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1 Premiers éléments sur la structure de groupe

1.1 La structure

Lecture du polycopié Structures abstraites : groupes, sous-groupes, homomorphismes de groupes, exemples
fondamentaux.

Définition (ordre d’un groupe, ordre d’un élément dans un groupe)
Soit G un groupe. L’ordre de G est son cardinal — fini ou non. On note |G| lordre de G. Si z € G, 'ordre de
x est le cardinal de {z", n € Z}.

Exemple
Sin est un entier naturel non nul, 'ordre du groupe (Z/nZ,+) est n. Si k € Z, I'ordre de la classe de k modulo n

n
est paeDmR)

Exercice 1

Montrer que le groupe GL(2,7Z/27) des matrices 2 x 2 inversibles & coefficients dans le corps Z/27Z est d’ordre 6
en faisant la liste exhaustive de ses éléments. Montrer que ce groupe n’est pas abélien et calculer I'ordre de
chacun de ses éléments — on trouve trois éléments d’ordre 2 et deux éléments d’ordre 3.

Proposition (images directe ou inverse d’un sous-groupe)

Soit f: G — G’ un homomorphisme de groupes.

(i) Si H est un sous-groupe de G, alors f(H) est un sous-groupe de G'.

(ii) Si H' est un sous-groupe de G', alors f=1 (H') est un sous-groupe de G.

(iii) En particulier, le noyau et image d’un homomorphisme de groupes G — G’ sont des sous-groupes respectifs
de G et de G'.

PREUVE. On note les lois multiplicativement. (i) f(1g) € f(H), f(z)f(y) = f(zy) € f(H) et f(z)7!
f(z7') € f(H), pour tous x,y € H. Donc f(H) est un sous-groupe de G'. (ii) f(1¢) = 1¢ et 1G/ e H donc
lg € f7' (H’). Par ailleurs, si z,y € f~* (H'), alors f(zy) = f(z)f(y) € H et f(z71) = f(z)' € H’ ; cela
montre que f~1 (H') est un sous-groupe de G. (iii) Si I est un groupe, {1r} et ' en sont des sous-groupes. W
Définition (conjugaison dans un groupe)

Soit G un groupe. Si g,¢' € G, on dit que g et ¢’ sont conjugués (dans G) lorsqu’il existe h € G tel que
g = hgh~!. Deux sous-groupes H et H' de G sont dits conjugués (dans G) lorsqu’il existe g € G tel que
H =gHg .

Exercice 2

(i) Si H est un sous-groupe d’un groupe G et si g € G, alors le conjugué gHg~! est encore un sous-groupe de G.
(ii) La conjugaison est une relation d’équivalence sur les éléments d'un groupe. C’est aussi une relation
d’équivalence sur I’ensemble des sous-groupes de GG. Lorsque le groupe est abélien, les classes d’équivalences
pour ces deux relations sont des singletons — autrement dit, dans un groupe abélien, la conjugaison est triviale.

(iii) Calculer les classes de conjugaison des éléments de GL(2,Z/2Z) — on trouve une classe a un élement, une
classe a deux élements et une classe a trois élements.

(iv) Dans un groupe, deux éléments conjugués ont le méme ordre et deux sous-groupes conjugués sont isomorphes
— et ont donc le méme ordre.

Définition (sous-groupe distingué)
Soit G un groupe. Un sous-groupe H de G est distingué (ou normal) lorsqu’il est stable par conjugaison. On
note alors H < G. Autrement dit, H < G si, et seulement si Vg € G, gHg~ ' = H.

Exemple

Dans le groupe GL(2,Z/Z7Z), le sous-groupe {Ig, (1 1) , (0 1)} est distingué alors que le sous-groupe

1 0 1 1
0 1 ,
{Ig, <1 0>} ne l'est pas.

A noter Evidemment, tous les sous-groupes d’un groupe abélien sont distingués.
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Exercice 3

Soient G un groupe et H un sous-groupe de G. Les assertions suivantes sont équivalentes.
(i) H«G

(i) Vg € G, gHg * CH

(iii) Ve € G, Vh € H, 3h' € H, xh = h/x.

Proposition (image inverse d’un sous-groupe distingué)

Soient f : G — G’ un homomorphisme de groupes.

(i) Si H' un sous-groupe distingué de G', alors, f=1 (H') est un sous-groupe distingué de G.

(i) Si H est un sous-groupe distingué de G, alors f(H) est un sous-groupe distingué de f(G) — mais pas de
G’ en général.

(#it) En particulier, le noyau d’un homomorphisme de groupes est un sous-groupe distingué du groupe de départ.

PREUVE. (i) Sig€ Getsihe f~1(H'), alors f (ghg™") = f(g)f(h)f(g)~" est dans H' puisque f(h) € H' et
puisque H' <G’. Donc ghg™' € f~' (H’). (ii) Sig € G et h € H, alors f(g)f(h)f(9)~* = f (ghg™") € f(H)
puisque H < G. (iii) est une conséquence immédiate de (i).

A noter

Pour montrer qu'un sous-groupe est distingué, il suffit donc de le faire apparaitre comme le noyau d’un homo-
morphisme de groupes. Cette remarque est a mettre au rang de méthode. On verra que, réciproquement, tout
sous-groupe distingué est le noyau d’'un homomorphisme de groupes.

Exemple
Soit F un corps et F* son groupe multiplicatif. Si V' est un F-espace vectoriel de dimension finie, I’ensemble
des applications linéaires bijectives V' — V est un sous-groupe de ’ensemble des applications bijectives V' — V
pour la composition des applications (exercice). On le note GL(V) : c’est le groupe linéaire de V.
L’application déterminant
det: GL(V) —  F*
;o det(f)

est un homomorphisme de groupes — paraphrase du fait que le déterminant d’une composée est le produit des
déterminants. Son noyau est le groupe spécial linéaire de V ; on le note SL(V'). La proposition précédente
assure que SL(V) <« GL(V).

Exercice 4

Soit F un corps et d € N\ {0}. On note M, (F) le F-espace vectoriel des matrices carrées & d lignes, d colonnes
et & coefficients dans F et GL (d,F) le groupe des matrices inversibles de M, (F) pour la multiplication des
matrices — exercice dans I’exercice : c’est bien un groupe. On note également T, (F) le sous-ensemble de M (IF)
formé des matrices triangulaires supérieures inversibles. Montrer que Ty (F) est un sous-groupe non distingué
de GL (d,F).

Exercice 5 (Groupe des automorphismes d’un groupe ; automorphisme intérieur)

Soit G un groupe.

(i) Un automorphisme de G est un homomorphisme bijectif G — G. Montrer que, muni de la composition des
applications, I’ensemble des automorphismes de G est un groupe que 'on note usuellement Aut(G).

(ii) Si g € G, on définit I'application iy : G — G, h + ghg™! ; montrer que i, € Aut(G). Les automorphismes
ig sont appelés automorphismes intérieurs de G.

(iii) Montrer que si G est un groupe, 'application G — Aut(G), g — i, est un homomorphisme de groupes.

(iv) Montrer que I'ensemble des automorphismes intérieurs de G est un sous-groupe distingué du groupe des
automorphismes de G.

Définition (centre d’un groupe)
Soit G un groupe. Le centre de G est ’ensemble de ses éléments qui commutent avec tous les éléments de G.
On le note généralement Z(G). Ainsi,

Z(G)={9€G, YVhe G, hg=gh}.
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A noter
Le centre d’un groupe en est toujours un sous-groupe distingué (exercice). Bien siir, un groupe est abélien si,
et seulement s’il égale son centre.

Proposition (centre du groupe linéaire)
(i) Si'V est un espace vectoriel de dimension finie sur un corps IF, alors le centre de GL(V) est le groupe F* idy
de ses homothéties.

(ii) SiTF est un corps et si d est un entier naturel non nul, le centre de GL(d,F) est F*I,.

PREUVE. Avec les notations de (i) et (ii), si V est de dimension d, le choix d’une base B de V rend les
groupes GL(V') et GL(d,F) isomorphes via l'isomorphisme de groupes u € GL(V) —— Matg(u) qui envoie
toute homothétie x id, sur xI; — les notations sont évidentes. Ainsi, il suffit de montrer (i).

Si V est de dimension 1, alors GL(V) = F* idy est évidemment isomorphe au groupe abélien F*.

On suppose que dimV > 2 et on prend ¢ € Z (GL(V)). Soit v € V' \ {0}. On suppose que v et w = ¢(v)
sont linéairement indépendants. En complétant (v, w) en une base de V, soient p et g dans GL(V) tels que
p(v) = w et p(w) = v d’une part, ¢(v) = w et g(w) = v + w d’autre part — on notera que w et v + w sont
aussi linéairement indépendants. Alors, les égalités pc = ¢p et gc = c¢q appliquées & v assurent que v = c¢(w) et
v+ w = c(w), ce qui contredit I'indépendance de v et w. On en déduit que pour tout v € V, les vecteurs c(v)
et v sont colinéaires.

Autrement dit, tout vecteur de v est un vecteur propre de c¢. Cela oblige ¢ a étre une homothétie. En effet,
pour tout v € V, soit A(v) € F tel que ¢(v) = A(v)v. Alors, si v,w € V sont indépendants, A(v + w)(v + w) =
A(v)v + A(w)w, ce qui entraine que A(v) = A(w). Ainsi, 'application A est constante sur toute base de V, ce
qui prouve que c¢ est une homothétie. [ |

Proposition (produit direct de groupes)
Soient G1 et G2 deux groupes notés multiplicativement. Alors, la loi de composition

(Gl X Gg) X (Gl X GQ) — G x Gy
((g1,92),(h1,h2)) > (g1h1, 92h2)

confére au produit cartésien Gy X Gg une structure de groupe dont I’élément neutre est (1g,,la,). Dans ce
groupe, Uinverse d’un élément (g1, ga) est (gfl,ggl).

PREUVE. Exercice. [ ]
Définition (produit direct de groupes)

Le groupe décrit dans la proposition précédente est le produit direct des groupes G1 et Go. Le produit direct
G x @ est noté G2. De facon analogue, on définit le produit direct G x --- x G,, d’une famille finie de groupes,
la composition se faisant terme a terme. Lorsque tous les G sont égaux & un méme groupe G, ce produit est
noté G™.

Exercice 6 Soient G, H et K des groupes.

(i) Les groupes produits G x H et H x G sont (canoniquement) isomorphes.

(ii) Les groupes produits (G x H)x K, Gx (H x K) et Gx H x K sont (canoniquement) isomorphes. Généraliser
au cas d’une famille finie quelconque de groupes.

(iil) Sin et m sont des entiers naturels premiers entre eux, les groupes Z/mnZ et Z/mZ x 7 /nZ sont isomorphes
— c’est le théoréme chinois, ils sont méme isomorphes en tant qu’anneaux.

1.2 Sous-groupes engendrés

Proposition (intersection d’une famille de sous-groupes)
Soient G un groupe et (H;);.; une famille de sous-groupes de G. Alors, ﬂ H; est un sous-groupe de G.
i€l
PrREUVE. Exercice. [ ]
Définition (sous-groupe engendré par une partie)

Soient G un groupe et X une partie de G. Le sous-groupe de G engendré par X est 'intersection des sous-groupes
de G qui contiennent X. On le notera (X).

N. Pouyanne, UVSQ 2026, LSMAG610 4



Proposition (minimalité des sous-groupes engendrés)

Soit G un groupe et X une partie de G. Alors, le sous-groupe engendré (X) est le plus petit sous-groupe de G
contenant X au sens de linclusion, i.e. si H est un sous-groupe de G, alors X C H = (X) C H.

PREUVE. Exercice. [ |

Proposition (caractérisation des sous-groupes engendrés)

Soient G un groupe et X une partie de G. Alors, le sous-groupe engendré par X est l’ensemble des produits
finis d’éléments de X ou de leurs inverses Autrement dit,

(X)={a1z2...2,, ne N\ {0}, VE€{1,...,n}, 2y € X ou ;' € X}.

PREUVE. On note E = {],‘1332 ...y, n € N\ {0}, Yk e {1,...,n}, 2 € X ou x;l € X}. D’abord, E est un
sous-groupe de G. En effet, il n’est pas vide et est évidemment stable par produit et par passage a l'inverse
(attention au renversement dans la formule (z125 ... 2,) " = z; ' ... 25 z7?). Par ailleurs, il contient X. Ainsi,
par minimalité des sous-groupes engendrés, (X) C E. Enfin, puisque (X) est un sous-groupe, il est stable par
produit et par passage a I'inverse ; puisqu’il contient X, il contient donc E — raisonner par récurrence sur le n

de la définition de E. Ainsi, (X) D E. [ |

Le slogan : le sous-groupe engendré par X est I’ensemble des mots formés d’éléments de X ou de leurs
inverses (sous-entendu : entre deux lettres du mot, on met le symbole de la loi de groupe).

A noter
Dans les conditions de la proposition, on note parfois X ~! I’ensemble des inverses dans G des éléments de X.
Alors, la proposition s’énonce ainsi :

(X) ={ma2...2n, ne N\ {0}, Vk € {1,...,n}, a:keXUXfl}.

Définition (groupes cycliques et monogénes)
Un groupe est monogeéne lorsqu’il est engendré par un singleton. Un groupe est cyclique lorsqu’il est monogene
et fini.

A noter

(i) Ainsi, si un groupe G, dont la loi est notée multiplicativement, est monogene et si g € G est un générateur
de G, alors G = (g) = {¢™, n € Z}. Si le groupe est noté additivement, alors G = {ng, n € Z}.

(i) Si G est un groupe et si g € G, alors ordre de g est Pordre du groupe monogeéne (g).

Exemples

Le groupe additif Z est monogene, engendré par le singleton {1}. Si n € N\ {0}, le groupe additif Z/nZ est
cyclique, engendré par le singleton {T} —on a noté 1 la classe du nombre 1 modulo n.

Exercice 7 (en forme de révision du cours d’algébre de L2)

(i) Si z € Z, alors Z = ({«}) si, et seulement si z = +1.

(ii) Soit n € N\ {0}. Si x € Z, alors Z/nZ = ({Z}) si, et seulement si x et n sont premiers entre eux — on a
noté 7 la classe de x modulo n.

(iii) Si n € N\ {0}, alors Z/nZ est simple si, et seulement si n est un nombre premier.

(iv) Tout groupe monogene infini est isomorphe & Z. Sin € N\ {0}, tout groupe cyclique d’ordre n est isomorphe
au groupe additif de Z/nZ, ou encore au groupe multiplicatif U,, des racines complexes n® de I'unité.

Noter que considérer un groupe cyclique d’ordre n comme étant isomorphe & (Z/nZ,+) ou a (U, X) constitue
un choix de point de vue, I'un ou l'autre pouvant s’avérer le plus pertinent selon I'argumentation que 1’on
cherche a apporter.

(v) Soient (a,b) et (c,d) dans Z?. Alors, la paire {(a,b), (c,d)} engendre le groupe additif Z? si, et seulement si

a c
det <b d> =ad — bec = *1.
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Définition (fonction d’Euler)
Si n est un entier naturel non nul, on note ¢(n) le nombre de nombre entiers naturels de {1,...,n} qui sont
premiers avec n. La fonction N* — N*| n+— ¢(n) est appelé fonction (indicatrice) d’Euler.

A noter

(i) L’exemple (ii) ci-dessus montre que p(n) est le nombre d’éléments de Z/nZ qui engendrent le groupe additif
Z/nZ.
Autrement dit, ¢(n) est le nombre de racines primitives n°® de 1'unité dans C.

[Une racine n® complexe de 'unité est dite primitive lorsqu’elle engendre le groupe U, de toutes les racines n® de 'unité. Les racines

2ikm
n

C’est aussi I'ordre du groupe (Z/nZ)™ des inversibles de I’anneau Z/nZ.

primitives n° de I'unité sont ainsi les exp ( ) ol k est premier avec n.]

(ii) On dessine ci-dessous le tableau des premieres valeurs de ¢ et son graphe sur {1,...,200} :
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Graphe de la fonction d’Euler

(iii) Soit p un nombre premier. Alors p(p) = p — 1. Plus généralement, si n est un entier naturel non nul,
(") =p"p—1).
(iv) Le théoréme chinois assure que lorsque n et m sont premiers entre eux, alors 'anneau Z/mnZ est isomorphe
a l'anneau produit Z/mZ x Z/nZ. L’isomorphisme entre les groupes des inversibles de ces deux anneaux assure
alors, en considérant les seuls cardinaux, que si m et n sont premiers entre euz, alors p(mn) = o(m)e(n).
Proposition (somme des ¢)
Pour toutn > 1, n = Z o(d).

d|n
PREUVE. On se place dans le groupe U,, des racines n® complexes de l'unité. Toute racine n° est une racine
primitive d°, ou d est un diviseur de n, puisque exp (%) = exp (%) ou § = pged(n, k) est une racine
primitive n/§¢ de 'unité. Comme une racine primitive d® n’est pas une racine primitive d'® si d # d’, cela
montre que la famille des racines primitives d°, lorsque d parcourt ’ensemble des diviseurs de n, constitue une
partition de U,. [ |

A noter
On peut aussi partitionner les éléments du groupe additif Z/nZ en éléments d’ordre d lorsque d parcourt
I’ensemble des diviseurs de n. Cela fournit version légerement différente de la preuve qui précede.
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Exercice 8
(i) La fonction p de Mébius est définie sur N* par p(1) = 1, u(n) = 0 lorsque n est divisible par le carré d’un
entier supérieur ou égal & 2, et pu(p1pa...pr) = (—1)" si les py sont des nombres premiers distincts.
Montrer que Z (k) = 0, pour tout entier n > 2 — et que si n = 1, cette somme vaut 1.

k|n
(ii) Soient (an)nen+ et (bp)nen+ des suites & valeurs dans un groupe additif (abélien). Montrer qu’il y a
équivalence entre :

(©) pour tout n > 1, bn:Zak :

k|n
() pour tout n > 1, a,, = Z,u (%) by..
k|n

d
(iii) En déduire que pour tout n > 1, p(n) = nz #
d|n

Définition (commutateur, groupe dérivé)
Soit G un groupe. Un commutateur de G en est un élément de la forme ghg~'h~!, ol g,h € G. Le groupe
dérivé de G est le sous-groupe de G engendré par ses commutateurs. On le note généralement D(G). Ainsi,

D(G) = ({ghg™'h™", (9,h) € G*}).

A noter
(i) En général, le produit de deux commutateurs n’est pas un commutateur.

[Mais trouver des exemples n’est pas si simple !]
(ii) Bien str, G est abélien si, et seulement si D(G) = {1¢}.
Exemple

D (GL (2,Z/27)) = <<(1) 1) > A ce stade, ce calcul est un peu fastidieux. Il aura une interprétation limpide

une fois le groupe symétrique mis en place.

Proposition

Soit G un groupe. Alors, D(G) <G.

PREUVE. =z (zyz~'y™') 27t = (zzz7!) (2yz7!) (2271271 (2y7 27 ') : le conjugué d’un commutateur est
encore un commutateur. Cela suffit a prouver le résultat. [ |

1.3 Classes a droite et a gauche, théoréme de Lagrange

Définitions
Soient G un groupe, H un sous-groupe de G et ©x € G. La classe a4 gauche de x modulo H est la partie tH
de G : la classe a droite de x modulo H est la partie Hx de G. Pour préciser les notations évidentes,

xH ={ah, he H} et Hx={hz, h€ H}.

Exercice 9

Dans les conditions des définitions précédentes, la relation binaire sur G définie par x ~ y < 2~ 'y € H est une
relation d’équivalence dont les classes sont les classes a gauche modulo H. De méme, la relation binaire sur G
définie par  ~ y < xy~! € H est une relation d’équivalence dont les classes sont les classes & droite modulo H.

