour chaque orbite ω pour l’action de G sur X de la question précédente, on note nω l’ordre commun des
groupes d’isotropie des éléments de ω. On note aussi Ω l’ensemble des orbites de cette action. En calculant de
deux façons le cardinal de l’ensemble fini

I =
{
(g, x) ∈ (G \ {I3})× S2, gx = x

}
,

montrer que

2

(
1− 1

|G|

)
=
∑
ω∈Ω

(
1− 1

nω

)
. (6)
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(iii) En remarquant d’abord que tous les nω sont supérieurs ou égaux à 2 et donc que Ω n’a pas plus de trois
éléments, résoudre l’équation arithmétique (6) en montrant que ses solutions sont celles du tableau suivant.

|G| #Ω n1 n2 n3
n ≥ 2 2 n n

2n, n ≥ 2 3 2 2 n
12 3 2 3 3
24 3 2 3 4
60 3 2 3 5

[On peut montrer, par ailleurs, que ces différents cas sont tous atteints par une unique classe de conjugaison de sous-groupes de SO(3).

Notamment, les trois dernières lignes du tableau correspondent aux groupes positifs du tétraèdre, du cube (ou de l’octaèdre) et de l’icosaèdre

(ou du dodécaèdre). Pour les deux premières lignes, le groupe se représente comme le groupe des rotations d’un polygone régulier à n sommets

qui est cyclique d’ordre n (les deux orbites de points fixes, qui sont des singletons, sont diamétralement opposées sur l’axe orthogonal au plan

du polygone) ; pour la deuxième ligne qui correspond au groupe diédral, il s’agit d’ajoindre à ce groupe cyclique une rotation d’angle π qui

échange les deux points antipodaux — son axe est n’importe laquelle des droites engendrées par l’un des points fixes de l’orbite à n éléments.]

58 Un peu de topologie de groupes linéaires

Soit n un entier naturel non nul. Les groupes de matrices évoqués ci-dessous sont des sous-ensembles d’espaces
vectoriels normés de dimension finie Mn (R) ou Mn (C). La topologie à laquelle il est fait référence est leur
topologie usuelle, à savoir la topologie des normes.

58.1) Montrer que SO(n) est compact et connexe par arcs (donc connexe).

58.2) Montrer que GL (n,C) est connexe par arcs, mais que GL (n,R) a deux composantes connexes.

58.3) Montrer que SU(2) est compact, connexe et simplement connexe.

59 Du groupe modulaire, vers les pavages hyperboliques

On note S, T et U les matrices de SL (2,Z)

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
, U = TS =

(
1 −1
1 0

)
,

et s, t et u leurs classes respectives dans PSL (2,Z).

59.1) On note H = {z ∈ C, im(z) > 0} le demi-plan de Poincaré. Montrer que PSL (2,Z) agit fidèlement par
homographies sur H, via la formule (

a c
b d

)
· z = az + c

cz + d
.

59.2) Soit g ∈ PSL (2,Z). Montrer que le nombre entier |Tr(g)| est bien défini et que les assertions suivantes sont
équivalentes :

(i) g a au moins un point fixe dans H
(ii) g a un unique point fixe dans H
(iii) |Tr(g)| ∈ {0, 1}.
59.3) Soit ∆ =

{
z ∈ C, |z| > 1 et |ℜz| < 1

2

}
. Montrer que ∆ est un domaine fondamental de l’action de PSL (2,Z)

sur H, au sens où :
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(i) ∆ est un ouvert connexe de H ;

(ii) ∀g, g′ ∈ PSL (2,Z), g∆ ∩ g′∆ ̸= ∅ ⇒ g = g′ ;

(iii) H =
⋃

g∈PSL(2,Z)

g∆.

En outre, trouver une partie ∆̃ de ∆ qui soit un
système de représentants de l’action de PSL (2,Z)
sur H.

0 1

j

i

∆

s∆

t∆

u∆

u2∆ ut∆

[Pour (iii), si z ∈ H, on pourra d’abord montrer que l’ensemble des g ∈ PSL (2,Z) tels que ℑ(gz) ≥ ℑ(z) est fini, puis translater par une

puissance de t un point de l’orbite de z dont la partie imaginaire est maximale.]

59.4) Calculer les ordres de s et u dans PSL (2,Z) et montrer que

PSL (2,Z) = ⟨s, u⟩ .