On notera respectivement (G/H ), 'ensemble des classes & gauche modulo H et (G/H)q I'ensemble des classes
a droite modulo H. Ces deux ensembles de parties de G forment deux partitions de G, en général distinctes.
Exemples

(i) On note T le sous-groupe de GL(2,R) formé des matrices trigonales inférieures — le coefficient en haut a

L 1) € GL(2,R). Alors,

droite est nul, les coefficients diagonaux sont non nuls. On note également j = <0 1
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les classes & droite et & gauche de j modulo T sont différentes. En effet, jT est le sous-ensemble de GL(2,R)

formé des matrices dont la seconde colonne est proportionnelle a alors que T'j est est le sous-ensemble de

1
1
GL(2,R) formé des matrices dont la premiere ligne est proportionnelle & (1 1).

(ii) Soient M € GL(2,R) et S € SL(2,R). Alors, SM = M (M~'SM) avec det (M~*SM) = 1. De méme,
MS = (MSM_l) M avec det (MSM_l) = 1. Cela montre que les classes a droite et a gauche de M modulo
SL(2,R) sont égales — quel que soit M € GL(2,R).

Exercice 10

Soient G un groupe et H un sous-groupe de GG. Alors, les assertions suivantes sont équivalentes.

(i) H« G

(ii) «H = Hx pour tout z € G

(iii) «H C Hx pour tout z € G

[L’équivalence entre (ii) et (iii), immédiate lorsque H est fini, est toujours vraie. En effet, si on suppose (iii) vraie, soient z € G et h € H.
On écrit he = = (wilhw). Comme z *h € z7'H C Hz™ !, soit b’ € H tel que z7*h = 'z~ L. Alors, ha = zh’ € zH, cqfd.]
Proposition (théoréme de Lagrange)

Soient G un groupe et H un sous-groupe de G.

(i) Toutes les classes a droites et toutes les classes a gauche modulo H ont un cardinal commun : celui de H.

(i) Le cardinal de l'ensemble des classe a gauche et le cardinal de l’ensemble des classe a droite sont égauz. Ce
cardinal commun est noté |G : H|.

(iii) |G| = |H| x [G : H] — égalité entre cardinauz.

(iv) Si G est un groupe fini, alors |H| divise |G| — et le quotient égale [G : H].

PREUVE. (i) Soit z € G. Alors, application H — xH, h +— xh est une bijection — sa surjectivité résulte de
la définition de zH, son injectivité de I'existence de x~1. Il en va de méme pour H — Hx, h + hx. (ii) et (iii)
Les classes a gauche forment une partition de G dont toutes les parts ont le méme cardinal — celui de H. On
conclut avec le théoreme des bergers. Idem pour les classes a droite. (iv) est une conséquence immédiate de
(iil) puisque ces cardinaux sont des nombres. n
Définition (indice d’un sous-groupe)

Dans les conditions de la proposition précédente, [G : H] est I'indice de H dans G.

Exemples

(i) I n’y a pas de sous-groupe d’ordre 35 dans Z /277 x Z/135Z.
(ii) Soit p un nombre premier. Tout homomorphisme de groupes Z/pZ — G est constant ou injectif.

Exercice 11 Tout sous-groupe d’indice 2 est distingué.

Définition (groupe simple)
Un groupe G est dit simple lorsque ses seuls sous-groupes distingués sont G et 14.

Exemple
Si n est un entier naturel non nul, le groupe (Z/nZ, +) est simple si, et seulement si n est un nombre premier.

1.4 Groupe-quotient, théoremes d’isomorphismes

Lemme (compatibilité de la multiplication modulo un sous-groupe)

Soient G un groupe et H un sous-groupe de G. Les assertions suivantes sont équivalentes.
(i) Pour tous z,y € G, la classe a gauche de xy modulo H ne dépend que de xH et de yH.
(ii) Pour tous x,y € G, la classe & droite de xy modulo H ne dépend que de Hx et de Hy.
(i) Ha G

PREUVE. On précise ce que signifie 'assertion (i) :

Va,y,2',y € G, (tH =a'H et yH =y'H) = (ayH =2'y'H). (1)
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Autrement dit, (i) signifie que la congruence & droite modulo H est compatible avec la loi du groupe. On montre
Péquivalence de (i) et de (iii) ; celle entre (ii) et (iii) est du méme acabit.

(iii)=(i) On suppose que H < G. Soient z,x’,y,y’ € G tels que xH = «'H et yH =y H. Soient alors h,k € H
tels que &' = xh et ¢y = yk. Puisque H est distingué, soit £ € H tel que hy = yf. Dans ces conditions,
'y’ = xhyk = zy(Lk) € xyH. Cela montre que z'y'H = xyH.

(1)=(iii) On suppose que (1) est vraie. Soient h € H et © € G. Puisque h € 1H et x € xH, alors hx € 1zH, ce
qui signifie que hx € xH. L’arbitraire sur = et h montre que H < G. u

Lorsque H < G, les classes a gauche et les classes a droite sont les mémes, au sens ot xH = Hx pour tout
x € G. On parle alors de classe modulo H, sans préciser s’il s’agit d’une classe a droite ou a gauche. Dans ces
conditions, le lemme montre qu’on peut définir une loi de composition interne sur les classes modulo H. C’est
cette loi qui confere a ’ensemble des classes modulo H une structure de groupe.

Proposition (définition du groupe-quotient modulo un sous-groupe distingué)

Soient G un groupe et H un sous-groupe distingué de G. On note G/H l'ensemble des classes modulo H
des élément de G. Alors, application G/H x G/H — G/H, (xH,yH) — zyH est bien définie et confére a
Uensemble G/H une structure de groupe. Son élément neutre est H = 1.H et pour tout x € G, linverse de xH
estx 1 H.

PREUVE. Que la loi soit bien définie est conséquence du lemme. Si x € G, on note T = xH = Hx la classe
de z modulo H. En particulier, T = H. La définition de la loi sur G/H s’écrit alors T -y = Ty. Si z,y,2 € G,
alors (T 7))z =7y -z = (vy)z = x(y2) =7 Yz = T - (¥ Z), ce qui montre 'associativité de la loi. Par

aillleurs, 1 - T =12 =TetZT-1=2-1=7: laclasse 1 = H est élément neutre. Enfin, si x € G, alors
T-rz- ! =z 27! =1 ce qui montre que z~! est inverse & droite de . Un calcul analogue montre que z—! est
également inverse a gauche de 7. [ |

A noter
Le lemme précédent montre aussi que si H n’est pas distingué, il est vain de chercher a définir une loi de groupe
sur les classes a droite ou a gauche modulo H par une formule du type tH.yH = xyH ou Hx.Hy = Hxy.

Définition (projection canonique)
Soient G un groupe et H un sous-groupe distingué de G. L’homomorphisme de groupes

p:G — G/H
r — xT=xH=Hzx

est appelé surjection canonique ou projection canonique — que ce soit un homomorphisme de groupes résulte
immédiatement de la définition de la loi de groupe sur G/H dont c’est une paraphrase.

La propriété universelle du quotient, qui suit, est 1’énoncé opératoire des groupes-quotient. C’est elle qui permet
notamment de définir des homomorphismes de groupes dont I’ensemble de départ est un quotient avec le confort
argumentaire procuré par son automatisme technique.

Proposition (propriété universelle des groupes-quotient)

Soient G et G' des groupes, [ : G — G’ un homomorphisme de groupes et H un sous-groupe distingué de G.
On note p : G - G/H la_projection canonique. On suppose que H C ker f. Alors, il existe un unique
homomorphisme de groupes f : G/H — G’ tel que f = f op. En outre,

(i) ker f = p(ker f) = {xH, = € ker f} ; en particulier, f est injectif si, et seulement si ker f = H ;

(ii) im f =1im f ; en particulier, f est surjectif si, et seulement si f l’est.

Le diagramme commutatif (et méme cartésien) standard est le suivant :

¢ Lo

vl

G/H

PREUVE. On prouve d’abord l'unicité. On suppose que f G/H — G’ existe et vérifie f = fop. Alors,
pour tout « € G, f (T) = f(x). Cela montre que Papplication f cherchée est déterminée par f, ce qui prouve
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'unicité. Maintenant I'existence. On n’a pas le choix, le raisonnement précédent oblige & définir f par la formule
f (@) = f(x). 1l s’agit de montrer que cette formule a du sens, ce qui est garanti par ’hypothese H C ker f. En
effet, si tH = yH, alors =ty € H C ker f et donc f(x) = f(y) : I'application f est constante sur les classes de
congruence modulo H. Il reste & vérifier que f est un homomorphisme de groupes, ce qui est une pure routine.
(i) et (ii) sont immédiates. [ |

Exemple

Soient m et n deux entiers naturels non nuls. On suppose que m divise n, c’est-a dire que nZ C mZ. Le
groupe Z est abélien, inutile de se préoccuper de distinction pour passer au quotient : la projection canonique
Z — 7Z/mZ se factorise, via la projection canonique Z — Z/nZ, en un homomorphisme surjectif d’anneaux
Z/nZ — Z/mZ. Ce dernier envoie la classe modulo n d’un entier sur sa classe modulo m. Son noyau est
lensemble des classes modulo n des multiples de m. C’est le sous-groupe cyclique () de Z/nZ, ou m désigne
la classe de m modulo n. Il est d’ordre .

Théoréme (premier théoréme d’isomorphisme pour les groupes)
Soit f : G — G’ un homomorphisme de groupes. Alors, [ induit un isomorphisme de groupes

G/ker f ~im f

PREUVE. C’est une application directe de la PUQ. [ |

Exemples

(i) Si V est un espace vectoriel de dimension finie sur un corps F, le déterminant induit un isomorphisme de
groupes
GL(V)/SL(V) ~ F*.

En effet, ’homomorphisme de groupes det : GL(V) — F* a pour noyau SL(V). En outre, il est surjectif.
Pour montrer ce dernier point, on peut prendre une base de V qui établit une application linéaire bijective
FdimV =5 V' et aussi un isomorphisme de groupes GL(V) ~ GL(dim V,F). Trouver un automorphisme de
V dont le déterminant = € F* est prescrit devient alors un jeu d’enfants : il suffit de considérer la matrice
diagonale diag(z,1,...1).

(ii) L’exponentielle imaginaire (R, +) — (C*, x), t — exp(it) est un homomorphisme de groupes (I’exponentielle
d'une somme est le produit des exponentielles). Son image est le groupe multiplicatif S* = {z € C, |z| = 1} des
nombres complexes de module 1. Son noyau est le sous-groupe 27Z de R. Le premier théoreme d’isomorphisme
montre que l’exponentielle imaginaire induit un isomorphisme de groupes

R/277Z ~ S'.

A vrai dire, 'exponentielle jouit d’autre propriétés intéressantes, notamment topologiques. Ces propriétés
se transmettent ou se traduisent presque toujours sur Iisomorphisme R/27Z ~ S'. Par exemple, & condi-
tion de définir proprement une topologie sur le quotient (par exemple, la topologie quotient !), on obtient un
homéomorphisme.

. 1 . .

(iil) Soit F = { <0 Z) e Ma(R), a,beR, b# O} I’ensemble des matrices de GL(2,R) qui fixent le vecteur-

1 a

colonne 2S(l, 0). Alors, F' est un sous-groupe de GL(2,R) et 'application F' — R*, <O b

) — b est un homo-

. L 1 . X
morphisme de groupes surjectif dont le noyau est le sous-groupe U = {(O (11) , a € R} de F', isomorphe a
(R, +) (exercice). Le premier théoréme d’isomorphisme montre que les groupes F/U et R* sont isomorphes.

Exercice 12
Sur le mode de exemple (ii) ci-dessus, trouver des isomorphismes entre les groupes suivants.

(i) Z/nZ ~ U, si n est un entier naturel non nul et si U,, désigne le groupe des racines n® complexes de I'unité,
qui est un sous-groupe fini de S!.

(i) (C/2inZ,+) ~ (T*, x).
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(iil) Q/Z ~ Uy ol Uy désigne le groupe multiplicatif de toutes les racines complexes de 1'unité (les racines
carrées, cubiques, 4°, 5°, etc), qui est un sous-groupe dense de S!.

A noter

Soient G un groupe, H un sous-groupe distingué de G et p : G — G/H la surjection canonique. Alors, les
sous-groupes de G/H sont les classes modulo H des sous-groupes de G contenant H, en le sens suivant.

(D Si K est un sous-groupe de G/H, alors p~! (K) est un sous-groupe de G contenant H.

(@) Inversement, si K est un sous-groupe de G contenant H alors H < K et le groupe K/H, qui est 'ensemble
des classes modulo H des éléments de K, est un sous-groupe de G/H.

(3 Les deux opérations K — p~! (K) et K — K/H définissent deux bijections réciproques I'une de l'autre entre
Pensemble des sous-groupes de G/H et l'ensemble des sous-groupes de G contenant H.
Théoréme (deuxiéme théoréme d’isomorphisme pour les groupes)

Soient G un groupe, H et K deuzx sous-groupes distingués de G, tels que H C K. Alors, K/H <G/H et la
projection canonique G — G/K induit un isomorphisme de groupes

(G/H) [ (K/H) ~G/K

PREUVE. Que H soit un sous-groupe distingué de K est immédiat et donne du sens au groupe-quotient K/H.
Soit p : G — G/K la projection canonique. Puisque H<G et H C ker p = K, la propriété universelle du quotient
induit un homomorphisme surjectif de groupes G/H — G/K dont le noyau est p(K) ={kH, k€ K} = K/H.
On conclut avec le premier théoreme d’isomorphisme. [ |

A noter

On peut résumer la situation et la preuve du deuxieme théoréme d’isomorphisme par le diagramme commutatif
suivant. S’assurer de bien comprendre comment les fleches sont définies (quels homomorphismes d’anneaux elles
représentent).

¢ —r Lok

| /
G/H
|
(G/H)
(K/H)

Théoréme (troisieme théoréme d’isomorphisme pour les groupes)
Soient G un groupe, H et K deux sous-groupes de G. On suppose que H normalise K, ce qui signifie que

hKh™' = K, pour tout h € H. Alors,

(i) HN K est un sous-groupe distingué de H ;

(ii) si on note HK = {hk, h € H, k € K}, alors HK = KH et HK est un sous-groupe de G ;
(iii) K est un sous-groupe distingué de HK ;

(iv) on a un isomorphisme de groupes

HK/K ~H/HNK

PREUVE. D’abord, ’hypotheése que H normalise K assure que HK = KH. En effet, si h € H et k € K, alors
k' = hkh™! € K et donc hk = k'h € KH. De méme, k" = h™'kh € K et donc kh = hk” € HK : on a montré
que KH = HK.

Si h,h € H et k, k' € K, soit k" € K tel que kh' = h'k”. Alors, hk - W'k’ = hh' - K"k € HK et (hk)™! =
k'h™' € KH = HK : on a montré que HK est un sous-groupe de G.
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Si k' € K et si hk € HK, alors (hk)k'(hk)™! = h (kk’k‘_l) h~! € K, ce qui montre que K <« HK. On peut donc
considérer le groupe-quotient HK /K.

Enfin, on compose U'inclusion H < HK et la projection canonique HK — HK/K, ce qui fournit un homo-
morphisme de groupes f: H - HK/K dont le noyau est H N K. En outre, si hk € HK, alors f(h) = f(hk)
est la classe de hk modulo K, ce qui montre que f est surjectif. On conclut en appliquant le premier théoreme
d’isomorphisme a f. [ ]
Exercice 13 Soient G un groupe.

(i) Montrer que le groupe-quotient G/D(G) est abélien. On appelle ce groupe 1’abélianisé de G.

(if) Soit H un sous-groupe distingué de G. On suppose que le groupe-quotient G/H est abélien. Montrer que
D(G) C H et que G/H est isomorphe & un quotient du groupe abélien G/D(G).

[Le slogan, littéralement impropre mais parlant et souvent entendu, est le suivant : G/D(G) est le plus grand quotient abélien de G. Son

sens précis est : tout quotient abélien d’un groupe est (isomorphe a) un quotient de son abélianisé.]
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2 Le groupe symétrique

2.1 Permutations d’un ensemble fini

Définition (groupe symétrique d’un ensemble)
Si E est un ensemble non vide, toute application bijective £ — E est appelée permutation de E. Le groupe
symétrique de F est I’ensemble des permutations de E muni de la composition des applications. On le notera Gg.

A noter

(i) L’unique bijection () — @ est celle dont le graphe est vide. On convient de dire que &g = {0} est le groupe
trivial.

(ii) L’élément neutre de &g est l'application identique de E, que l'on notera idg, ou méme parfois 1. Le
symétrique d’'un élément ¢ € S est sa réciproque. Bien souvent, on omettra de noter la composition : si
0,7 € 6, on notera 0 o7 = o7. De méme, si n € N\ {0}, on définit par récurrence 6™ = g o---o0 (n fois) et
o= (a‘l)n = (a")_l. Par commodité, on note aussi 0 = idg.

Proposition (le groupe symétrique ne dépend que du cardinal)

Soient E et F' deuz ensembles non vides équipotents. Alors, les groupes symétriques S g et S sont isomorphes.

PREUVE. Soit ¢ : E — F une application bijective. Alors, I'application &g — Gp, 0 = @ oo o ! est un

isomorphisme de groupes dont la réciproque est G — Gg, 0+ @ oo op. |
Définition (groupe &,)

Si m est un entier naturel non nul, on note &,, = &y, . 3. Fort de la proposition précédente, on I'appelle
parfois groupe des permutations de n objets.

Exercice 14

(i) Si m est un entier naturel non nul, lordre de &,, est nl.

(ii) Tout groupe est (isomorphe d) un sous-groupe d’un groupe de permutations.

En effet, soit G un groupe. Si z € G, on note s,, : G — G Papplication définie par s, (y) = xy, pour tout y € G ;
montrer que s, est une permutation de G. Montrer que ’application G — G¢g, = — s, est un homomorphisme
injectif de groupes. En déduire que G est isomorphe a un sous-groupe de Gg.

(iii) Montrer que si ) # E C F', alors G est (canoniquement) isomorphe & un sous-groupe de Gp.

[Pour prolonger & F une permutation de E, fixer tous les éléments de F \ E.]

Définition (support d’une permutation)
Soient E un ensemble et o une permuttation de E. Le support de o est le complémentaire dans E de I’ensemble
de ses points fixes. On le note Supp(o). Ainsi,

Supp(o) = {z € E, o(x) # 2} .

Exercice 15
Le support d’une permutation ainsi que son complémentaire sont stables par cette permutation. Cela signifie
que si s € S alors s(x) € Supp(s), pour tout = € Supp(s) et s(x) € E \ Supp(s), pour tout = € E \ Supp(s).

On se concentre davantage sur le calcul des permutations d’un ensemble fini, c’est-a-dire sur la structure du
groupe G,,. Dans cette étude, la notion de cycle est essentielle.

Définition (cycle, ou permutation cyclique)
Soient E/ un ensemble, p un entier naturel non nul et ai,...,a, des éléments distincts de E. Le p-cycle noté
(a1, ..,ap) est la permutation ¢ de E définie par :

Vke{]~7ap_1}7 C(a’k):ak+1
c(ap) =m
Ve e E\{a1,...,ap}, c(x) =z

Le nombre p est la longueur du cycle (a1,...,ap). Lorsqu’il n’y a pas d’ambiguité, on note parfois les cycles
sans virgule : (a1,...,ap) = (a1...ap).
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A noter

(i) Si a € E, le 1-cycle (a) est Iapplication identique : son support est vide. Si p > 2, le support d’un p-cycle
(a1,...,ap) est Pensemble {aq,...,a,}. Cela montre en particulier que la notion de longueur est bien définie
— attention au cycle de longueur 1, un peu stupide.

(ii) Il n’y a pas d’unicité de I’écriture d’un cycle noté a ’aide des parentheéses. Par exemple, dans G5, (12) = (21)
t (12345) = (23451) = (34512) = (45123) = (51234). Dans &,,, lorsqu’on a besoin d’une forme univoque, on

choisit souvent de placer le plus petit élément du support en premieére position : on préférera ainsi (12), (12345)
t (26374) aux autres écritures.

(iii) Prendre garde & la notation lorsque I'on compose des cycles. Par exemple, dans &g, (1543)(246) = (154623)
t (246)(1543) = (156243).

(iv) G2 est isomorphe & Z/27Z, unique groupe d’ordre 2 & isomorphisme preés. En revanche, dés que n > 3, le
groupe &,, n’est pas commutatif puisque (12)(23) = (123) et (23)(12) = (132) sont distincts.

Exercice 16

Soient n et p des entiers naturels non nuls. Si ¢ = (ag,...,ap—1) € &, et si m € Z, alors ¢ (a) = G ol

—~

k + m est le reste de la division euclidienne de k& + m par p.

Proposition (ordre d’un p-cycle)
Pour tout p € N\ {0}, Uordre d’un p-cycle est p.

PREUVE. C’est immédiat. On peut le voir comme une conséquence de I'exercice précédent. [ ]

Proposition (permutations 4 supports disjoints)
Deuzx permutations dont les supports sont disjoints commutent.

PREUVE. Soient s et t deux permutations d’un ensemble E. On suppose que Supp(s)NSupp(t) = 0. Soit x € E.
Si & € Supp(s), alors x ¢ Supp(t) et s(x) ¢ Supp(t) puisque s(z) € Supp(s) ; ainsi, st(z) = s(¢ ( )) s(z) et
ts(z) = t(s(x)) = s(x). Dans ce cas, st(z) = ts(x). De la méme fagon, si z € Supp(t), alors st(z) = ts(x) = t(x).
Enfin, si « ¢ Supp(s) U Supp(t), alors st(x) = s(t(z)) = s(z) = x et ts(x) = t(s(z)) = t(xr) = =z, ce qui montre
encore que st(z) = ts(x). Dans tous les cas, st(z) = ts(z) pour tout z € E, ce qui montre que st = ts. [ |
Exercice 17

Montrer que si s et t sont deux permutations a supports disjoints de &,,, alors l'ordre de st est le PPCM des
ordres de s et de t. Etendre ce résultat au produit d’un nombre quelconque de cycles a supports disjoints.

Proposition (formule de conjugaison des cycles)
Soient E un ensemble, p un entier naturel non nul, ai,...,a, des éléments distincts de E et 0 € &. Alors,

J(al,...,ap)afl =(o(a1),...,0(ap))

En particulier, le conjugué d’un p-cycle est un p-cycle.

PREUVE. On note ¢ = (ay,...,ap) et ¢ = (0 (a1),...,0(a1)). Soit z € E. Six =0 (ar) ou ke {1,...,p—1},
alors oco™! () = oc(ax) = o (ag41) = ¢ (x). De méme, si z = o (ay), alors oco™! (z) = 0 (a1) = ¢/(x). Enfin,
siz=o(y) ony € E\ Supp(c), alors oco™t (z) oc(y) = o(y) = = et, puisque = n’est pas dans le support de ¢/,
on a également ¢/(x) = z. Dans tous les cas, ¢(z) = ¢/(z) : on a montré que ¢ = ¢'. [ |

Proposition (centre de &,,)
Soit n un entier naturel. Sin > 3, le centre de &,, est trivial.

A noter

En abrégé, Z (&,) = {id};; _,,sin > 3. Le casn = 2 est & part puisque &, = Z/2Z est abélien : Z (&3) = &,

.....

PREUVE. Soit o € &, \ {id(, ny}. Soit alors a € {1,...,n} tels que o(a) # a. On note b = o(a). Puisque
n > 3, soit ¢ € {1,...,n}\ {a,b}. Alors, o(ac)o™ (bo( )) # (ac) puisque b ¢ {a,c}. Cela montre que o ne
commute pas avec le cycle (ab) donc n’est pas dans Z (&,,). [ ]

Proposition (dans le groupe symétrique, tous les p-cycles sont conjugués)
Soient E un ensemble, p un entier naturel non nul, ¢ et ¢ deuz p-cycles de Sg. Alors, il existe o € S tel que
¢ =ocol.
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PREUVE. On note ¢ = (as,...,ap) et ¢/ = (b1,...,b,). Soit o une permutation de E qui vérifie o (ax) = by
pour tout k € {1,...,p}. Il en existe puisque les ensembles '\ Supp(c) et £\ Supp(c’) sont équipotents : il suffit
de prolonger Papplication ¢ ainsi définie sur Supp(c) & E tout entier en choisissant une bijection quelconque
E\ Supp(c) — E \ Supp(c). Alors, la formule de conjugaison des cycles montre que ¢ = oco™!. ]

Deux exemples

(i) Une permutation de &,, est parfois notée en dressant la liste des images successives de 1, 2, etc. Ainsi, on
notera entre crochets [ le ; g ;1 ? ou encore [4,2,3,5,1] la permutation s € &5 qui vérifie s(1) = 4,
s(2) =2, 5(3) =3), s(4) =5 et s(5) = 1.

Par exemple, [6,13,12,14,4,1,7,10,2,9,11,3,8,5] = (1,6)(2,13,8,10,9)(3,12)(4, 14,5). Cette égalité se vériife
en montrant que les deux permutations de G4 écrites, 'une en donnant la suite des images, ’autre en produit
de cycles, envoient tout élément de {1,..., 14} sur la méme image. Noter que le membre de droite est un produit
de cycles a supports disjoints.

(ii) Autre exemple dans &5 : (123)(325)(153)(1254) = (154)(23). La encore, montrer image par image que les
deux permutations fournies sont égales. A noter : dans le membre de droite, on écrit le produit de cycles du
membre de gauche comme un produit de cycles a supports disjoints.

Proposition (décomposition en produit de cycles disjoints)
Soit n un entier naturel non nul. Toute permutation de &, se décompose en un produit de cycles a supports
disjoints. A lordre pres des facteurs, cette décomposition est unique.

Autrement dit, en termes plus explicites :
pour tout o € &, il existe m € N et un ensemble {c1,...,cm} de cycles de &, \ {idg} tels que

(i) ¥Yj, ke {1....,m}, (j # k) = (Supp (¢;) N Supp (¢;) =0) ;

(ii) o =c1...Cm-

En outre, si 0 = c1...c;y = ¢} ...c, sont deux telles décompositions de o en produits de cycles d supports
disjoints, alors m =L et Is € &, VE € {1,...,m}, ¢}, = ¢y

Noter que le cas 0 = idg correspond au cas ot m = 0, c’est-a-dire au cas ou ’ensemble des cycles qui
décomposent o est vide.

PREUVE. Opératoire, la preuve présentée ici reprend l'idée algorithmique des deux exemples qui précedent
I’énoncé du théoreme de décomposition.

Pour toute permutation o € &,, et pour tout = € {1,...,n}, on appelle orbite de x sous o le sous-ensemble
{o*(z), k € Z} de {1,...,n}. On la notera w(z, o), ou simplement w(x) ; c’est une partie de {1,...,n} stable
par o au sens ou Vy € w(x), o(y) € w(x). En particulier, grace & cette stabilité, la restriction de o & w(z) définit
une permutation de w(z), que I'on notera o,,(,). En outre, o, est un cycle de longueur maximale de &)
En effet, si p est le nombre d’éléments de w(z), alors p > 1, 6?(z) = z et w(z) = {z,0(z),...,07 1 (2)}, ce
qui implique que o) soit le p-cycle (x, o(x),... ,Up_l(x)) de &, (). On prolonge oy, en une permutation
de &,, en fixant tous les nombres qui ne sont pas dans w(z) : on obtient ainsi un cycle ¢, ;) de &, qui vérifie :
Vk € w(x), Cuz)(k) = a(k) et Vo € {1,...,n} \w(x), cua)(k) = k.

Ainsi, pour chaque orbite w, on a construit un cycle ¢, de &,, qui vérifie :

{ Vo € w, c,(x) =o(x)
Ve e {l,...,n} \w, c(z) ==.

Par ailleurs, les orbites sous o forment une partition de {1,...,n} — elles sont les classes de la relation
d’équivalence x ~ y < Ik € Z, y = oF(z). Noter en passant que les orbites constituées de singleton sont
celles des points fixes de o : pour une telle orbite w = w(z) = {z}, o(x) =z et ¢, =id(1,. n}-

Pour prouver 'existence de la décomposition cherchée, on montre que o est le produit des cycles des orbites

non triviales :
o= I o
Hw>2

Noter que ce produit a du sens parce que les orbites forment une partition de {1,...,n}, ce qui entraine que
les cycles ¢, commutent entre eux : l'ordre dans lequel on effectue ce produit est indifférent. Une fois cette
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construction faite, prouver 1’égalité est élémentaire : on note 7 = [] 4w>2 Cw €t on montre que T = o. Soit

x € {1,...,n}. Sio(x) ==z, alors w(z) = {z} : z est fixé par tous les ¢, et donc 7(x) = z = o(x). Si
o(x) # x, alors #w(r) > 2, cy(x)(7) = o(x) et c,(z) = = pour tout orbite w différente de w(x) ; ainsi, 14 encore,
7(z) = o(x). Ainsi, o(z) = 7(z) pour tout z € {1,...,n}, ce qui prouve que o = 7.

Il reste & prouver l'unicité de la décomposition. On suppose que o = ¢1...¢, ou les ¢, sont des cycles de
longueurs supérieures ou égales a 2 et a supports disjoints. Alors, pour tout k € {1,...,m}, le support de ¢ est
une orbite sous o que ’on note wy. Par construction, cj est le cycle ¢, défini plus haut, ce qui prouve 'unicité
cherchée. ]

Le slogan Les cycles qui décomposent une permutation sont (induits par) les restrictions a ses orbites.

Proposition (CNS pour que deux permutations soient conjuguées)

Soient n un entier naturel non nul, o,7 € &,. Alors, o et T sont conjuguées si, et seulement si leurs
décompositions en produits de cycles a supports disjoints ont le méme forme en le sens suivant : il existe
r € N, des cycles s1,...s, a supports disjoints et des cycles t1,...t, a supports disjoints tels que :

(i) Vk € {1,...,r}, les cycles sy et ty, ont la méme longueur ;
(ii) o =81...8. et T =1t1,...t.

PREUVE. Que le conjugué d’'un produit s;...s, ait la méme forme vient de la formule de conjugaison des
cycles : si o et 7 sont conjugués, ils ont la méme forme. Inversement, soient si,...s,,t1,...t, comme dans
I’énoncé. Puisque les supports des s sont disjoints et ceux des ty aussi, il existe une permutation 7 € &,
telle que t, = wspm !, pour tout k € {1,...,7} — en toute rigueur, faire une récurrence sur r. Alors,
th...tT:’ﬂ'Sl...Srﬂ'_l. |

Exercice 18
Calculer les classes de conjugaison dans Go, &3, G4, G5 et Gg. Comment calculer le nombre de classes de
conjugaisons dans &,, 7

Définition (transposition) Une transposition est un 2-cycle.

Proposition (les transpositions engendrent &,,)
Soit n un entier naturel non nul. Le groupe &,, est engendré par ses transpositions.

PREUVE. 1l s’agit de montrer que toute permutation est un produit de transpositions. Grace au théoreme
de décomposition en produit de cycles disjoints, il suffit de montrer que tout cycle de &,, est un produit de
transpositions. Le calcul élémentaire (a1, ...a,) = (a1a2) (a2as) ... (ap—1ap) le montre. [ |

Exercice 19
(i) Les transpositions de la forme (k, k + 1) engendrent &,,.

(ii) Si n > 4, les 4-cycles engendrent &,,.
[On pourra s’appuyer sur le calcul (12) = (1324)(1234)2).]

Proposition (groupe de Klein)
K = {id, (12)(34), (13)(24), (14)(23)} est un sous-groupe distingué de Sy, isomorphe & Z/2Z x Z27Z.

Ce groupe est appelé groupe de Klein™ On le verra, la situation K <&, est exceptionnelle.

PREUVE. Pour montrer que K est un sous-groupe de &, et qu'il est isomorphe & (Z/ 2Z)2, il suffit d’en faire
la table. Pour montrer qu’il est distingué dans &, il suffit de montrer qu’il est invariant par la conjugaison des
transpositions puisque ces dernieres engendrent G4. A renumérotation pres, les deux calculs suivants suffisent
pour conclure : (12)(12)(34)(12) = (12)(34) et (13)(12)(34)(13) = (14)(23). ]

A noter

Pour montrer que K < &y, on peut aussi utiliser directement la formule de conjugaison des cycles en remar-
quant que K contient tous les produits de deux transpositions a supports disjoints de &4 : si 0 € Gy, alors
0(12)(34)0~! = (0(1)0(2))(0(3)a(4)), qui est encore un produit de transpositions a supports disjoints, est
encore dans K.

“Felix Klein, 1849 — 1925. Sa contribution aux liens entre groupes et géométrie est déterminante. Lire son Programme d’Erlangen.
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2.2 Signature d’une permutation

Proposition (existence et unicité de la signature)

Soit n un entier naturel supérieur ou égal a 2.

(i) Il existe un unique homomorphisme de groupes non trivial € : &, — {—1,1}.

(ii) Si c est un p-cycle, alors e(c) = (—1)P~1.

(iii) Soit o0 € &,,. Si m est le nombre d’orbites de {1,...,n} sous o, alors (o) = (=1)"~™.

PREUVE. (i) D’abord, l'unicité. Soit € : &,, — {£1} un homomorphisme de groupes. Puisque le groupe
multiplicatif {+1} est abélien, deux permutations conjuguées ont la méme image par e. Comme les transpositions
sont toutes conjuguées, elles ont donc toutes la méme image par €. Mais puisque elles engendrent G, si cette
image commune est 1, alors € est constant. Ainsi, si € n’est pas trivial, ¢(7) = —1 pour toute transposition 7.
A nouveau, comme les transpositions engendrent &,,, la valeur de € sur les transpositions détermine la valeur

de € sur toutes les permutations. Cela démontre 'unicité.
Ensuite, I'existence. Si 0 € &,,, on note

(o) = H M_ (2)

| — 1
(3,5)€{1,..n}2, i<j J

Comme chaque terme de ce produit est symétrique en ¢ et j, le nombre rationnel (o) s’écrit aussi en sommant
sur les paires d’éléments distincts

I[I (o()—o@)
o(j) —oli) _ {is} i#

G ny, igg " H (G —1)
{i.5}, i#5

e(o) =

Puisque Papplication {i,5} — {o(i),0(j)} est une bijection de lensemble des parties & deux éléments de
{1,...,n} sur lui-méme — sa réciproque s’exhibe aisément —, le numérateur et le dénominateur de cette
derniere fraction ont la méme valeur absolue. On en déduit que £(o) € {—1,1}. Mieux encore, en revenant a la
premiere formulation (2) en termes de couples, on obtient la célebre formule

e(o0) = (-1 (3)
ou I(o) est le nombre d’inversions de o :
(o) = Card{(i,j) e{l,...n}%, i<jetoli)> a(j)}.
Il reste a montrer que € ainsi défini est un homomorphisme de groupes non trivial. Soient s, € G,,. Alors,
[[ 2f-sot) oy stUl-stO) pp -0

S
X
— TR —
j—i () — t(@) Gy I

g(st) =

{i.g}, i#j {i,5}, i#J

la derniére égalité venant encore du fait que {i,j} — {t(i),¢(j)} est une bijection de ’ensemble des parties &
deux éléments de {1,...,n} sur lui-méme. Enfin, il suffit pour conclure de montrer que (12) = —1 ce qui est
immédiat a partir de (3) puisque I((12)) = 1.

(ii) Tous les p-cycles ont la méme signature puisqu’ils sont tous conjugués dans &,. Or, £(1,2...,p) =
e((1,2)(2,3)...(p— L,p) =2 ((1,2))e((2,3))...e ((p— 1,p)) = (1) ".

(iii) Soit o € &,,. On décompose o en produit de cycles & supports disjoints, y compris les cycles de longueur 1,
triviaux, qui correspondent aux points fixes de o : ainsi, 0 = ¢ ...¢,, ou m est le nombre d’orbites sous o et
ou chaque ¢ est un cycle dont on note la longueur ¢, — pour tout k € {1,...m}, £, > 1. Alors,

m

(o) = [L(-D"" = (~)EE 5 x (<) = (-1

k=1
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puisque la somme des longueurs des cycles de o, triviaux compris, égale la somme des cardinaux des orbites,
c’est-a-dire n. ]

Définition (signature, permutations paires ou impaires)
On appelle ¢ la signature. Une permutation est dite paire si sa signature est 1, impaire sinon.

A noter
La preuve donnée ci-dessus est constructive. Elle exhibe la signature via son expression en termes de nombres
d’inversions d’une permutation.

En passant Se faire raconter I'histoire du jeu de taquin de Lloyd.

2.3 Le groupe alterné

Définition (groupe alterné)
Si E est un ensemble fini, le groupe alterné de E est le sous-groupe de G formé par ses permutations paires.
On le note Ar — cette lettre est un A gothique. Le sous-groupe des permutations paires de &,, est noté 21,,.

A noter
2, est le noyau de la signature. C’est donc un sous-groupe distingué d’indice 2 de &,,. En particulier, |2,,| = %‘

Proposition (les 3-cycles engendrent 2l,,)
Soit n un entier naturel non nul. Le groupe %A, est engendré par ses 3-cycles.

PREUVE. Toute permutation paire est un produit d’'un nombre pair de transpositions. Or, (12)(23) = (123) et
(12)(34) = (123)(234). Ces deux calculs, grace a la formule de conjugaison des cycles, suffit pour conclure. B

Corollaire (groupe dérivé de &,,)
Pour tout n > 2, D (&,) = A,.

PREUVE. Sin = 2, c’est idiot. On suppose n > 3. Tout commutateur est une permutation paire ; donc
D (6,) C 2,. Puisque les 3-cycles engendrent 2,,, il suffit de montrer que tout 3-cycle est un commutateur
pour obtenir I'inclusion inverse. Or, (12)(23)(12)(23) = (132). Cela suffit pour conclure. u

Proposition (les 3-cycles sont conjugués dans 2, lorsque n > 5)

On suppose que n > 5. Alors, si c et ¢ sont deux 3-cycles de U,,, il existe o € A, tel que ¢ = oco™'.

PREUVE. Soit (abc) un 3-cycle de &,,. Puisque les 3-cycles sont conjugués dans &, soit 7 € &,, tel que
(abe) = 7(123)77 1. Si 7 est paire, c’est fini, ¢ = 7 convient. Si 7 est impaire, alors 7(45) est paire et o = 7(45)
convient puisque (123) et (45) commutent. [ |
A noter

(i) Dans le groupe abélien (et méme cyclique) A3 = {1, (123),(132)} ~ Z/3Z, les deux 3-cycles ne sont pas
conjugués.

(ii) Dans 24, les huit 3-cycles sont répartis en deux classes de conjugaison qui sont {(123),(142), (134), (243)}

et {(132), (124), (143),(234)} — pour argumenter, par exemple, conjuguer (123) par les éléments du groupe de
Klein.

Corollaire (groupe dérivé de 2,,)
Pour tout n > 5, D (2A,) =2A,,.

PREUVE. Comme dans le calcul de D (&,,), il suffit de montrer que tout 3-cycle est un commutateur dans 2.
1 2

Soit ¢ un 3-cycle. Puisque n > 5, il est conjugué au 3-cycle ¢ dans 2,,. Soit donc s € A, tel que scs™ = 2.
Alors, ¢ = scs~ et [ |
Exercice 20 Montrer que D (23) = (1) et que D (24) = K (groupe de Klein).