59.5) Où l’on montre que tout élément de PSL (2,Z) s’écrit de manière unique sous la forme d’un produit

(sua1) (sua2) . . . (suan) (i)

ou ua0 (sua1) (sua2) . . . (suan) (ii)

ou (sua1) (sua2) . . . (suan) s (iii)

ou ua0 (sua1) (sua2) . . . (suan) s (iv)

(7)

où n ≥ 0 et ak ∈ {1, 2}, pour tout k ∈ {0, . . . n} — si n = 0, le produit (sua1) (sua2) . . . (suan) désigne le neutre de
PSL (2,Z). Autrement dit, il n’y a aucune relation entre s et u.

(i) Montrer que l’application

((
a c
b d

)
, x

)
7→
(
a c
b d

)
· x = ax+c

bx+d définit une action de PSL (2,Z) sur R \Q.

(ii) On note P l’ensemble des irrationnels strictement positifs et et N l’ensemble des irrationnels strictement
négatifs. Montrer que s · P ⊆ N , que u · N ⊆ P et que u2 · N ⊆ P. En déduire qu’un produit de la forme (7) ne
peut être trivial que s’il vient de de (7)(i) avec n = 0.

(iii) Montrer l’unicité de l’écriture sous la forme (7) attendue�.

59.6) Montrer que dans PSL (2,Z), le produit de deux commutateurs n’est en général pas un commutateur.

59.7) On note Γ(2) le sous-groupe (distingué) de PSL (2,Z) formé des classes de matrices de SL (2,Z) qui valent I2
modulo 2 (voir feuille d’exercices numéro 2). Montrer que

PSL (2,Z) /Γ(2) ≃ S3.

59.8) Montrer que R2 =
{
1, s, t, ut, u, u2

}
est un système de représentants des classes d’éléments de PSL (2,Z)

modulo Γ(2), stable par passage à l’inverse.

59.9) On note ∆2 l’intérieur (topologique) de
⋃
g∈R2

g ·∆ — voir le dessin ci-dessus. Montrer que ∆2 est un domaine

fondamental de l’action de Γ(2) sur H, au sens où :

(i) ∆2 est un ouvert connexe de H ;

(ii) ∀g, g′ ∈ Γ(2), g∆2 ∩ g′∆2 ̸= ∅ ⇒ g = g′ ;

(iii) H =
⋃

g∈Γ(2)

g∆2.

�L’unicité de cette écriture montre que le groupe modulaire PSL (2,Z) est le produit libre des groupes ⟨s⟩ ≃ Z/2Z et ⟨u⟩ ≃ Z/3Z.
Cette notion est fondamentale dans l’étude de la topologie des variétés ou encore dans ce qui gravite autour des pavages hyperboliques
du demi-plan de Poincaré.
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60 Projection stéréographique et revêtement double SU(2) → SO(3)

On note S2 la sphère unité de l’espace euclidien standard R3 :

S2 =
{
(x, y, z) ∈ R3, x2 + y2 + z2 = 1

}
et N = (0, 0, 1) son pôle nord.

60.1) On appelle projection stéréographique la projection de S2 sur son plan équatorial : si M ∈ S2 \ {N}, le
projeté π(M) de M est l’intersection de la droite (NM) avec le plan équatorial P =

{
(x, y, z) ∈ R3, z = 0

}
. Par

ailleurs, on identifie le plan équatorial au plan complexe au moyen de l’isométrie i : P → C, (x, y, 0) 7→ x+ iy. On
la note p : S2 → C la composée de la projection stéréographique et de l’isométrie i. Calculer p(x, y, z), pour tout
(x, y, z) ∈ S2 \ {N}.

N

P

A

π(A)
B

π(B)

60.2) Montrer que p est un homéomorphisme

p : S2 \ {N} −→ C

dont on calculera la réciproque. Montrer que lim|z|→+∞ p−1(z) existe et vaut N . En déduire que p se prolonge en
une bijection

p : S2 −→ C ∪ {∞}

où le symbole ∞ désigne l’image de N par p.

[Il n’est pas difficile de prolonger la topologie usuelle de C en une topologie de C ∪ {∞} qui fasse de p une homéomorphisme entre les deux

compacts S2 et C ∪ {∞}. Le bon cadre pour décrire cet homéomorphisme consiste à remplacer l’artificiel C ∪ {∞} par la droite projective

complexe qui est l’ensemble des droites du C-espace vectoriel C2. On choisit de ne pas en parler davantage ici.]