On a la chaine de sous-groupes distingués (1) <K <204 <&,4. Cette situation est exceptionnelle, comme le montre
le résultat suivant.

Théoreéme (simplicité de 2, lorsque n # 4)
Sin # 4, le groupe alterné 2, est simple.
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PREUVE. Le groupe 25 est trivial et 23, cyclique d’ordre 3, est simple.

(i) On prouve d’abord que 25 est simple. Soit H <25. Si H contient un 3-cycle, il les contient tous puisque les
3-cycles sont conjugués dans s ; donc H = 25 puisque les 3-cycles engendrent 5. Si H contient un élément
d’ordre 2, quitte & renuméroter, H contient (12)(34) ; en conjuguant par (13245), le groupe H contient (34)(25),
donc le produit (12)(34)(34)(25) = (125). Alors H = 25 puisqu’il contient un 3-cycle. Enfin, si H contient un
élément d’ordre 5, i.e., quitte & renuméroter, s’il contient (12345), on conjugue par (254) ce qui montre que H
contient (15324) ; donc H contient le produit (12345)(15324) = (254) et donc H = 5. puisqu’il contient un
3-cycle. On a fait le tour des cas possibles, ce qui montre que 25 est simple.

(ii) On suppose n > 6. Soit H <2l,. On suppose que H # (1). Soit alors 0 € H et a € {1,...,n} tels que
b= o(a) # a. Soit ¢ € {1,...,n}\ {a,b,o(b)}. Soit 7 = (ach) et soit p le commutateur p = 707 oL
D’une part p = (tor~1)o~! € H. D’autre part, par la formule de conjugaison des cycles, p = 7(o7 to7t) =
(ach)(o(a)o(b)o(c)). Soit E C {1,...,n} tel que CardE =5 et E D {a,b,c,0(a),o(b),o(c)} — un tel E existe
car b = o(a). On termine la preuve par les deux points suivants.

(D) p#1; en effet, p =1 si, et seulement si (abe) = (o(a)o(b)o(c)), i.e. si, et seulement si (bea) = (bo(b)o(c))
ce qui n’est pas puisque ¢ # o(b).

@ [On veut dire correctement que p “appartient & H N A g <A “. Puisque Ag est simple et p # 1, cela impose H N Ar = Ag. Donc H
contient un 3-cycle. Donc H = 2,,. On le dit correctement dans ce qui suit.] Soit 7 : Q[E — an le prolongement par I'identité
hors de E. Alors, 1 # (acb)(o(a)o(b)o(c)) € = 1(H) <Ag. Par simplicité de A, cela impose 7~ 1(H) = Ap.
Donc H contient le 3-cycle m(abc). Donc H = 2,,. [ |

Exercice 21 Refaire une preuve du calcul des groupes dérivés de &,, et 2, en utilisant la simplicité de 2,,.

Proposition (sous-groupes normaux de G,,)
Sin # 4, les seuls sous-groupes distingués de &,, sont (1), A, et &,,.

PREUVE. Pour n € {2,3}, c’est immédiat. On suppose n > 5. Soit H < &,,. Alors, H N2, <2, et donc,
puisque 2, est simple, H N2, € {(1),A,}. Si HNA,, = A,, alors H O A, et donc H € {2A,,,5,,}. On suppose
que HN2A, = (1) et que H # (1). Alors, la restriction de la signature & H est un isomorphisme et H est
d’ordre 2. Soit s 'unique permutation impaire telle que H = {1, s}. Alors, sit € &, tst~! est une permutation
impaire de H. Donc tst~! = s, ce qui montre que s et ¢ commutent. Puisque cela est vrai pour tout t € &,
cela entraine que s est central. Or, le centre de &,, est trivial : nécessairement, ¢ = 1 et ’hypothese H # (1)
ne tient pas. |

Exercice 22 Trouver les sous-groupes distingués de Sy.
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3 Groupes abéliens de type fini

Définition (GATF, GALTF et GAF)

Un groupe abélien est dit de type fini — en abrégé, GATF — lorsqu’il admet une partie finie qui ’engendre.
Les groupes abéliens finis — en abrégé, GAF — en sont un cas particulier. Lorsqu’un groupe est isomorphe au
groupe additif Z" pour un r € N, on dit que c¢’est un groupe abélien libre de type fini — en abrégé, GALTF, ou
encore un résequ.

Exemples
Si r est un entier naturel et G un GAF, alors Z" x G est un GATF. On verra que tous les GATF ont cette
forme.

A noter
Tout GATF est isomorphe au quotient d’'un GALTF.
En effet, si G = (g1,...,9n), alors application Z" — G, (x1,...%,) = Y p_; Tkgk est un homomorphisme

surjectif de groupes auquel il suffit d’appliquer le premier théoréme d’isomorphisme. Son noyau est le sous-
groupe des relations de G.

Exercice 23

(i) Si G est un groupe abélien, I'ensemble des éléments d’ordre fini de G est un sous-groupe de G.

(ii) L’ensemble des éléments d’ordre fini d’un groupe non abélien n’est en général pas un sous-groupe.
Définition (sous-groupe de torsion)

Si G est un groupe abélien, ’ensemble G des éléments d’ordre fini de G est le sous-groupe de torsion de G.
Exemples

(i) Si G est un GAF, le groupe de torsion de G X Z" est Gp = G.

(ii) Si G est un GALTF, il n’a pas de torsion : G = {0}.

(ili) Tous les éléments du groupe additif Q/Z sont de torsion (d’ordre fini). Autrement dit, (Q/Z), = Q/Z.

[On verra, une fois le théoreme de structure des GATF installé, qu'un GATF est libre si, et seulement s’il est sans torsion. On voit avec

cet exemple que ce résultat tombe en défaut si on ne suppose pas le groupe abélien finiment engendré.]

3.1 Prélude a ’unicité des facteurs invariants

On commence par un lemme d’apparence technique dont on fournit une preuve combinatoire. Il constitue un
point crucial dans ’argumentaire choisi pour établir la structure des GAF et des GALTF

Lemme (régularité du produit pour les groupes finis)

Soient G, G' et H des groupes finis. On suppose que G x H ~ G’ x H. Alors, G ~ G'.

PREUVE. On compte. Si L et M sont deux groupes finis, on note h(L, M) le nombre d’homomorphismes de
groupes L — M et i(L, M) le nombre d’homomorphismes injectifs de groupes L — M.

) Si L, G et H sont des groupes finis, alors h(L,G x H) = h(L,G) x h(L,H).

En effet, si note py et ps les projections p; : G x H — G, (g,h) — get po: Gx H— H, (g,h) — h ; et si on
note aussi I’ et GG les applications définies par les formules

Hom(L,G x H) — Hom(L,G) x Hom(L, H)
F

f — (pro fip2of)
o XY & (%)

ol ¢ X 9 est défini par ¢ x ¥(€) = (p(£),¥ (L)), alors, F et G sont des bijections réciproques 'une de 1'autre.
(@ Si L et G sont deux groupes finis, alors h(L,G) =3 ..t (L/N,G).

La somme ci-dessus porte sur tous les sous-groupes distingués N de L. En effet, soit

I ={(N,i), NaL, i € Hom(L/N,G), i injectif}
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La propriété universelle du quotient assure que tout homomorphisme de groupes f : L — G induit un homo-
morphisme injectif f : L/ ker(f) — G. Alors, 'application ® définie par

®: Hom(L,G) — 7
f — (kerf,f)

est une bijection, dont la réciproque est (N, g) — py og ou py : L — L/N est la projection canonique. Donc
h(L,G) = #Z. En comptant le cardinal de Z par sa premiére composante, on obtient la somme souhaitée.

(®) Si L, G et G' sont deuz groupes finis tels que h(L,G) = h(L,G"), alors i(L,G) =i(L,G’).

On procede par récurrence (forte) sur |L|. Si|L| =1, il n’y a rien & démontrer. On suppose que |L| > 2. Alors,
la formule (2) fournit A(L,G) = i(L,G) + > yar. N£(0) ¢ (L/N, G). Par récurrence, on peut remplacer G par G’
dans cette derniere somme, ce qui montre le résultat.

(») Fin de la preuve : on se place dans les hypotheses du lemme. Alors, (1) assure que h(G, G) = h(G,G’). En
appliquant (3) pour L = G, on obtient alors que i(G,G) = i(G,G’). Puisque i(G,G) > 1 (identité est une
injection G — @), on en déduit que i(G,G’) > 1. Mais ’hypothese G x H ~ G’ x H assure que |G| = |G| :
puisque ces cardinaux sont finis et égaux, tout homomorphisme injectif G — G’ est un isomorphisme. [ ]

Exercice 24 Si on enleve 'hypothese de finitude, la conclusion du lemme tombe en défaut.

Par exemple, si F est un corps, les F-espaces vectoriels F[X] et F x F[X] sont isomorphes puisqu’ils ont la méme dimension (infinie,

dénombrable ; exercice : expliciter un tel isomorphisme). Un tel isomorphisme, en abandonnant la loi externe, est aussi un isomorphisme

entre les groupes additifs {0} x F[X] et F x F[X]. Pourtant, le groupe additif F n’est pas trivial.

3.2 GALTF, rang

Proposition (les GALTF ont un rang)
Soient n,m > 1. Les groupes Z™ et Z" sont isomorphes si, et seulement si m = n.

PREUVE. Soit f : Z™ — Z" un isomorphisme de groupes. Une récurrence immédiate montre que f est

Z-linéaire. On prolonge f & Q™ par la formule f (5 (z1...,2m)) = 5[ (@1...,2m) OU (T1...,2y) € Z™ et
D € Z\ {0}. D’une part, cette formule a du sens puisque, avec ces notations, & (z1 ..., 2n) = 2 (@] ..., 20,)
implique %f (1...,2m) = ﬁf (2 ...,z]) — en effet, si la prémice est vérifiée, alors la Z-linéarité de f assure

que D'f(z1...,2m)=f(D'xy...,D'xy) = f(Dx}...,Dxl)) = Df (2} ...,2,). Dautre part, ladite formule
définit 'image de n’importe quel élément de Q™ par réduction au méme dénominateur (D) des coordonnées.
Une fois ce prolongement f : Q™ — Q" défini, sa Q-linéarité et sa bijectivité sont immédiates — on exhibe sa
réciproque qui a la méme forme. Alors, les Q-espaces vectoriels Q™ et Q™ étant isomorphes, ils ont la méme
dimension, ce qui montre que m = n. |

Exercice 25

Faire une autre preuve de cette proposition en prenant un nombre premier p (par exemple 2) et en construisant
un isomorphisme de Z/pZ-espaces vectoriels a partir d’un isomorphisme de groupes Z"™ — Z™ — pour conclure,
on argumentera a ’aide la dimension des espaces vectoriels construits.

Définition (rang d’'un GALTF)
Si G est un GALTF isomorphe a Z", le nombre r est appelé rang de G — cette définition est rendue possible
par la proposition précédente.

Exercice 26

En passant par le corps des fractions, montrer que si A est un anneau integre et si les anneaux A™ et A" sont
isomorphes, alors m = n.

Définition (base d’un GALTF)

Si G est un GALTF de rang r, une base de G est un r-uplet (vq,...,v,) d’éléments de G qui engendrent G et
qui sont Z-linéairement indépendants, ce qui signifie que pour tout z1,...xs € Z, x1v1 + -+ + 2505 = 0 =
Ty =-=x5=0.

Exercice 27

Si G est un GALTF, un famille (vq,...,v,) d’éléments de G est une base de G si, et seulement si tout élément
de G s’écrit de maniére unique sous la forme >, _; xxv, o0 Z1,..., %, € Z.
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Définition (formes coordonnées dans une base d’un GALTF)

Avec les notations de la définition d’une base d’'un GALTF, pour tout k € {1,...,r}, la k® forme coordonnée
relative a la base (v1,...,v,) est ’homomorphisme de groupes v} : G — Z défini par v} (y) = xj, pour tout
¥ =k kvr €T

A noter

Comme dans les affaires de dualité dans les espaces vectoriels de dimension finie, avec les notations précédentes,
les formes coordonnées sont définies par les relations v} (v;) = d; ; pour tous ¢, — notation de Kronecker.

Définition (somme directe de sous-groupes abéliens)

Soient G un groupe abélien noté additivement, H et K des sous-groupes de G. On dit que G est somme directe
de H et K lorsque tout élément de G s’écrit, de maniere unique, comme la somme d’un élément de H et d’un
élément de K. On note alors G = H @& K (comme une somme directe de sous-espaces vectoriels).

Exercice 28

Dans les conditions de la définition ci-dessus, G = H @ K si, et seulement si H U K engendre G et HN K = (0).
Théoréme (théoréme de la base adaptée)

Soient T' un GALTF de rang r et G un sous-groupe de I". Alors :

(i) G est aussi un GALTF, de rang s inférieur ou égal o r

(i) Il existe une base (vy,...,v,) de T et des entiers naturels ay,...as non nuls tels que ajlaz|...|as et tels que
(a1v1,...,asvs) soit une base de G

(#i1) (unicité) siay,...as et by,...bs sont des suites d’entiers naturels et si (v1,...,v.) et (wy,...,w,) sont des
bases de T telles que ay|as|...|as, bi|ba|...|bs, (a1v1,...,as5vs) et (bywy,...,bsws) sont des bases de G, alors

ar, = by, pour tout k € {1,...,s}.
(iv) T/G est isomorphe 6 Z"° x (Z/a1Z) X (Z]/asZ) -+ X (Z]/asZ)
(v) En particulier, [I' : G] est fini si, et seulement si r = s. Dans ces conditions, [I' : G] = a1az ... a,.

PREUVE. Soit (eq,...,e,) une base de I'. On note (e7,...,e) les formes coordonnées relatives a cette base.
(i) On procede par récurrence sur r = rgI'. L’hypothese de récurrence au rang r est la suivante : si T' est un
GALTF de rang v et si G est un sous-groupe de I', alors G est un GALTF de rang inférieur ou égal a r.

Si r = 1, on peut supposer que I' = Z puisqu’il lui est isomorphe. Or, les sous-groupes de Z sont tous de la
forme aZ ot a € N. Sia =0, aZ = {0} est un GALTF de rang 0 ; si a > 1, aZ est un GALTF de rang 1.

On suppose que r > 2 et on note G,,.—1 = G N @Z: Zey,. Par hypothese de récurrence, puisque G,_1 est un
sous-groupe du GALTF EBZ: Zey, c’est un GALTF de rang inférieur ou égal & r — 1. Soit e € Hom (T',Z) la
r® forme coordonnée relative a la base (eq,...,e,). Puisque €f(G) est un sous-groupe de Z, soit a € N tel que
ef(G) = aZ. Sia =0, alors G = G,_; est libre, de rang inférieur ou égal & r — 1. Si a # 0, soit w € G tel que
ef(w) = a. Pour tout g € G, €X(g) € aZ, ce qui entraine qu'’il existe ¢ € Z tel que g — cw € GNker (ef) = Gr_1.
Cela montre que G = G,_1 ® Zw, le fait que 'intersection G,_1 N Zw soit nulle étant immédiat. Or, G,_1
est un GALTF de rang inférieur ou égal a r — 1 ; donc G est un GALTF de rang inférieur ou égal a r. On a
montré (i).

(ii) On procede par récurrence sur r = rgI'. L’hypothese de récurrence au rang r est la suivante : si T' est un
GALTF de rang r et si G est un sous-GALTF de rang s, alors il existe une base (v1,...,v,.) de T et des entiers
naturels non nuls aq, . ..as tels que ailas|...|as et tels que (av1,...,asvs) soit une base de G.

Sir =1, on peut supposer que I' = Z puisqu’il lui est isomorphe. Comme G est alors un sous-groupe de Z, soit
a € N tel que G = aZ. Sia =0, alors G = {0} est libre de rang 0. Si a # 0, alors G est libre de rang 1 ; en
outre, v1 = 1 et a; = a conviennent.

On suppose que r > 2. Si G = {0}, il n’y a rien & démontrer. On suppose que G # {0}. Soit donc g € G, g # 0.
Alors, une au moins des coordonnées de g dans la base (eq,...,e,) est non nulle : il existe k € {1,...,r} tel
que e;(g) # 0. Ainsi, {f(G), f € Hom(I',Z)} # {{0}}. Soit alors a; l’entier naturel, non nul, défini par

a1y =min{a € N*, 3f € Hom (I, Z), f(G) = aZ} .

Soient alors f1 € Hom (I', Z) tel que f1(G) = a1Z, et wy € G tel que fi (w1) = a1. On montre alors 'assertion
suivante :

Vf € Hom (I',Z), ap divise f (wq). (4)
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En effet, si f € Hom (T',Z), on note d = PGCD (aq, f (w1)) = PGCD (f1 (w1), f (w1)). Soit alors b, c € Z tels
que d = baj+cf (wy) — c’est une relation de Bézout. Dans ces conditions, la forme linéaire bf; +cf € Hom (T, Z)
vérifie d = (bf; + ¢f) (w1). Par minimalité de aq, puisque wy € G, cela montre que a; < d. Comme d est un
diviseur de aq, cela entraine que a; = d ce qui implique que a; est un diviseur de f (w1) : on a montré (4).
On applique alors (4) aux formes coordonnées relatives a la base (eq, ..., e,) du GALTF I'. il s’ensuit que toutes
les coordonnées de w; sont divisibles par a;. Soit alors v; € I tel que wy = ayv1. En particulier, puisque a; # 0
et f1 (w1) = a1 = a1 f1 (v1), cela entraine que fy (vy) = 1.
On est alors dans la situation suivante :
(a) T' =ker (f1) ® Zvy
(b) G = (G Nker(f1)) ®a1Zvy
L’assertion (a) est garantie par la formule v = (y — f1(vy)v1) + f1(7)v1 pour tout v € T', puisque v — f1(y)v; €
ker (f1), le fait que lintersection ker (f1) NZuv; soit nulle étant immédiat. L’assertion (b) est du méme acabit en
écrivant g = (g — f1(g)v1) + f1(g)v1 pour tout g € G et en remarquant que f1(g) est un multiple de a;, puisque
f1(G) = a1Z par définition de a;.
Le groupe ker (f1) est un sous-groupe du GALTF I'. D’apres (i), c’est donc lui-méme un GALTF, de rang
inférieur ou égal a r. Mais (a) impose que ce rang soit exactement » — 1. En outre, G Nker (f1) est un sous-
groupe du GALTF ker (f1). Toujours d’apres (i), G Nker (f1) est encore un GALTF ; soit s € {1,...,r} tel
que s — 1 = rgG Nker(f1). Par hypotheése de récurrence, soient as,...,as € N* et (ve,...,v,) une base de
ker (f1) tels que as]...|as et tels que (agvs,...,asvs) soit une base de G Nker (f;). Alors, (a) et (b) assurent
que (v1,...,v,) est une base de I" et que (ajvy,...,asvs) est une base de G. Il reste & montrer que aq|az. Pour
cela, soit f = vi+v3 € Hom (I', Z), somme des formes coordonnées v; et vj relatives a la base (v1,...,v,) de I.
D’une part, f (ajv1) = a1, ce qui entraine par minimalité de a; que f(G) = a1Z. D’autre part, f (azve) = ag
ce qui implique que as € a1Z puisque asve € G. On a montré (ii).
(iv) et (v) En reprenant les notations du théoréme, I' = @, _, Zvy, et G = @, _, Zayvi. Alors, P’homomorphisme
de groupes

r — Z)aiZ x -+ x LjasZ x (Z"*)

S kvr (@1 a1, s+ aZ, (T ... 2y))

est surjectif et a pour noyau G, ce qui montre (iv) en appliquant le premier théoréme d’isomorphisme. En
particulier, I'/G est fini si, et seulement si r — s = 0. Dans ce cas, I'/G est isomorphe au groupe produit
Z]a1Z X -+ X Z/a, qui est d’ordre ag ... a,.

(iii) Dans la situation du (iv), s est le rang de G et le groupe de torsion de I'/G est isomorphe au produit
Z]a\Z x -+ x L/asZ. Tl suffit donc de montrer que si a1]...|as et si by|...|bs, alors Z/a1Z X -+ X Z/asZ
et Z/h1Z x --- x Z/bsZ sont isomorphes seulement si ay = by pour tout k, ce que ’on montre par récurrence
sur s. Si s =1, il n’y a rien a démontrer : deux groupes cycliques sont isomorphes si, et seulement s’ils ont
le méme ordre. On suppose donc que que s > 2 et que Z/a1Z X --- X ZjasZ et Z/01Z X -+ X ZL]/bsZ sont
isomorphes. Dans cette situation, as est 'ordre maximum d’un élément de Z/a1Z X - - - X Z/asZ. Donc as = bs.
Le lemme de régularité du produit pour les groupes abéliens assure alors que les groupes Z/a1Z X - -+ X Z/as—17Z
et Z/0Z X --- X Z/bs_17Z sont isomorphes, les hypothése de divisibilité sur les ay et les by demeurant. On
conclut par récurrence que ap = by, pour tout k. [ |

Pour aller plus loin

(i) Cette preuve s’appuie sur la principalité de Panneau Z. Le résultat du théoréme de la base adaptée s’étend
au cas des sous-modules d’un module libre sur un anneau principal — un module a les mémes axiomes que ceux
d’un espace vectoriel, hormis 'anneau des scalaires dont on ne suppose plus que c’est un corps. En particulier,
si F est un corps, le théoréme de la base adaptée dans le cadre de 'anneau principal F[X] et des polynomes
d’endomorphismes est un outil parfait pour I’étude de la réduction des endomorphismes. Y trouve une réponse
complete la question des classes de similitude des endomorphismes — ou des matrices carrées.

(ii) En utilisant la division euclidienne dans Z, on peut aussi adopter un point de vue algorithmique — c’est
une adaptation de ’algorithme du pivot de Gauss — qui fournit a la fois une autre preuve du puissant théoreme
de la base adaptée, mais aussi un mode de calcul effectif.
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3.3 GAF et GATF, rang et facteurs invariants

Théoréme (structure des GATF)

Soit G un GATF. Il existe un unique couple d’entiers naturels (r,s) et une unique suite ai,...,as d’entiers
naturels tels que

(Z) al 2 2 5y

(ZZ) al\a2| N \as N

(iti) G 2 Z" X (Z/a1Z) X (Z]asZ) - - x (Z]asZ).

PREUVE. Puisque G est un GATF, il admet un systéme générateur fini {g;...,¢g,). Alors, lapplication
(z1,...2n) = > p_; Tkgk est un homomorphisme surjectif de groupes f : Z" — G. Via le premier théoréme
d’isomorphisme, il induit un isomorphisme entre G et le groupe Z™/ker f, qui est le quotient d’'un GALTF
par un de ses sous-groupes. On conclut avec le théoreme de la base adaptée qui fournit a la fois 'existence et
I'unicité. [ |
Définition (rang et facteurs invariants d’un GATF)

Dans la situation du théoreme de structure des GATF, U'entier r est le rang de G et les nombres aq, ...as sont
les facteurs invariants de G.

A noter

(i) Un GATF est un GAF si, et seulement s’il est de rang 0, ou encore si tous ses éléments sont d’ordres finis.
(ii) Avec les notations du théoreme de structure des GATF, le sous-groupe de torsion de G est isomorphe a
Z]aZ X -+ X L]asZ.

(iii) Un GATF est un GALTF si, et seulement s’il n’a aucun facteur invariant ; autrement dit, lorsque s = 0,
ou encore lorsque son sous-groupe de torsion est nul.

(iv) Ainsi deux GATF sont isomorphes si, et seulement s’ils ont le méme rang et les mémes facteurs invariants.
Dans la méme veine, deux GAF sont isomorphes si, et seulement s’ils ont les mémes facteurs invariants.

Exemple
Les facteurs invariants du groupe abélien fini Z/60Z x Z/90Z x Z/150Z sont (30,30,900). En effet, cette suite
est croissante pour l’ordre de divisibilité, et le théoreme chinois montre successivement, sachant que 60 = 22.3.5,
90 = 2.33.5 et 150 = 2.3.5%, en détricotant les facteurs puis en les retricotant, que
7.)27 x 7.JA57, x 7./60Z x Z./150Z
~ (Z/2Z) x (Z/3°Z x Z/5Z) x (Z/2*Z x Z/3Z x L/5Z) x (Z/2Z x L/3Z x L|5°Z)
~ (Z)2°Z x Z/3°Z x Z/5°L) x (Z/2Z x Z/3Z x Z/5Z) x (Z/2Z x Z/3Z x Z/5Z)
~ 7./30Z x Z./30Z x Z/900Z.

Exercice 29
Si a et b sont des entiers naturels non nuls, les facteurs invariants de Z/aZ x Z/bZ sont pged(a, b) et ppcem(a, b).

Définition (composante de p-torsion d’un groupe abélien)

Soient G un groupe abélien et p un nombre premier. La composante de p-torsion de G est son sous-groupe
G(p) = {x €G, Ja>0, 2" = 1}. Autrement dit, G(p) est 'ensemble des éléments de G dont 'ordre est une
puissance de p.

Exercice 30 Soient G un groupe abélien et p un nombre premier.

(i) G(p) est un sous-groupe de G.

(ii) Si le groupe G(p) est fini, son ordre est une puissance de p.

Théoréme (décomposition des GAF en composantes primaires)
Soit G un GAF.
(i) G est somme directe de ses composantes de p-torsion :

G= P Gcw.

p premier
p divise |G|
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(ii) Si lUordre de G est la puissance d’un nombre premier p, il existe une unique suite finie croissante d’entiers
naturels non nuls a1 < --- < a, telle que G soit isomorphe au produit

G~Z/p"Z x - X ZL[p* L.

(#ii) La décomposition de G sous la forme
G~ (Z/p‘l”pl’”Z X oo X Z/p(ll(“’sm)Z> X oo X (Z/pfn(pm‘”Z X oo X Z/p%pm”sp’“)Z> )

ot p1 < -+ < p,, est une suite finie croissante de nombres premiers et ot Ap1) S0 < Upr,5p) est une suite
finie croissante d’entiers naturels non nuls pour chaque k € {1,...,m}, dont lexistence est garantie par (i) et
(i), est unique.

PrREUVE. Tout est conséquence directe du théoreme de décomposition des GAF en facteurs invariants, et
d’applications répétées du théoreme chinois. [ |

Définition (composantes primaires d’un GAF)
La décomposition de G selon le (iii) du théoréme précédent est la décomposition de G en composantes primaires.

A noter
(i) La décomposition en composantes primaires est caractérisée par la donnée de la famille presque nulle d’entiers

((a(p,k))lgkgs)p sromier avec les conditions de monotonie sur les (a(ka))lgkgsp énoncées dans le théoreme.

(ii) Ainsi, deux GAF sont isomorphes si, et seulement s’ils ont la méme décomposition en composantes primaires.
Exemple
On reprend l'exemple ci-dessus : G = Z/60Z x Z/90Z x Z/150Z. Comme dans celui-ci, on décompose chaque

facteur en composantes primaires a l’aide du théoreéme chinois, puis on recompose nombre premier par nombre
premier pour obtenir la décomposition en composantes primaires, qui s’écrit ici (troisiéme ligne)

7./27, x 7.J]457 x 7./60Z x Z/1507Z
~ (Z/2Z) x (Z/3°Z x Z/5Z) x (Z/2°Z x Z/3Z x Z/5Z) x (Z/2Z x Z/3Z x Z/5°Z)
~ (Z/2Z x Z)2Z x Z]2°Z) x (Z/3Z x Z/3Z x Z/3°Z) x (Z/5Z x Z/5Z x Z/5°Z) .

Ainsi, le sous-groupe de p-torsion de G est isomorphe & (Z/pZ)2 x Z/p*Z pour p € {2,3,5}, nul pour tous les
autres nombres premiers.

Exercice 31

Déduire des théoremes de structure des GAF le résultat suivant : soit G un groupe abélien fini dont [’ordre est
un multiple d’un nombre premier p. Alors, G contient un élément d’ordre p.

[Faire également une preuve directe de ce résultat, par récurrence sur l'ordre de G, en utilisant un groupe-quotient G/(z) pour un = non

nul de G

Exercice 32
En utilisant le théoreme de Bézout, faire une preuve directe du fait que tout GAF est somme directe de ses
sous-groupes de p-torsion, par récurrence sur le nombre de facteurs premiers distincts de 'ordre du groupe.

Exercice 33

(i) Soient G un groupe abélien, L un GALTF et f : G — L un homomorphisme surjectif de groupes. Montrer
qu’il existe un sous-groupe abélien libre de type fini H de G tel que G = H @ ker(f).

(ii) Soient G un GATF et G'r son sous-groupe de torsion. Montrer qu'’il existe un sous-groupe L de G qui soit
un GALTF et tel que G =L & Gr.
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4 Groupes linéaires

4.1 Petit mémento sur le déterminant

Définition (polyndme déterminant, déterminant d’une matrice carrée)
Soit n un entier naturel non nul. Le déterminant ¢ n? indéterminées est le polynome

det = det (X1717X172, e aXn,n) = Z 6(0’) H Xk,a(k) S Z [X1717X1727 e 7Xn,n] .
ceS, k=1

On note souvent les n? indéterminées sous forme matricielle, si bien que cette formule de définition devient

det M = Z E(O’) HXk,U(k)
k=1

ceS,
ou la matrice n x n générique M = M (X1,1,X12,...,Xnn), dont les coefficients sont des indéterminées, est
X171 XLQ Xl,n

X2’1 XQ’Q X2,n
M:M(X1,17X1,27"'7Xnn): . . .

Xn1 Xno .. Xon

Si A est une matrice carrée a coefficients dans n’importe quel anneau commutatif A, le déterminant de A, noté
det(A), est I’élément de A obtenu en spécialisant le déterminant générique det M en les coefficients de A.

Exemples
Pour n =1, det(X) = 1.
_ _ X1 Xipe
Pour n =2, det (X711, X712, X21,X22) =det
' ’ ’ ’ Xo1 Xopo

Pour n = 3. D’abord id, puis les deux 3-cycles, puis les trois transpositions :

> = X11X02 — X12X21.

X1 X2 Xi3
det | Xo1 Xoo Xoj3 = X11X02X33+ X12X03X31+ X13X21X32
X31 X390 X33
—X1,1X03X39 — X13X92X31 — X12X21X33

A noter

(i) En spécialisant, la formule de définition du déterminant, on obtient que det I,, = 1.

(ii) Le polynome déterminant & n? indéterminées est homogene de degré n et est composé de n! mondmes sans
carrés, précédés de +1.

(iii) La sommation peut se faire en faisant agir les permutations sur le premier indice puisque o — o~ est une
bijection de &,, sur lui méme qui préserve la signature. Ainsi, on a aussi

Xl,l X1,2 ce Xl,n
X2_rl XQ,Q e X2,n n
det [ .07 S =0 o) [ Xowyn
. . . ccG, k=1
Xn,l Xn,2 e Xn,n

Cela montre en passant que la matrice générique et sa transposée ont le méme déterminant.

(iv) En spécialisant le déterminant & n? indéterminées de facon ad hoc, on obtient la formule

X o Xi e 0
_1’1 1’. ! ) X1 . Xina
det ¥ : ¥ : 0 = det : ; (5)
n—1,1 .. n—1n—1
’ : Xo11 o Xt
0o ... 0 1 b1 bt
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n—1
En effet, le déterminant spécialisé du membre de gauche s’écrit Z (o) H Xk,o(ky alors que le pro-
€S, ,0(n)=n k=1
longement & {1,...n} par o(n) = n induit une bijection qui préserve la signature entre &,,_; et I’ensemble des
permutations de {1,...n} qui fixent n. La préservation de la signature est immédiate grace au théoreme de
décomposition des permutations en produits de cycles a supports disjoints.

Proposition (irréductibilité du déterminant)
Pour tout n > 1, le déterminant ¢ n? indéterminées est irréductible dans 7, (X111, X125, Xnonl-

PREUVE. Les inversibles de Z [X1 1, X1 2, ..., Xn,n] sont £1, polynémes de degré 0. On suppose que det = PQ
ol P,Q € Z[X11,X1.2,---,Xnn]. Il s’agit de montrer que P = £1 ou @ = £1. On utilise plusieurs fois le
fait que si un produit de deux polynomes est homogene, alors les deux facteurs sont également homogenes. On
commence par isoler les indéterminées de la premiere ligne X; 1,... X5 . Comme det est homogene de degré 1 en
ces n indéterminées, P et () sont également homogenes en X1 1,... X, ; comme la somme des degrés de P et Q
égale 1, cela force I'un des deux, disons @, a étre de degré O en X, 1,... X5, — autrement dit, les indéterminées
X11,... X1, n'apparaissent pas dans I’écriture de (). Pour chaque k, on isole alors les indéterminées de la
colonne k, autrement dit X 5, X2 x,... X, 5. La encore, det est homogene en X , Xo i, ... Xp i, de degré 1,
ce qui impose que P et @ soient également homogenes en ces indéterminées, le degré de P ou de @ étant nul.
Comme le degré de P en X j égale 1, c’est @ qui est de degré 0. Cela étant vrai pour tout k € {1,...,n},
on a montré que le degré de @ est nul en toutes les indéterminées X 1,..., X, . Cela signifie que @ est un
polynéme constant. Le coefficient de det en le monome X; 1 X529 ... X, , valant 1, cela impose que Q = £1. &

On note C1,...C,, les colonnes de la matrice générique a n? indéterminées, et Ly, ..., L, ses lignes. On note
alors aussi
det = det (X171,X172, ‘e 7Xn,n) = det (Cl, CQ, ey Cn) = det (Ll,LQ, NN 7Ln) .

Proposition (le déterminant est n-linéaire alterné en ses lignes et ses colonnes)
Soit n > 1.

(i) Pour toute permutation 7 € &,,, det (07(1)» Cr2)s- -+ CT(n)) =e(7)det (C1,C4,...,Ch).
(i) Pour toute permutation 7 € S,,, det (LT(l), Loy, ... ,LT(n)) =e(r)det (L1, Lo, ..., Ly).

(i11) Dans Z[X11,X1.2+- -, Xnm, Y15 -, Yo, Z], si on note C le vecteur-colonne des indéterminées Y1,..., Yy,
alors
det (C1 + C,Cy,...Cp) =det (C1,Co,...Cy) +det (C,Co,...Cp)

et det (ZCl,OQ, ‘e Cn) = Zdet (Cl,CQ, . Cn) .

() Dans Z[X11,X12, -, Xnm, Y1, ..., Yn, Z], si on note L le vecteur-ligne des indéterminées Y1, ...,Y,, alors
det (L1 + L, Lo, ... L,) =det (L1, La,...L,) + det (L, Lo, ... Ly,)

et det (ZLl,LQ,...Ln) = Zdet (Ll,LQ,...Ln) .

(v) En particulier, dans la matrice générique, si on substitue une ligne ou une colonne & une autre, on obtient
un déterminant nul.

PREUVE. On montre les assertions sur les colonnes. Celles sur les lignes s’en déduisent par transposition, ou
par un raisonnement analogue.

(i) det (CT(l),CT(Q),...,CT(n)) = Y ves, £(0) [Ti—i Xkorr)- Puisque o — o7 est une bijection de &,, sur
lui-méme, det (07(1), Criays- s CT(n)) =¢e(7) Y pes, E(0T) [Tii Xkory = (1) det (C1, C,...,Cn).

(iii) En isolant les indices de la premiere colonne, on obtient det = 3 o €(0)Xs(1)1 | Xo(k),k- Alors,
det (C1 +C,Cs,...Cn) = Y, ca, €(0) (Xoy1 + Yo)1) [Ties Xo@ .k et le résultat s'en suit. De la méme
fagon, det (ZCy,Cy,...Cp) =3 e €(0) (ZXo1)1) [Theo Xoy ke = Z det (C1,Ca, ... C).

(v) I suffit de montrer que le déterminant d’une matrice dont les deux premiéres colonnes sont égales est nul. Or,

en appliquant (i) & la transposition 7 = (12) dont la signature est —1, on obtient, dans Z [X11,X1,2,.- ., Xn.nl,
que det (Cy,C1,...,Cp) = —det (C1,C4,...,Cy), ce qui entraine que det (Cy,C4,...,Cy,) = 0. [ ]
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A noter

(i) En combinant (i) et (iii), on montre le linéarité du déterminant en chacune de ses colonnes. Idem pour les
lignes avec (ii) et (iv).

(ii) La n-linéarité ent le caractere alterné entrainent que si on substitue une colonne & une combinaison linéaire
des autres, on ne modifie pas le déterminant. Autre formulation : si, apres substitution, les colonnes d’une
matrice sont liées, alors son déterminant est nul. Idem pour les lignes, bien sir.

(iii) Pour montrer (v), on utilise le fait que 2 # 0 dans Z. Cela n’empéche pas sa spécialisation dans un
anneau de caractéristique 2, par exemple Z/2Z. En effet, le fait que lassertion (v) soit vraie sur Z permet
de la transporter telle quelle sur n’importe quel anneau commutatif A via ’homomorphisme de caractéristique
Z— A 1 14

(iv) Apres spécialisation, la proposition montre notamment que le déterminant d’une matrice a coefficients dans
n’importe quel anneau commutatif est nul dés que I'une des conditions suivantes est vérifiée (la derniere englobe
les deux autres) :

- une ligne ou une colonne est nulle ;

- deux lignes ou deux colonnes sont égales ;

- les lignes ou les colonnes sont linéairement dépendantes (exercice : cette derniére condition équivaut & la
nullité du déterminant).

(v) Ni la formule de sa définition (sommer sur les permutations) ni l'utilisation récursive des formules de
développement selon une ligne ou une colonne (voir plus bas) ne sont adaptées & un calcul algorithmique
effectif d’un déterminant. Il suffit pour s’en convaincre de calculer en fonction de n le nombre d’opérations
(multiplications et additions) que nécessite le calcul sous ces formes-la du déterminant d’une matrice générique
de taille n. En revanche, grace & l'invariance du déterminant par transformations élémentaires sur les lignes
ou les colonnes d’une matrice, I’algorithme du pivot de Gauss est toujours une maniere efficace de calculer un
déterminant.

Théoréme (déterminant d’un produit)

Soient M = M (X11,X192,...,Xnn) ¢ N =N (Y11,Y19,...,Y,,) deur matrices génériques dont les coeffi-
cients sont les indéterminées de Z[X11,X12,.., Xnmn, Y1,1,Y1,2,. .., Yo n]. Alors,

det(MN) = det M x det N.

PREUVE. Pour tout j € {1,...,n}, on note respectivement C;(X) et C;(Y') la j° colonne de M et la j° colonne
de N. Par définition du produit matriciel, la j¢ colonne de M N est MC;(Y"), produit de la matrice carrée M
par le vecteur-colonne C;(Y"). Toujours selon la définition du produit matriciel, le produit M C;(Y") se développe
en la somme de vecteurs-colonne MC;(Y) = Y"1 | Y; ;C;(X). On a ainsi successivement

det(MN) = det (MCy(Y),..., MCy(Y)) = det <zn: Y;1Ci(X), ..., Zn: n,,@-(x))

i=1

= > Yiya-..Yi, ndet (Ci (X)...,Ci (X)),
i1y0in€{1,...n}

la derniere égalité venant de la n-linéarité du déterminant. En utilisant le fait que deux colonnes égales annulent
le déterminant, il ne reste plus que les multi-indices de sommation contenant des ij, distincts. Cela permet de
ré-écrire cette somme a ’aide de permutations :

det(MN) = Y~ Yoay1- - Yomym det (Co)(X) ..., Copny(X)) .

cEG,

Enfin, le caractere alterné du déterminant permet de conclure :

det(MN) = > Yo(y1--- Yo(mne(0) det (C1(X) ..., Co(X)) = det(M) det(N).

oES,

en mettant det(M) en facteur dans la derniere égalité. [ |
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Exercice 34
Si A est un anneau commutatif et si A € M,, (A) est inversible dans ’anneau M,, (A), alors det A est inversible
dans I'anneau A et det (A™1) = (det AN

Pour établir le développement du déterminant d’une matrice carrée selon ses lignes ou ses colonnes, on adopte
la notation suivante.