60.3) On munit le C-espace vectoriel C2 de son produit hermitien standard

⟨(x, y)|(z, t)⟩ = xy + zt,

dont la norme est l’application C2 → R+, (x, y) 7→ ∥(x, y)∥ =
√
⟨(x, y)|(x, y)⟩ =

√
|x|2 + |y|2. Un endomorphisme

u de C2 est dit unitaire lorsque c’est une isométrie pour cette norme, c’est-à-dire lorsque ∥u(v)∥ = ∥v∥, pour tout
v ∈ C2. On note SU

(
C2
)
l’ensemble des endomorphismes unitaires de C2 dont le déterminant égale 1. Montrer

que SU
(
C2
)
est un sous-groupe de SL

(
C2
)
.

60.4) Soit u un endomorphisme de C2. Montrer que les assertions suivantes sont équivalentes.

(i) u est unitaire

(ii) Dans toute base orthonormée de C2, la matrice M de u vérifie M
t
M = I2

(iii) Il existe une base orthonormée de C2 dans laquelle la matrice M de u vérifie M
t
M = I2.

60.5) Si M ∈ M2 (C), la matrice
t
M est appelée transconjuguée de M . Vérifier rapidement que

t(
M
)
= tM .

Une matrice inversible dont l’inverse égale sa transconjuguée est dite unitaire. Montrer que l’ensemble SU(2) des
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matrices 2 × 2 unitaires est un sous-groupe de SL (2,C), (non canoniquement) isomorphe au groupe SU
(
C2
)
, et

que toute matrice de SU(2) s’écrit sous la forme

(
u −v
v u

)
où u, v ∈ C vérifient |u|2 + |v|2 = 1.

60.6) On note SO
(
R3
)
le groupe des rotations de l’espace euclidien R3. Montrer que l’action naturelle de SO

(
R3
)

sur R3 induit une action fidèle et transitive de SO
(
R3
)
sur S2.

60.7) Avec les conventions usuelles sur le maniement du symbole ∞, montrer que l’application

SU(2)× C ∪ {∞} −→ C ∪ {∞}(u −v
v u

, z
)

7−→ uz − v

vz + u

définit une action transitive de SU(2) sur C ∪ {∞} — c’est l’action par homographies. Calculer le noyau de
l’homomorphisme de groupes SU(2) → SC∪{∞}, g 7→ σg que cette action définit.

60.8) Soit Φ : SU(2) → SS2 l’application définie par Φ(g) = p−1 ◦ σg ◦ p, pour toute g ∈ SU(2). Vérifier que Φ
est un homomorphisme de groupes.

60.9) Montrer, par un calcul patient, que pour toute g ∈ SU(2), la bijection Φ(g) est la restriction à S2 d’une
isométrie positive de R3 et qu’en identifiant toute isométrie de R3 à sa matrice dans la base canonique, Φ s’écrit :
∀a, b, c, d ∈ R vérifiant a2 + b2 + c2 + d2 = 1,

SU(2)
Φ−→ SO(3)(

a+ ib −c+ id

c+ id a− ib

)
7−→

a
2 − b2 − c2 + d2 2(−ab+ cd) 2(ac+ bd)

2(ab+ cd) a2 − b2 + c2 − d2 2(−ad+ bc)

2(−ac+ bd) 2(ad+ bc) a2 + b2 − c2 − d2

 (8)

[Ce calcul n’est pas miraculeux et trouve deux interprétations géométriques classiques et néanmoins magnifiques : l’une du côté du corps gauche

des quaternions, lié à la géométrie de R3 ; l’autre du côté des algèbres de Lie des deux groupes SU(2) et SO(3). On ne s’y attarde pas ici /]

60.10) Soient b, c, d ∈ R tels que b2+c2+d2 = 1. Montrer que les vecteurs-colonne
t
(d, c, b),

t
(−b, 0, d) et t(−c, d, 0)

sont des vecteurs propres de Φ

(
ib −c+ id

c+ id −ib

)
. En déduire que le Φ : SU(2) → SO(3) est surjectif.

60.11) Montrer que Φ induit un isomorphisme de groupes PSL(2)
∼−→ SO(3).

60.12) Déduire de cet isomorphisme une classification des sous-groupes finis de SU(2) — et aussi de GL (2,C), à
conjugaison près.

61 Commutateurs de GL et SL

Soient n un entier naturel supérieur ou égal à 2 et F un corps.

61.1) Montrer que D (SL (n,F)) = SL (n,F), si (n,F) /∈ {(2,F2), (2,F3)}.
61.2) Montrer les assertions suivantes.