Définition (cofacteurs)
Dans Z[X11,X1,2,---,Xnn] o0 n > 2, pour chaque couple d’indices (i,5) € {A4,... ,n}z, on note Cof; ; le
cofacteur d’indice (4,j) qui est le polynome

X1’1 Xl’jfl Xl,j+1 Xl,n
_ i+j Xifl,l Xifl,jfl Xifl,j+1 Xifl,n
COf,’J = (—1) det
Xi+1,1 Xi+1,j71 Xi+1,j+1 Xi+1,n
Xn71 N Xn,j—l Xn,j+1 e Xn,n

La matrice dont on prend le déterminant, qui est de taille (n — 1) x (n — 1), est obtenue & partir de la matrice
générique en supprimant sa ¢° ligne et sa j° colonne.

A noter
Le cofacteur d’indice (i, 7) est aussi le déterminant de la matrice

X171 X17j_1 0 X11j+1 Xl,n
Xicig -0 Xi1y1 0 Xoajpm o0 Xiag
Cof; ; = det 0 ... 0 1 0 . 0 . (6)
Xit11 - Xit15-1 0 Xopim1n 0 Xigam
Xo1 oo Xpja 0 Xpjo1 .. Xan
Pour montrer cela, il suffit de permuter les lignes selon le i-cycle (n,n —1,...,4) et les colonnes selon le j-cycle
(n,n—1,...,7) et d’utiliser la formule (5). Le facteur (—1)**7 dans la définition des cofacteurs apparait-il ainsi

comme une signature.

Proposition (développement du déterminant selon une ligne ou une colonne)
Soit n > 2.

(i) Pour tout k € {1,...,n}, le déterminant se développe par rapport & la k® ligne sous la forme du produit
matriciel .

det (X1,1,X172,...,Xn7n) = (Xk,l Xk,n) . (COfk’l COfk’n) .
(i) Pour tout k € {1,...,n}, le déterminant se développe par rapport d la k¢ colonne sous la forme du produit
matriciel .

det (Xl’l,Xl’g,...,Xn’n) = (COka Cofn’k.) . (Xl,k Xn,k) .
PREUVE. Les deux formules s’obtiennent en combinant la n-linéarité et la formule (6), puisque, si (01, ...,d,)
désigne la base canonique de M,, 1, on a (ch,l ... Xk,n) = Z?:l Xkyjték et idem pour les colonnes. |

Exemple (déterminant de Vandermonde)
Soit n > 2. Dans l'anneau de polynémes Z[X1, ..., Xyn],

1 X, xz ... xp!
1 X, X2 ... Xxpt
V(X X)) =det| 77 72 = I &x-xy
: : : : (i,5)€{1,...,n}?
1 X, X2 ... Xxpt i<j
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Pour prouver cela, on procede par récurrence sur n. Pour n = 2, ¢’est la formule du déterminant 2 x 2. Sin > 2,
pour tout £ > 2, on remplace la colonne C}. de la matrice de Vandermonde par Cy, — X,,Cr_1. On obtient

1 Xi— X, X1 (X1 — X,,) e XX - X))

1 Xo— X, X (Xs — X)) cee XPTH (X2 — X))
V (X1,...Xn) =det : : :

1 Xn—l - Xn Xn—l (Xn—l - Xn) o X:LL:% (Xn—l - Xn)

1 0 0 0

En développant selon la derniere ligne et en utilisant la n-linéarité,

V(X1,...X,) = ((—1)"1 1:[ (Xk — Xn)> V(X1 .. Xpno1),
k=1

ce qui permet de conclure par récurrence. [ |

Exercice 35

Soit F un corps. Démontrer, avec le déterminant de Vandermonde, que tout polynéme de F[X] de degré d ayant
au moins d + 1 racines distinctes dans [ est nécessairement nul — cela nécessite de montrer auparavant qu’un
systéme linéaire homogene ayant autant d’inconnues que d’équations admet une solution non triviale (si, et)
seulement si son déterminant est nul.

Définition (comatrice)
La comatrice de la matrice générique & n? indéterminées est la matrice de ses cofacteurs :

Com (Xl,l, X12,... aX’n,n) = (COfi,j)lgi,jgn .

Proposition (matrice et comatrice)

Pour toutn > 1,
M x "Com = "Com x M = det(M) - I,. (7)

A noter
Ces produits matriciels doivent étre lus comme deux fois n? identités poynomiales.
PREUVE. Le coefficient de la i¢ ligne et de la j® colonne de M*Com est (Xi,l . Xim) ! (Cofﬂ e Cofj,n)

puisque la j° colonne de “Com est t(CofjJ e Cofj’n). Lorsque ¢ = j, ce produit égale det, c’est une redite
du développement de det = det M par rapport a la ¢ ligne. Lorsque ¢ # j, en substituant L; & L; dans det, on
obtient, en développant par rapport a la j€ ligne, que

. t
det (L17 ey Li, N ;Li7 . 7Ln) = Li . (Cij’l N Cijm) = (Xi71 ‘e sz) . (Cij_yl [P Cij,n) 5
le déterminant du terme de gauche étant nul puisque deux lignes sont égales — 1'une des deux lignes L; écrites

est au rang j, 'autre au rang 1. [ |

Exercice 36

(i) Si A est un anneau commutatif et si A € M, (A), alors A est inversible & droite (resp. & gauche) dans
Panneau M,, (A) si, et seulement si det A est inversible dans l'anneau A. En particulier, A est inversible &
droite si, et seulement si A est inversible & gauche. Dans ces conditions, A~1 = (det A) ™" x ‘Com(A).

(i) Si F est un corps et si A € M,, (F), alors A € GL (n,TF) si, et seulement si det A # 0.

Théoréme (Cayley-Hamilton)
Soient n > 1 et M la matrice n x n générique. On note xp(X) € Z[X,X11,X12,...,Xnn] le polynéme
caractéristique de M, i.e. xap(X) =det (X1, — M). Alors, en notant O,, la matrice n X n nulle,

xm(M) =0y,
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A noter
Egalité entre matrices a coefficients polynomiaux, le théoreme de Cayley-Hamilton doit étre lu comme n
identités polynomiales.

2

PREUVE. Attention au raisonnement hatif et erroné qui consiste a remplacer X par M dans s, penser que
X1, devient alors M (c’est 1a lerreur) et conclure. L’idée qui consiste & spécialiser [X=M)] n’est pas stupide
du tout, mais requiert davantage d’attention. On part de (7) que 'on applique & la matrice XI,, — M dont les
coefficients sont dans Z [X, X1 1, X1,2,..., Xpn,n]. On obtient

Com (X1, — M) x (XI,, = 'M) = xa(X)1,,. (8)

On note Z[M] le sous-anneau — commutatif — de M, (Z[X11,X1.2,...,Xn.n]) engendré par M, qui est
lanneau des polynémes en M & coefficients entiers. Soit alors s : Z[X,X11,X1,2,--., Xnn] — Z[M] la
substitution X — M. On prolonge s aux matrices n x n & coefficients dans Z [X, X1.1, X12,..., X, 5] et on le
note encore s. Ainsi, I’homomorphisme d’anneaux

s M (Z[X, X110, X12,- ., Xpw]) — M, (Z[M])

envoie une matrice a coefficients polynomiaux en X, Xy q,... X, , sur une matrice dont les coefficients sont
eux-méme des matrices a coefficients polynomiaux en Xj 1,...X, ,, en remplacant X par M. Pour tout
ke {1,...,n}, on note 6, € M, 1 (Z) le vecteur-colonne canonique d;, = t(07 ...,0,1,0,...,0), le 1 étant placé
au rang k. Alors, si A € M,, (Z[M]), et si V est un vecteur-colonne dont les coefficients sont eux-méme des
vecteurs-colonne, le produit matriciel A -V a encore du sens par les régles habituelles de calcul matriciel ; ¢’est
encore un vecteur-colonne a coefficients vecteurs-colonne. En particulier,

o1 X (M)oy
s (X)) - | ¢ | = : : (9)
On xm (M)én
Par ailleurs, en notant M; ; = X; ; le coefficient de la i° ligne et de la j® colonne de M,
01 Méy — >3 My 16y 0,
s(XL="M)-| | = : = (10)
On M6, — >3 M0k O,

ou 0,, désigne le vecteur-colonne nul de M,, 1 (Z). Combiner (8), (9) et (10) conduit au résultat puisqu’une
matrice carrée est nulle si, et seulement son produit par tous les d est nul. [ |

Exercice 37

Faire une autre preuve du théoreme de Cayley-Hamilton ainsi énoncé en le prouvant d’abord pour les matrices
diagonalisables & coefficients complexes, puis en utilisant le théoreme de prolongement analytique pour les
polynémes a plusieurs indéterminées.

Exercice 38

Avec cette étude sur le déterminant générique, retrouver tous les résultats standard d’algebre linéaire des
premiéres années d’enseignement supérieur qui font intervenir un déterminant (sur un corps), notamment ceux
qui concernent la résolution des systemes linéaires. En voici quelques exemples.

(i) Deux matrices semblables ont le méme déterminant. On définit ainsi le déterminant d’un endomorphisme
d’un espace vectoriel de dimension finie, qui est le déterminant commun a toutes les matrices qui le représentent
via le choix d’une base.

Mieux encore, deux matrices semblables ont le méme polyndme caractéristique — mais la réciproque est fausse,
chercher un contre exemple le plus parlant possible. On définit ainsi le polynome caractéristique d’un endomor-
phisme comme le polyndéme caractéristique commun a toutes les matrices qui le représentent via le choix d’une
base.

(ii) Si F est un corps, une matrice carrée est inversible dans M, (F) si, et seulement si son déterminant est non
nul. Un endomorphisme d’une espace vectoriel de dimension finie est bijectif si, et seulement si son déterminant
est non nul.
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(iii) Une base B d’un espace vectoriel V' de dimension finie n étant donnée, on définit le déterminant d’une
n-uplet de vecteurs comme étant le déterminant de la matrice de leurs coordonnées dans la base B. On le note

detg (v1,...,v).
Si V est un espace vectoriel de dimension finie n, 1’espace vectoriel des applications n-linéaires alternées™ sur
V est une droite vectorielle. Si B est n’importe quelle base de V', application (v1,...,v,) — detg (vi,...,v,)

est une base de cet espace ; en outre, detg (B) = 1.
Enfin, si f est un endomorphisme de V,

detg (f (v1),..., [ (vy)) =det(f) x detp (v1,...,vp).

(iv) Sur un corps, un systéme linéaire homogene admet une solution non triviale si, et seulement si son
déterminant est nul.
(v) Sur un corps F, si A € GL (n,F) est une matrice inversible et si B € M,, 1 (), alors le systeme linéaire
AX = B admet une unique solution X = “(z1,...,2,) € M, (F), dont la k° coordonnée s’écrit selon les
formules de Cramer

det Ak
T =
T det A
ou Ay, est la matrice obtenue en remplagant la k° colonne de A par le vecteur-colonne B.

(vi) Si r est un entier naturel non nul, les mineurs d’ordre r d’une matrice (rectangulaire) sont les déterminants
de ses sous-matrices carrées r X r. Alors, une matrice est de rang r si, et seulement si elle admet un mineur
d’ordre r non nul alors que tous ses mineurs d’ordre r + 1 sont nuls.

(vii) Sur un corps F, deux matrices carrées n x n (ou deux endomorphismes) sont semblables si, et seulement si
elles ont les mémes les facteurs invariants dits encore invariants de similitude, qui sont des suites de polynomes
unitaires & une indéterminée qui se divisent les uns les autres, sous la forme P;|Ps|...|Py,.

Dire que la suite P;|P|...|P,, est la suite des invariants de similitude d’un endomorphisme f d’un espace
vectoriel de dimension finie V signifie que V' se décompose en une somme directe V = @;ﬂzl Vi de sous-espaces
stables par f et que, pour chaque k, le polyné6me minimal et le polynéme caractéristique de I’endomorphisme
de V}, induit par f sont tous les deux égaux a Py. En particulier, P, est le polynome minimal de f et P, ... Py,
son polynome caractéristique, la somme des degrés des Py valant n.

Calculer les invariants de similitude d’une matrice A € M,, (F) revient essentiellement & effectuer 1’algorithme
du pivot de Gauss sur la matrice X I,, — A dans 'anneau euclidien F[X], les invariants de similitudes apparaissant
alors sur la diagonale de la matrice échelonnée réduite obtenue & la fin de I’algorithme.

4.2 Transvections et dilatations

Dans toute cette section, V est un espace vectoriel de dimension finie n sur un corps F. On note End(V') I'espace
vectoriel des applications linéaires V' — V et V* I'espace dual de V', qui est I'espace des formes linéaires V' — F.

Un hyperplan de V en est un sous-espace de dimension n — 1. Une forme linéaire u € V* \ {0} est une équation
d’un hyperplan H lorsque H = ker u.

Les transvections et les dilatations de V sont les endomorphismes qui ont un hyperplan de vecteurs fixes.
L’objectif principal est de montrer que les transvections engendrent le groupe spécial linéaire et que les transvec-
tions et les dilatations engendrent le groupe linéaire.

Définition (vecteur fixe)
Si f est un endomorphisme de V et si v € V, on dit que v est un vecteur fize de f lorsque f(v) = v.

A noter
L’ensemble des vecteurs fixes de V' en est un sous-espace vectoriel, qui est ker (f —idy). Autrement dit, le
sous-espace de points fixes de f est I'espace propre de f associé a la valeur propre 1.

“ Attention, sur un corps de caractéristique 2, les formes multilinéaires antisymétriques sont symétriques et ne coincident pas
avec les formes alternées.
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Définition (transvection)
Un endomorphisme ¢ € End(V) est une transvection de V lorsqu’il existe une base B de V' pour laquelle

1 0
1 0
1 0
Matg (t) = ) . (11)
1 1
0 0 O 0 1
A noter
Soit t une transvection qui admet la matrice (11) dans la base B = (v1,...,v,) de V.
Alors le sous-espace des vecteurs fixes de t est 'hyperplan H = ker (t — idy ) = Vect (v1, ..., v,—1) et U'image de

t —idy est la droite vectorielle D = im (t —idy) = Vect (v,—1). Cette derniere est incluse dans H. On appelle
respectivement H et D l’hyperplan de t et la droite de t.

Si (z1,...,z,) est le systéme générique des coordonnées dans B, 'hyperplan de ¢ a pour équation z, =0 et la
transvection s’écrit t(v) = v + xpv,—1, pour tout v € V' — il suffit de vérifier cela sur les vecteurs de la base B.
Enfin, une transvection n’est pas diagonalisable.

Proposition (caractérisation des transvections)

Soient V' un F-espace vectoriel de dimension finie et f € End(V'). Les assertions suivantes sont équivalentes.
(i) f est une transvection

(ii) ker (f —idy) est un hyperplan et det f =1

(iii) ker (f —idy) est un hyperplan et f n'est pas diagonalisable

(i) ker (f —idy) est un hyperplan et la droite im (f —idy) est incluse dans ker (f — idy)

(v) il existe u € V*\ {0} et h € keru \ {0} tels que f(v) = v+ u(v)h, pour tout v € V.

PREUVE. (i)=(ii) est immédiat. (ii)=-(iii) Si ker (f — idy) est un hyperplan, alors 1 est une valeur propre de f
de multiplicité au moins d — 1. Puisque det f = 1, la valeur propre 1 est de multiplicité d alors que I'espace de
vecteurs fixes est de dimension d — 1. Donc f n’est pas diagonalisable. (iii)=-(iv) Puisque H = ker (f —idy ) est
un hyperplan, grace au théoréme du rang, D = im (f — idy) est une droite vectorielle stable par f, c’est-a-dire
une droite de vecteurs propres pour f. Si elle n’était pas dans H, alors f serait diagonalisable puisque la
concaténation d’une base de H et d’une base de D formerait une base de vecteurs propres de f. (iv)=-(v) On
note encore H = ker (f —idy) et D = im (f —idy) et on suppose que H est un hyperplan (ce qui implique que
D est une droite) et que D C H. Soit u € V* une équation de H et soit w € V tel que u(w) =1 — un tel w
existe puisque u # 0. Soit alors h = f(w) —w. Comme h € D, h € H ; en outre, h # 0 puisque f(w) # w.
Alors, V = H@Fw et f(v) =v+u(v)h pour tout v € V puisque cette formule est vraie sur H et en w. (v)=>(i)
Soient H = keru = ker (f —idy) et w € u~!(1). On complete h en une base (hy,...,h,_2,h) de H. Alors,

(h1,...,hp—2, h,w) est une base de V' et la matrice de f dans cette base a la forme requise, puisque les hy et h
sont fixes et puisque f(w) = h + w. [ |
A noter

(i) L’inverse d’une transvection est encore une transvection.

En effet, du point de vue matriciel, 'inverse de la matrice (11) est de la méme forme en remplagant le 1 non
diagonal de la derniere colonne par un —1, ce qui donne encore une matrice de transvection puisqu’elle est
semblable & (11). Du point de vue géométrique, si f est une transvection de la forme (v) ci-dessus, son inverse
est la transvection v — v — u(v)h.

(ii) Toute conjuguée dans GL(V') d’une transvection est encore une transvection.

C’est une conséquence directe de la définition d’une transvection, qui dit méme que deuz transvections quelcon-
ques sont conjuguées dans GL.

Mieux, si g € GL(V) et si t est une transvection d’hyperplan H et de droite D C H, alors gtg~—' est une
transvection d’hyperplan g(H) et de droite g(D). Plus précisément encore, si u € V*\ {0} et h € keru \ {0},
on note t(u,h) la transvection de V définie par la caractérisation (v), c’est-a-dire par la formule Vo € V,
t(u,h) (v) = v+ u(v)h. Avec cette notation, gt (u,h)g~' =t (uog™t,g(h)) pour toute g € GL(V) — bien
noter que uo gt € V*\ {0} et que g(h) € ker (uog~') \ {0}.
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Lemme (géométrique, pour la preuve du théoréme qui suit)
On suppose que V' est de dimension au moins 2.
(i) Sixz,y € V\ {0}, il existe T € End(V) tel que T soit un produit d’une ou deux transvections et T(x) = y.

(i1) Si H et K sont deuz hyperplans distincts de V et si x € V\ HU K, alors il existe une transvection T telle
queT(z) =z et T7(H) = K.

PREUVE. (i) On suppose d’abord que z et y ne sont pas colinéaires. On pose h = y — = et on prend un
hyperplan H de V' qui contienne h mais pas x, ce qui est possible puisque n = dimV > 2 et {z, h} est libre.
Soit alors u une équation de H telle que u(x) = 1. Alors, 7(v) = v + u(v)h définit une transvection qui envoie
x sur y. Ensuite, si x et y sont colinéaires, soit z € V' \ Fz. Un tel z existe puisque dimV > 2. Selon ce qui
précede, soient t1 et ty deux transvections telles que t1(z) = z et ta(z) = y. Alors, T = t3 o t; envoie x sur y.

(i) H N K est un sous-espace de V' de dimension n — 2. Puisque = ¢ H N K, lespace Fx @& (H N K) est
un hyperplan de V' ; soit u € V* une équation de cet hyperplan. Soient alors h € H et k € K tels que
H=HNK®Fhet K = HNK &Fk. Puisque u(h) # 0 # u(k), quitte & remplacer h et k par h/u(h) et
k/u(k), on peut supposer que u(h) = u(k) = 1. Alors, la transvection 7 : v — v + u(v)(k — h) envoie h sur k et
fixe HN K : elle envoie H sur K. En outre, elle fixe x puisque x est dans son hyperplan. [ ]

Théoréme (les transvections engendrent SL(V))

Soit V' un espace vectoriel de dimension finie. Alors, le groupe SL(V') est engendré par ses transvections.

PREUVE. On procéde par récurrence sur n = dimg V. Si n = 1, alors SL(V) = {idy} et il n’y a rien &
démontrer. On suppose que n > 2.

Soient f € SL(V) et x € V' \ {0}. On cherche & montrer que f est un produit (une composée) de transvections.
En appliquant le (i) du lemme géométrique, soit 71 un produit d’une ou deux transvections tel que 71 (f(z)) = «.
Alors, 71 f € SL(V) et 71 f fixe . On peut donc supposer que f fixe z. Soit H un hyperplan de V tel que
H @®Fz = V. En particulier, x ¢ H N f(H) puisque f~*(z) =z ¢ H. Si f(H) # H, en appliquant le (i) du
lemme géométrique, soit 7o une transvection telle que 72 (f(H)) = H et mo(x) = z. Alors, o f € SL(V), fixe x
et vérifie 7o f(H) = H — on dit que 7o f stabilise H.

Ainsi, on peut supposer que f fixe x et stabilise un hyperplan H tel que H @ Fx = V.

Dans cette situation o H @ Fx = V, si ¢ € End(H), on note ¢ @ id I'endomorphisme de V' défini par
e@id(h+E&x) = p(h)+E&x (notations évidentes, £ € F). L’ensemble des endomorphismes de V' de déterminant 1,
qui fixent x et qui stabilisent H forme un sous-groupe SLy (V') de SL(V') et l'application SL(H) — SLy . (V),
@ — @ @1id est un isomorphisme de groupes dont la réciproque envoie I’endomorphisme f sur ’endomorphisme
fu € End(H) induit sur H par restriction. En outre, cet isomorphisme transforme toute transvection de H
en une transvection de V. [On peut, si 'on veut, adopter un point de vue matriciel pour argumenter tous ces
derniers points.|

On revient au f € SLy (V) dont on cherche & montrer qu’il est produit de transvections. Par récurrence,
fr est un produit de transvections de H. Par le mécanisme décrit au paragraphe précédent, on prolonge ces
transvections en des transvections de V dont le produit égale f. [ |

Corollaire (centre de SL)

Soit F un corps et n € N\ {0}.

Le centre de SL (n,F) est le groupe des homothéties de la forme {xI,, x € F, ™ = 1}, isomorphe au groupe
des racines n° de l'unité dans F.

PREUVE. On raisonne comme dans le calcul du centre de GL déja fait au chapitre de généralités sur les
groupes. La premiere partie de la preuve est simplifiée par la formule de conjugaison des transvections : soit
f € Z(SL(F™)). Alors, f commute avec toutes les transvections de F”. Ainsi, d’apres la formule de conjugaison
(par f) des transvections, f stabilise toutes les droites de F". Donc f est une homothétie, comme le montre la
fin de la preuve déja faite du calcul du centre de GL. [ |

N. Pouyanne, UVSQ 2026, LSMA610 34



Définition (dilatation)
Un endomorphisme d € End(V) est une dilatation de V lorsqu’il existe une base B de V et € F\ {0,1} tels
que

1
1
Matg (d) = diag (1,...,1,2) = . (12)
1
x

A noter
Soit d une dilatation qui admet la matrice diag (1,...,1,x) dans la base B = (v1,...,v,) de V.
Alors le sous-espace des vecteurs fixes de d est 'hyperplan H = ker (d — idy) = Vect (v1,...,v,—1) et image de

d—idy est la droite vectorielle D = im (d — idy ) = Vect (v,,). Cette derniére, qui est aussi les sous-espace propre
de d associé a la valeur propre z, est un supplémentaire de H dans V : V = H & D. On appelle respectivement
xz, H et D le rapport, Uhyperplan et la droite de d.

Ces trois données caractérisent une dilatation : lorsque z € F \ {0,1}, H un hyperplan et D est une droite qui
n’est pas contenue dans H, on parle de la dilatation de rapport z, d’hyperplan H et de droite D. Avec les
notations de la preuve du fait que les transvections engendrent SL, la dilatation de rapport x, d’hyperplan H
et de droite D est idyg @z idp : vy + vp — vy + zvp (notations évidentes).

Enfin, une dilatation est diagonalisable.

Proposition (caractérisation des dilatations)

Soient V' un F-espace vectoriel de dimension finie et f € GL(V). Les assertions suivantes sont équivalentes.
(i) f est une dilatation

(i) ker (f —idy) est un hyperplan et det f # 1

(ii) ker (f —idy ) est un hyperplan et f est diagonalisable

(iv) ker (f —idy) est un hyperplan et la droite im (f — idy) n’est pas incluse dans ker (f —idy)

(v) Il existe x € F\ {0, 1}, un hyperplan H et une droite supplémentaire D telles que f = idyg @z idp.

PREUVE. (i)=-(ii) Si le rapport de f est z, alors det f = x. (ii)=-(iii) Si le sous-espace des vecteurs fixes
par f est un hyperplan, son polynéme caractérisitique est (X — 1)"1(X — det f). Si det f # 1, alors f est
diagonalisable. (iii)=-(iv) Puisque f est diagonalisable et puisque H = ker (f —idy) est un hyperplan, soit
D =ker (f — xzidy) la droite de vecteurs propres associée a la valeur propre différente de 1, que ’on nomme z.
Alors, D # H. En outre, le théoréme du rang assure que im (f — idy ) est une droite. Enfin, puisque x # 1, tout
vecteur v de D s’écrit v = (f;i#. Donc la droite D est incluse dans la droite im (f —idy ) : ces deux droites
sont donc égales ; elles ne sont pas dans H. (iv)=(v) La droite D = im (f —idy) est stable par f : c’est une
droite propre, associée & une valeur propre z. Puisque D n’est pas incluse dans 'hyperplan H = ker (f — idy ),
alorsz #1,V=H®Det f =idyg ridp. (v)=(i) Cest immédiat, voir le d¢ noter qui suit la définition d’une
dilatation. ]
A noter

(i) L’inverse d’une dilatation est encore une dilatation : méme hyperplan, méme droite, rapports inverses I'un
de lautre.

(ii) Toute conjuguée dans GL(V') d’une dilatation est encore une dilatation.

Plus précisément, soient g € GL(V) et d la dilatation de rapport =, d’hyperplan H et de droite D. Alors, gdg~!
est la dilation de rapport z, d’hyperplan g(H) et de droite g(D).

Enfin, conséquence immédiate de la définition, deuz dilatations sont conjuguées dans GL si, et seulement si
elles ont le méme rapport.

Proposition (les transvections et les dilatations engendrent GL(V))

Soit V' un espace vectoriel de dimension finie. Alors, le groupe GL(V') est engendré par ses transvections et ses
dilatations.

PREUVE. Soit f € GL(V). Si f € SL(V), alors f est produit de transvections. Sinon, soit d n’importe quelle
dilatation de rapport det f. Alors, d~1f € SL(V) est un produit de transvections. ]
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Définition (homographies, groupes PGL et PSL)

Soit V un espace vectoriel de dimension finie n sur un corps F. On I’a vu, les groupes GL(V') et SL(V') admettent
respectivement pour centres les groupes d’homothéties Z (GL(V)) = F*idy et Z (SL(V)) = u, (F)idy, ou
tn (F) désigne le groupe des racines n® de I'unité dans F. On note PGL(V') et PSL(V') les groupes-quotient
suivants :

PGL(V) = GL(V)/F*idy et PSL(V) = SL(V)/un (F)id, .

Un élément de PGL(V) est une homographie sur V. Un élément de PSL(V') est une homographie spéciale sur V.
[A vrai dire, ce vocabulaire trouve tout son sens lorsqu’on considere ces objets comme les transformations de
Despace projectif P(V) qui est 'ensemble des droites vectorielles de V]

Du c6té des matrices, de fagon analogue, on note

PGL (n,F) = GL (n,F) /F*I, et PSL(n,F)=SL(n,F)/u, (F) I,.

Exercice 39

(i) Montrer que GL (n,Z/27) = SL (n,Z/27) ~ PGL (n,Z/2Z) = PSL (n,Z/27).

(if) Montrer que selon que n est pair ou impair, PSL (n,R) = SL (n,R) / {£I,} ou PSL (n,R) ~ SL (n, R).
Théoréme (simplicité de PSL, sauf cas sporadiques)

Soient F un corps et n > 1. Alors, sauf lorsque (n,F) = (2,Z/27) ou (n,F) = (2,Z/3Z),

le groupe PSL (n,F) est simple.

Les deux cas sporadiques
Un fois intallée la notion d’action d’un groupe sur un ensemble, on verra que PSL(2,Z/2Z) ~ &3 et que
PSL (2,7Z/37) ~ 4 dont on sait qu’ils ne sont pas simples.

PREUVE. Voir liste d’exercices numéro 2 et 3. |

4.3 Le groupe linéaire sur les corps finis

Théoréme (corps finis)
(i) Le cardinal d’un corps fini est nécessairement la puissance d’un nombre premier.

(ii) Sip est un nombre premier et si d € N*, il existe un corps de cardinal p?, unique a isomorphisme (d’anneaus)
pres.

PREUVE. (i) Soient F un corps fini et p sa caractéristique. Alors p est premier puisque I’homomorphisme
d’anneaux Z — F (1 — 1p) a pour noyau pZ et se factorise donc en un homomorphisme injectif i : Z/pZ — F,
ce qui oblige Z/pZ & étre intégre. En outre, Z/pZ est un corps ainsi que son image par ¢ qui est un sous-corps
de F contenu dans tous les sous-corps de F. On appelle F,, = i (Z/pZ) le sous-corps premier de F. Dans ces
conditions, pour ’addition et la multiplication dans IF, le corps F est un espace vectoriel sur ), de dimension
finie d puisque I’ensemble F lui-méme est fini. Ainsi, en tant qu’espace vectoriel, F est isomorphe & Fg, dont le
cardinal est p.

On admet le (ii), ®. Pour l'essentiel, retenir que le groupe multiplicatif d'un corps F & ¢ = p? éléments est
d’ordre ¢ — 1. Ainsi, d’apres le théoreme de Lagrange, tout élément de F est racine du polynéme X? — X dont
les coefficients (£1) sont dans le sous-corps premier F,, de F. En procédant par quotients successifs de ’anneau
principal F,[X] par les facteurs irréductibles de X7 — X, on obtient ce que l'on appelle le corps de décomposition
de X7 — X qui a les propriétés voulues par assertion (ii), y compris 1'unicité. [ |

Exemple Il n’y pas de corps a 3773 éléments.

Définition (“le” corps F,)
Si ¢ est la puissance d’un nombre premier, on note F, la classe d’isomorphisme des corps finis a ¢ éléments, ou
le plus souvent n’importe quel corps de cette classe.

Par exemple, on pourra noter F,, = Z/pZ lorsque p est un nombre premier, ou Fy = Z/2Z[X]/ (X2 + X + 1)
ou encore Foy = Z/3Z[X]/ (X® — X + 1), méme si le statut de ces signes “=" peut étre lu de plusieurs fagons,
dont 'ambiguité n’est levée que par le contexte — souvent implicite — dans lequel on travaille.
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Proposition (les groupes multiplicatifs des corps finis sont cycliques)
Soit q la puissance d’un nombre premier. Alors,

(i) le groupe (]qu, ><) est cyclique

(ii) Lorsque d|q — 1, lunique sous-groupe d’ordre d de Fy est l'ensemble des racines d° de l'unité dans F. Si §

X

. P g—1
4 s cet unique sous-groupe d’ordre d est engendré par § @ .

est un générateur de F

PREUVE. Pour tout diviseur d de ¢ — 1, on node N(d) le nombre d’éléments d’ordre d du groupe Fy. 1l s’agit
de montrer que N(g — 1) > 1 : Texistence d’un élément d’ordre ¢ — 1 assurera que F est cyclique.

Soit d un diviseur de ¢ — 1 tel que N(d) > 1. Soit alors z € Fy, d’ordre d. Le groupe engendré par x est
d’ordre d et est contenu dans I’ensemble des racines du polynéome X¢ — 1 € F,[X]. Or, ces dernieres sont au
plus au nombre de d. Donc le groupe engendré par x est exactement I’ensemble des racines d® de I'unité de F.
En outre, il contient ¢(d) générateurs, comme tous les groupes cycliques d’ordre d. Donc N(d) = ¢(d).

On a montré que pour tout diviseur de ¢ — 1, N(d) € {0,¢(d)}. Comme tout élément de F a pour ordre un
diviseur de ¢ — 1, on a I'égalité ¢ — 1 =3, N(d). Par ailleurs, ¢ —1 =3, ¢(d). Ces trois conditions
entrainent que N(d) = ¢(d), pour tout diviseur d de ¢ — 1. En particulier, N(¢ — 1) = ¢(¢ — 1) > 1. ]

Proposition (cardinaux des groupes linéaires sur des corps finis)
Soient q la puissance d’un nombre premier et n > 1. Alors,

(i) |GL (n,Fg)l = (¢" = 1) (¢" —q) (¢" —¢*) ... (¢" — ¢" ")

(i) [SL (n,Fo)|l = (¢" = 1) (¢" —q) (¢" —¢*) ... (¢" — ¢" %) " "
(iti) [PGL (n,Fq)| = [SL (n,F,)|

() |Z (SL (n,Fy))| = pged(n,q — 1)

SL(n,Fy
(’U) |PSL (n,Fq)l = m

PREUVE. (i) On considere GL (n,F;) comme le groupe des automorphismes linéaires de Fy. Soit C =
(e1,...,en) la base canonique de Fy. Choisir un élément de GL (n,F;) revient a choisir une base de Fy.
En effet, 'image de C par un élément de GL (n,F;) est une base de [} et toute base de I}, est I'image de C par
un unique élément de GL (n,F,). Il suffit donc de compter le nombre de bases de Fy.

Or, en notant qu'un sous-espace vectoriel de ditiension d de Fy a q% éléments (il est isomorphe & Fg), fabriquer
une base (vy,...,v,) de [y, consiste successivement a :

- choisir v; parmi les vecteurs non nuls : ¢ — 1 choix possibles ;

- choisir v dans Fy \ Vect (v1) : ¢" — ¢ choix possible ;

- choisir v3 dans Fy \ Vect (v1,v2) : ¢" — q? choix possible ;

- etc jusqu'au vecteur v,, qu’il faut choisir hors de ’hyperplan Vect (v1,...,v,—1).

(ii) L’homomorphisme de groupes det : GL (n,F,) — F a pour noyau SL (n,F;). En outre, il est surjectif
puisque tout z € F est I'image par det de la matrice de dilatation diag(1,...,1,2). Le premier théoreme
d’isomorphisme montre alors que det induit un isomorphisme de groupes GL (n,F,) /SL (n,F;) ~ Fy, ce qui
implique en particulier que |GL (n,F,)| = |SL (n,Fq)| x |IE"qX |. Cela prouve le résultat.

(iii) Le centre de SL (n,Fy) est isomorphe au groupe des racines n°® de I'unité dans F,. On montre que ce groupe
est d’ordre d = pged(n,q — 1). Or, le groupe Fy est cyclique d’ordre ¢ — 1. Il a donc un unique sous-groupe
d’ordre d qui est exactement le groupe des racines d° de I'unité dans IF,. u

A noter
Plus encore que le résultat lui-méme, ce qu’il importe de retenir de I’énoncé précédent, c’est que le calcul de
l'ordre de GL revient & calculer le nombre de bases de IE‘Z et comment on mene ce calcul.

Exemple

L’ordre du groupe simple PSL (2,F5) est 60. On a déja rencontré un autre groupe simple d’ordre 60, savoir 2s.
On montrera que ces deux groupes sont isomorphes et, mieux encore, que tout groupe simple d’ordre 60 est
isomorphe a 2As.
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4.4 Le groupe orthogonal euclidien

Dans tout ce chapitre, le corps de base est R.

En bref

Un espace vectoriel réel de dimension finie est dit euclidien lorsqu’on le munit d’un produit scalaire (-|-) —
c’est-a-dire d’une forme bilinéaire symétrique définie positive. La mnorme associée a un produit scalaire est
définie par ||v]| = 1/ (v|v).

Le carré de la norme q : v — ||v||? est une forme quadratique définie positive. Le produit scalaire, qui se retrouve
a partir de la norme avec les formules standard (v|w) = % (¢(v +w) — q(v) — g(w)) = % (¢(v +w) — q(v — w)),
est la forme polaire de la forme quadratique ¢. Ainsi, les données d’un produit scalaire ou d’une forme quadra-
tique définie positive sont équivalentes.

Une base orthonormée d’'un espace euclidien en est une base (vq,...,v,) formée de vecteurs unitaires et
deux & deux orthogonaux : (v;|v;) = 0;; (Kronecker). Il en existe toujours, comme l’assure l’algorithme
d’orthonormalisation de Gram-Schmidt.

Si W est un sous-espace vectoriel d’un espace euclidien V', son orthogonal est I’ensemble des vecteurs orthogonaux
A tous les vecteurs de W ; on le note W+ = {v € V, Yw € W, (v|w) = 0}. C’est un sous-espace supplémentaire
de W : on a toujours W Wt =V.

Si W est un sous-espace vectoriel d’un espace euclidien V et si v € V se décompose en v = w+w’ ot w € W et
w' € W+, alors le vecteur w est le projeté orthogonal de v sur W. L’application py : v — w est la projection
orthogonale sur W ; elle est évidemment linéaire. Si (v1,...,v4) est une base orthonormée de W, le projeté
orthogonal de v € V' sur W est le vecteur

d
pw(v) = Z (vg|v) vg.

k=1

En complétant la base (v1,...,v4) en une base orthonormée de V' — c’est possible en combinant le théoréme
de la base incompléte et 1’algorithme de Gram-Schmidt —, on obtient que ||pw (v)|| < [|v]|.

Définition (isométrie, matrice orthogonale)

Soit V' un espace euclidien. Un endomorphisme f € End(V') est une isométrie de V' lorsque f conserve la norme,
c’est-a-~dire lorsque || f(v)|| = ||v]||, pour tout v € V. On note O(V') 'ensemble des isométries de V.

Une matrice M € M,,(R) est orthogonale lorsque M'M = I,,. On note O(n) I’'ensemble des matrices orthogo-
nales n X n.

Exercice 40
(i) f est une isométrie si, et seulement si elle conserve le produit scalaire, c’est-a-dire si, et seulement si
(f()|w) = (v|w), pour tous v,w € V. Autre point de vue : si f est un endomorphisme, les assertions suivantes
sont équivalentes :
(a) f est une isométrie ;

f transforme toute base orthonormée en une base orthonormeée ;
c) il existe une base orthonormée que f transforme en une base orthonormée.

)
)
a) M est une matrice orthogonale
b) 'MM = I,

(c) les vecteurs-colonne de M forment une base orthonormée de M,, 1(R) pour le produit scalaire standard sur
M, 1(R), défini par (X|Y) ='XY

(d) les vecteurs-ligne de M forment une base orthonormée de M, ,,(R) pour le produit scalaire standard sur
My ,(R), défini par (X|Y) = XY

(iii) Si f est une isométrie de V et si W est un sous-espace vectoriel de V stable par f, alors W+ est un
sous-espace de V stable par f qui vérifie W @ W+ = V. En outre, les endomorphismes de W et de W+ induits
par f sont aussi des isométries.