(i) D (SL (2,F2)) =

〈(
0 1
1 1

)〉
≃ Z/3Z ;

(ii) D (SL (2,F3)) =

〈(
0 −1
1 0

)
,

(
1 1
1 −1

)〉
≃ H8.

61.3) Montrer les assertions suivantes.

(i) D (GL (n,F)) = SL (n,F), si (n,F) ̸= (2,F2) ;

(ii) D (GL (2,F2)) =

〈(
0 1
1 1

)〉
≃ Z/3Z.
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62 Conjugués vs isomorphes

Pour tout entier naturel non nul, on note Sn le groupe des permutations de l’ensemble {1, . . . n} et An son sous-
groupe des permutations paires.

62.1 D’abord dans S6

62.1) On note F = {σ ∈ S6, σ(5) = 5 et σ(6) = 6} . Vérifier à toute allure que F est un sous-groupe de S6.
Montrer que {1, 2, 3, 4} est stable par tout élement de F et expliciter un isomorphisme de groupes entre F et S4.

62.2) On note I : S6 → {0, 1} la fonction indicatrice du complémentaire de A6 dans S6. Autrement dit,

∀σ ∈ S6, I(σ) =

{
0 si σ ∈ A6

1 si σ /∈ A6.

On note également G =
{
σ ◦ (56)I(σ), σ ∈ F

}
, où (56) désigne comme d’habitude la transposition de S6 qui

échange les nombres 5 et 6.

(i) Montrer que I(στ) = I(σ) + I(τ) [mod 2] pour tous σ, τ ∈ S6.

(ii) Montrer que G est un sous-groupe de S6.

(iii) Les groupes F et G sont-ils isomorphes ? Sont-ils conjugués ?

62.2 Elargir au cas général

Montrer que pour tout n ≥ 2, le groupe Sn+2 contient au moins deux classes de conjugaison de sous-groupes
isomorphes à Sn.

63 Action doublement transitive

Lorsqu’un groupe G agit (à gauche) sur un ensemble X à au moins 2 éléments, on dit que l’action est doublement
transitive lorsque

∀(x, y, z, t) ∈ X4, x ̸= y et z ̸= t =⇒ ∃g ∈ G, g · x = z et g · y = t.

On dit aussi que G agit doublement transitivement sur X.

63.1) Montrer que l’action naturelle du groupe alterné A4 sur {1, 2, 3, 4} est doublement transitive.

63.2) Soit G un groupe fini agissant doublement transitivement sur un ensemble fini X de cardinal n ≥ 2. On
considère l’action naturelle de G sur X2, définie par

∀g ∈ G, ∀(x, y) ∈ X2, g · (x, y) = (g · x, g · y)

— vérifier que c’est une action est élémentaire. Montrer que cette action admet exactement deux orbites, qui sont
la diagonale D = {(x, x), x ∈ X} et son complémentaire X2 \D. En déduire que l’ordre de G est un multiple de
n(n− 1).

63.3) Soient q la puissance d’un nombre premier et Fq “le” corps à q éléments, dont on note F×
q le groupe des

inversibles. Pour tout (a, b) ∈ F×
q × Fq, on note fa,b l’application affine

fa,b : Fq −→ Fq
x 7−→ ax+ b.

On note aussi A =
{
fa,b, a ∈ F×

q , b ∈ Fq
}
; c’est un sous-groupe du groupe SFq des permutations de Fq, cela se

vérifie aussitôt.

(i) Calculer l’ordre de A.
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(ii) Montrer que l’action naturelle de A sur Fq — définie par f · x = f(x) pour tous f ∈ A et x ∈ Fq —, est
doublement transitive.

(iii) Montrer que les éléments de A\
{
idFq

}
sont de deux types : ceux qui fixent exactement un élément de Fq d’un

côté, ceux qui ne fixent aucun élément de Fq de l’autre.

La suite de cette partie consiste à montrer que si un groupe d’ordre n2−n agit doublement transitivement
sur un ensemble à n éléments, alors n est nécessairement la puissance d’un nombre premier.

63.4) Pour toute la suite, soient n un entier naturel, G un groupe fini d’ordre n2−n et X un ensemble
à n éléments sur lequel G agit doublement transitivement — on notera que n ≥ 2, nécessairement.

Montrer que l’action de G sur X est transitive, et en déduire que pour tout x ∈ X, le groupe d’isotropie

Gx = {g ∈ G, g · x = x}

est d’ordre n− 1.

63.5) Comme dans la question 2.2), on considère l’action naturelle de G sur X2, qui admet exactement deux
orbites, à savoir la diagonale D et X2 \ D. Démontrer que le groupe d’isotropie de tout élément de X2 \ D est
trivial et en déduire que G est partitionné en ses trois sous ensembles suivants :

• {1}
• l’ensemble des éléments de G qui fixent un unique point de X

• l’ensemble des éléments de G qui ne fixent aucun point de X.

On note Γ la réunion de {1} et des éléments de G qui ne fixent aucun point de X.

63.6) En calculant de deux façons le cardinal de l’ensemble {(g, x) ∈ G×X, g · x = x} , montrer que Γ a n
éléments.

63.7) Pour tout g ∈ G, on note CONJG(g) sa classe de conjugaison dans G et CG(g) son centralisateur, défini
comme d’habitude par

CG(g) = {h ∈ G, hg = gh} .
Soit γ ∈ Γ \ {1}. Montrer que γ ne commute avec aucun élément de G \ Γ et qu’il n’est conjugué à aucun élément
de G \ Γ. En déduire que

CG(γ) = Γ et CONJG(γ) = Γ \ {1} .

63.8) Déduire de la question précédente les trois assertions suivantes :

• Γ est un sous-groupe de G

• Γ est abélien, d’ordre n

• Γ ◁ G.

63.9) Montrer que n est la puissance d’un nombre premier.

[On pourra montrer, en utilisant la théorie de Sylow, que si p et q sont deux nombres premiers qui divisent n, ils sont égaux.]

64 Classes de congruence de matrices symétriques

On note M2 (F3) l’ensemble des matrices à 2 lignes et 2 colonnes et à coefficients dans le corps F3 = Z/3Z. On
note S l’ensemble des matrices symétriques de M2 (F3) et G = GL (2,F3) le groupe des matrices inversibles de
M2 (F3). Si M ∈ M2 (F3), on note tM la transposée de M . Enfin, pour toute M ∈ M2 (F3) et pour toute P ∈ G,
on note

P ·M = PM tP.

64.1) Montrer que l’application
G× S −→ S
(P,M) 7−→ P ·M

(9)
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définit une action à gauche de G sur S.
64.2) Calculer le cardinal de S et l’ordre de G.

64.3) Pour toute S ∈ S, on appelle classe de congruence de S l’orbite de S sous l’action de G définie par (9).
Montrer que deux matrices d’une même classe de congruence ont le même rang.

64.4) (i) Dans F3, résoudre l’équation x2 + y2 = 1 dont x et y sont les inconnues.

(ii) Calculer le groupe d’isotropie de I2 sous l’action (9) et en déduire que la classe de congruence de I2 contient 6
éléments.

64.5) On note D =

(
1 0
0 −1

)
∈ S.

(i) Dans F3, résoudre l’équation x2 − y2 = 1 dont x et y sont les inconnues.

(ii) Calculer le groupe d’isotropie de D sous l’action (9) et en déduire le cardinal de la classe de congruence de D.

64.6) Calculer le groupe d’isotropie de R =

(
1 0
0 0

)
∈ S et le cardinal de la classe de congruence de R.

64.7) Montrer que les orbites de R et de −R sont distinctes.

64.8) On dit que deux matrices A et B sont congruentes lorsqu’il existe une matrice inversible P telle que
B = PAtP . Démontrer soigneusement que toute matrice symétrique de M2 (F3) est congruente à l’une exactement
des cinq matrices de la liste :

O2, I2, R, −R, D

où on a noté O2 la matrice nulle de M2 (F3).

64.9) (i) Est-il vrai que deux matrices de rang 2 de S sont toujours congruentes ?

(ii) Est-il vrai que toute matrice de rang 1 de S est congruente à R ou à −R ?

(iii) Combien S contient-il de matrices inversibles ?
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65 Sans paroles : les cinq polyèdres réguliers

T
ét
ra
èd

re

C
u
b
e

O
ct
aè
dr
e

D
od
éc
aè
d
re

Ico
saè

dr
e

N. Pouyanne, M. Abad Aldonza UVSQ 2026, LSMA610 37/38



66 Sans paroles : les isométries des polyèdres réguliers

8 rotations 3 rotations 6 symétries 6 anti-rotations

9 rotations 8 rotations 6 rotations

3 symétries 6 symétries 6 anti-rotations 1 anti-rotation
(symétrie centrale)

8 anti-rotations

24 rotations 20 rotations 15 rotations

15 symétries 24 anti-rotations 1 anti-rotation
(symétrie centrale)

20 anti-rotations
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