(
(

11 01 c n . €S quatre assertions sulvantes sont equivalentes :
i) Soit M € M, (R). Les quat ti ivant t équivalent
(
(

[C’est cette propriété de stabilité de orthogonal qui rend trés facile la réduction des isométries ou des matrices orthogonales.]

(iv) Si f est une isométrie et si M est sa matrice (orthogonale) dans une base orthonormée, changer de base
orthonormée revient & conjuguer la matrice de f par une matrice orthogonale. Autrement dit, les matrices de
changement de bases orthonormées sont les matrices orthogonales.
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(v) Muni de la composition des applications, O(V') est un sous-groupe de GL(V'). Muni de la multiplication mat-
ricielle, O(n) est un sous-groupe de GL(n,R). Le choix d’une base orthonormée B de V induit un isomorphisme
de groupes (non canonique : si on change de base, on change d’isomorphisme)

~

owv) — O(n)
f — Matg(f).

(vi) Si ¢ est une isométrie ou une matrice orthogonale, alors det¢ € {—1,1}. L’ensemble des isométries de
déterminant 1 est un sous-groupe distingué de O(V'). L’ensemble des matrices orthogonales de déterminant 1
est un sous-groupe distingué de O(n).

(vii) Si A est une valeur propre réelle d’une isométrie, alors A € {—1,1}. Toute valeur propre complexe d’une
isométrie est de module ldans le cadre des matrices et des vecteurs-colonne, on pourra remarquer que si
MX = XX, alors M X = AX puisque M est une matrice réelle).

Vocabulaire

Le groupe O(V) est le groupe orthogonal de V. Le groupe O(n) est le groupe orthogonal en dimension n — ou
groupe orthogonal tout court, la dimension n étant sous-entendue lorsque le contexte le permet. Une rotation
de V est une isométrie dont le déterminant vaut 1 ; on dit aussi que c’est une isométrie positive. Une matrice de
rotation est une matrice orthogonale de déterminant 1 ; on dit aussi que c’est une matrice orthogonale positive.

Notation
On note SO(V) le groupe des rotations de V et SO(n) le groupe des matrices de rotations en dimension n. On
note SO pour groupe spécial orthogonal.

A noter
Comme le déterminant est un homomorphisme surjectif de groupes O(V) — {—1, 1} dont le noyau est SO(V),

[O(V):S0(V)]=2et [O(n):SO(n)] =2.

Notation
Pour tout 6 € R, on note Ry et Sy les matrices orthogonales

cosf) —sinf
Ry = (sin9 cos @

) €S0(2) et Sy = (zﬁjz Slcr;fa) € 0(2)\ SO(2).

Exercice 41

(i) Pour tous s,t € R, RsR; = Reyt, SsS: = Rs—t, RsSt = Ssyt et SqRy = Rs—y.

(ii) Pour tout # € R, le polynéme caractéristique de Ry est X? — 2X cosf + 1 = (X — eie) (X — e*w). En
particulier, Ry est diagonalisable (sur R) si, et seulement si Ry = +15.

(iii) Pour tout 0 € R, Sp est diagonalisable, semblable & diag(1, —1), et vérifie S3 = I>.

Proposition (classification des isométries en dimension 2)
(i) Pour tout R € SO(2), il existe € R tel que R = Ry.
(i) Pour tout S € O(2) \ SO(2), il existe § € R tel que S = Sy.

a ¢

PREUVE. Soit (b d

) € 0(2). Alors a® +b? = 1. Soit™ alors § € R tel que (Z) = (Cose) Comme le

sin 6

vecteur-colonne (2) est unitaire et orthogonal a <(Z>, nécessairement, (2) =+ (_Czlsnee) On conclut selon
que le déterminant de (Z ccl) vaut 1 ou —1. [ |

Proposition (le groupe O(2))
(i) Le groupe SO(2) est abélien, isomorphe au groupe multiplicatif S* des nombres complexes de module 1.
(i1) Pour tout S € O(2) \ SO(2), la paire {SO(2), S - SO(2)} est une partition de O(2).

“L’existence d’un tel @ résulte des propriétés élémentaires de 1’exponentielle. Voir par exemple les quatre premicres pages du
livre de W. Rudin : Real and complex analysis, ou sa traduction francaise si on préfere.
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[On a noté S - SO(2) = {SR, R € S0(2)}.]

PREUVE. Que SO(2) soit abélien résulte de la formule d’addition des angles RsR; = Rs1¢. Cette formule
montre que l'application 6 — Ry est un homomorphisme de groupes (R, +) — (SO(2), x), surjectif d’apres la
classification des isométries en dimension 2. Son noyau est 277Z, c’est encore une propriété des fonctions sinus
et cosinus, elle-méme héritée des propriétés de I'exponentielle. Le premier théoréeme d’isomorphisme induit
alors un isomorphisme de groupes R/27Z — SO(2). Par ailleurs, 'exponentielle R — S1, 6 + €% induit aussi
un isomorphisme de groupes R/27Z — S!. La partition indiquée de O(2) est celle de ses classes modulo son
sous-groupe distingué SO(2). [ ]

A noter

(i) L’isomorphisme de groupes de la preuve entre S et SO(2) est 'application suivante, bien définie grace au
raisonnement tenu :

~

st = SO(2)
e — Ry.

La structure de groupe commune sur S* ou sur SO(2) contient toutes le formules trigonométriques d’addition.
(ii) Lorsque n > 3, le groupe SO(n) n’est pas abélien : la commutativité de SO(2) est une situation exception-
nelle. On peut la voir comme étant responsable de 'existence des angles orientés de vecteurs en dimension 2,
notion qui disparait en dimension supérieure.

Proposition (classification des isométries en dimension quelconque)
Soit V' un espace euclidien de dimension n > 2 et f une isométrie de V. Il existe une base orthonormale de V
dans laquelle la matrice de f s’écrit par blocs sous la forme

I
—I,
Ry,
Ry,

Ry,

avec r,s,t € N, 01,...,0; € R.

PREUVE. On procede par récurrence sur n. Pour n > 2, c’est fait. On suppose que n > 3. Si 1 ou —1 est
valeur propre de f, puisque le supplémentaire orthogonal W+ du sous-espace stable non nul W = ker (f £ idy/)
est aussi stable par f, il suffit de mettre bout & bout des bases orthonormales de W et, par récurrence, de W+
pour obtenir la base cherchée. Si ni 1 ni —1 n’est valeur propre de f, alors toutes les valeurs propres de f
sont des nombres complexes non réels (de module 1). La encore, il suffit de trouver un plan de V stable par
f pour pouvoir appliquer I’hypothese de récurrence a son supplémentaire orthogonal et conclure. On se place
dans un cadre matriciel : soit M € O(n) la matrice de f dans une base orthonormée quelconque ; ses valeurs
propres sont des nombres complexes non réels. Puisque C est algébriquement clos, de telles valeurs propres
existent. Soient ¢ € ST\ {~1,1} et X € M, 1 (C) tels que MX = (X et X # 0. Comme ¢ n’est pas reélle,
X ¢ M1 (R). Puisque M est une matrice réelle, il en résulte que M X = (- X, ou X désigne le vecteur-colonne
dont les coordonnées sont les conjuguées des coordonnées de X. Alors, les vecteurs X + X et X — X ont des
coordonnées réelles et sont linéairement indépendants : ils engendrent un plan vectoriel de M,, 1 (R), stable par
M. C’est ce que 'on cherchait. [ |

Définition (réflexions et renversements)

Une isométrie est une réflexion lorsque sous sous-espace des vecteurs fixes est un hyperplan. L’hyperplan
ker (f —idy ) est appelé hyperplan de la réflexion. Une isométrie f d’un espace euclidien de dimension n est un
renversement lorsque dimker (f —idy) =n — 2 et dimker (f +idy) = 2.

Autrement dit, les réflexions et les renversements sont les isométries qui admettent respectivement pour matrices
par blocs, dans une base orthonormée convenable,

S )
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A noter

(i) Les renversements sont des isométries positives. Les réflexions sont des isométries négatives. En dimension 2
et en dimension 2 seulement, la réciproque est vraie : toute isométrie négative est une réflexion.

(ii) Si f est une réflexion ou un renversement de V, alors f est une involution : f? = idy .

Exercice 42

Dans le groupe orthogonal, toute conjuguée d’une réflexion est une réflexion et toute conjuguée d’un renverse-
ment est un renversement.

Plus précisément, si s € O(V) est la réflexion d’hyperplan H et si g € O(V), alors gsg~' est la réflexion
d’hyperplan g(H). De méme, si r est le renversement dont ’espace des points fixes est le sous-espace W de
codimension 2, alors grg~! est le renversement dont I'espace des points fixes est g(W).

Proposition (centres de O et de SO)
(i) Pour tout n > 2, le centre de O(n) est {—I,, I}

(i) Pour tout n > 3, le centre de SO(n) est {—1I,,I,} ou {I,}, selon que n est respectivement pair ou impair.

1

PREUVE. (i) Soit V un espace euclidien de dimension n. Soit f une isométrie du centre de O(V). Si s est
n’importe quelle réflexion dont la droite des points fixes est D, alors fsf~! est encore une réflexion dont la
droite des points fixes est f(D). Comme fsf~! = s puisque f est central, on en déduit que f(D) = D. On
a montré que f stabilise toutes les droites vectorielles de V', ce qui entraine que f est une homothétie, comme
dans le calcul du centre de GL(V). Or, les seules homothéties de O(V') sont +idy .

(ii) Soit V' un espace euclidien de dimension n. Soit f une isométrie du centre de SO(V'). Si r est n’importe
quel renversement dont le plan des points fixes est P, alors frf~! est encore un renversement dont le plan des
points fixes est f(P). Comme frf~! = r puisque f est central, on en déduit que f(P) = P. On a montré que
f stabilise tous les plans vectoriels de V. Or, puisque n > 3, toute droite est intersection de deux plans. Donc
f stabilise toutes les droites : c¢’est une homothétie. [ |

Exercice 43
Montrer que l'application {—1I3, I3} x SO(3) — O(3), (el3, M) — &M est un isomorphisme de groupes.
Montrer que cet exemple se généralise & des isomorphismes de groupes O(2n + 1) ~ {£1} x SO(2n + 1), pour
tout n € N, mais que les groupes O(2n) et {£1} x SO(2n) ne sont jamais isomorphes (on pourra considérer
leurs centres).

Proposition (les réflexions engendrent le groupe orthogonal)
Soit V' un espace euclidien de dimension n. Alors, toute isométrie de V' est produit d’au plus n réflexions.

PrREUVE. Soit f € O(V). On note Fix(f) = ker (f —idy ) le sous-espace des vecteurs fixes de f. On montre
par récurrence (forte) sur codim Fix(f) = n—dim Fix(f) que f est produit d’au plus codim Fix(f) réflexions, ce
qui est plus fort que le résultat annoncé. Si codim Fix(f) = 0, alors f = idy est produit de 0 réflexions (I’énoncé
de la proposition suggere cette convention de fagon implicite, ’ajouter s’il faut pour lever 'ambiguité). On
suppose que codim Fix(f) > 1. Soient alors x € Fix(f)* \ {0} et y = f(z). Puisque = ¢ Fix(f), z —y # 0. En
outre, puisque f est une isométrie, ||z||? = ||y||?, ce qui entraine que z —y Lz +y. Soit 7 la réflexion d’hyperplan
H = Vect(x — y)*. Alors, x +y € Fix(r) et z —y € HL. Ainsi, Fix(f) C Vect(z — y)* = H = Fix(r). Cela
entraine immédiatement que Fix(f) C Fix(rf). Or, r(y) = « comme le montrent les égalités r(x +y) =z +y
et r(x —y) = —xz +y. Ainsi, z € Fix(rf) \ Fix(f). I en résulte que codimFix(rf) < codimFix(f). Par
récurrence, rf est produit d’au plus codim Fix(rf) réflexions, ce qui entraine que f est produit d’au plus
codim Fix(rf) + 1 < codim Fix(f) réflexions, puisque les réflexions sont des involutions. ]

Exercice 44

Faire une autre preuve du méme résultat en adoptant un point de vue matriciel et en utilisant le théoreme de
classification des isométries en dimension quelconque. On pourra aussi s’appuyer sur les formules de multipli-
cation entre les Ry et les Sy établies dans ’exercice qui suit leurs définitions.

Proposition (les renversements engendrent SO en dimension > 3)

Soit V' un espace euclidien de dimension n > 3. Alors, toute rotation de V' est produit d’au plus n renverse-
ments.

PREUVE. Soit f € SO(V).
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On commence par le cas n = 3. Dans ce cas, f est produit d’au plus 3 réflexions. Comme f est positive, a
moins d’étre égale a l'identité, f est produit de 2 réflexions f = rir2. En remarquant que, en dimension 3, si r
est une réflexion, alors —r est un renversement, 1’égalité f = (—ry) (—r2) permet de conclure.

On suppose n > 4. Comme f est produit d’'un nombre pair de réflexions, il suffit de montrer que tout produit
de 2 réflexions est un produit de 2 renversements. Soient dont r; et ro deux réflexions, d’hyperplans respectifs
Hy et Hy. Alors, (Hi N HQ)J_ est de dimension 1 ou 2. Puisque n > 3, soit W, sous-espace de dimension 3
de V contenant (H; N HQ)J_. Alors, W+ est contenu dans Hy N Hs, ce qui implique que W est constitué de
vecteurs fixes de r1r5. Donc W est un espace de dimension 3, stable par riro. Alors, en notant encore ry et 7o
les endomorphismes de W induits par ry et ro, il existe deux renversements s; et s5 de W tels que 7175 = s153,
comme D'assure I'étude préalable de la dimension 3. En prolongeant s; et sy & V = W & W+ par I'identité
sur W+, on obtient encore des renversements s; et so qui vérifient I’égalité r1ro = s189 : on a écrit 7179 comme
un produit de deux renversements. [ |

Définition (groupes projectifs orthogonaux)

Onnote PO(V) = O(V)/{—1,1} et PSO(V) = SO(V')/Z (SO(V)) le groupe projectif orthogonal et le groupe pro-
jectif spécial orthogonal de V. De méme, sin > 2, onnote PO(n) = O(n)/ {x1l,} et PSO(n) = SO(n)/Z (SO(n)).
La encore, ces quotients sont pris & leur pleine mesure lorsqu’on les considére comme des transformations de la
droite projective P(V'). Bien stir, lorsque n est impair, PSO(n) = SO(n) puisque les centres sont alors triviaux.
Théoréme (simplicité des groupes projectifs spéciaux orthogonaux)

(i) Le groupe SO(3) est simple.

(i) PSO(4) =~ SO(3) x SO(3) n’est pas simple.

(#i3) Pour n > 5, le groupe PSO(n) est simple.

PREUVE. Voir Perrin page 150. Le cas exceptionnel de PSO(4) est a relier & la géométrie euclidienne de R? et
a I’étude du corps gauche des quaternions de Hamilton H (R). ]

4.5 Un tout petit peu sur le groupe modulaire
Proposition (matrices inversibles sur Z)
Soit n > 1. Une matrice de M € M,, (Z) est inversible dans M,, (Z) si, et seulement si det(M) € {—1,1}.

PREUVE. On utilise la formule M x ‘Com M = ‘Com M x M = det(M)I,. Puisque les coefficients de la
comatrice générique sont des polynémes & coefficients entiers, Com(M) € M,, (Z). Si det(M) = +1, alors M
admet +'Com M pour inverse dans M,, (Z). Inversement, si M est inversible dans M,, (Z), il existe N € M,, (Z)
tel que MN = I,,. Alors, det(M)det(IN) =1 ce qui impose que det(M) soit inversible dans Z. [ |

Définition (groupes linéaires sur 7Z)
On note GL (n, Z) le groupe des matrices inversibles de M,, (Z), c’est-a-dire le groupe des matrices & coefficients
entiers dont le déterminant vaut +1. On note SL (n, Z) son sous-groupe des matrices de déterminant 1.

A noter
Puisque c’est le noyau du déterminant, SL (n, Z) < GL (n, Z).

Notations
On notera S et T les éléments suivants du groupe SL (2,Z) :

0 1 11
S:<—1 o) ot T:(o 1)

Exercice 45 Dans le groupe SL (2,Z), S est d’ordre 4 et T d’ordre infini.

Proposition (centre de SL (2,7Z))
Le centre de SL (n,Z) est {+I2}.

PREUVE. Si M est dans le centre de SL (n,Z), alors M commute avec S et T. Donc M = +I5, comme le
montre un calcul élémentaire. [ |

Définition (groupe modulaire)
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On appelle groupe modulaire le groupe PSL (2,Z) = SL(2,Z) / {—1I2,I2}. On note s et t les classes respectives
de S et T dans le quotient SL(2,Z) / {—1I2, I2}.

Exercice 46 Dans le groupe modulaire, s est d’ordre 2 et t est d’ordre infini.

Théoréme (s et t engendrent le groupe modulaire)

(i) Le groupe SL (2,Z) est engendré par S et T.

(ii) Le groupe modulaire est engendré par s et t.

PrREUVE. 1l suffit de montrer (i). On note G le sous-groupe de SL(2,Z) engendré par S et T. Soit M =
<Z 2) € SL(2,7Z). 1l s’agit de montrer que M € G. On regarde d’abord 'effet de la multiplication a gauche de
Mopar S, 8% et T9, 0ol qEZ:

TN — a+bg c+dg SM = b d ot 3N — -b —d
b d —a a c

Sib=0,alors M =T¢¢c GouM = S?T~¢c @, selon le signe commun de a = d = +1 ; donc M € G. Si
a = 0, on se ramene au cas b = 0 en remplacant M par SM, ce qui montre que M € G.

On suppose ainsi que ab # 0. La relation det M = 1, qui est une relation de Bézout entre a et b, montre que
ces derniers sont premiers entre eux. On adapte I’algorithme d’Euclide appliqué a a et b de la fagon suivante :
On procede a la suite de divisions euclidiennes

a=bg+1o ot gqg€E€Z et 0<ryg<|p—1

—b=roq1+7r1 ou 1 €Z et 0<r; <rg—1
—Tg=7T1g2+72 o @ €Z et 0<ry<r;—1
—r1=7roq3+73 ou g3 E€Z et 0<r3<ro—1

~Tm—2 = Tm—1Gm +Tm O0 ¢n €Z et 0 <1y <rp_y —1

—Tm—1 = Tmqm+1+1 OU @ni+1 €Z

ou 7, est le dernier reste strictement supérieur & 1. Transposé en termes matriciels, en notant * un nombre
entier dont on n’a pas besoin d’expliciter la valeur en fonction des données, cela s’écrit successivement T~ M =

(Tbo :) S3T0M = <:b :) S3T— N §3T w0\ = <_r’"0 :) S3T~ 9283~ 1 G390 M = (‘T“ i) jusqu’a la
0 1 2

derniére ligne qui montre qu’il existe h € G tel que hM = _Im :) La derniere opération T""hM = ((1) :)
ramene 'affaire au cas ou @ = 0 et permet de conclure qu'’il existe g € G tel que gM € G. La multiplication a
gauche par ¢~ montre alors que M € G. |

Exercice 47

(i) On note T" = STS~ et t' = sts. Calculer 1", calculer I'ordre de ¢ et montrer que le groupe modulaire est
engendré par t et t'.

(ii) On note U = T'S et u = ts. Calculer U, calculer l'ordre de u et montrer que le groupe modulaire est
engendré par t et u.
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5 Action d’un groupe sur un ensemble

5.1 Généralités, premiers exemples

C’est au travers de la notion d’action d’un groupe sur un ensemble que la structure de groupe prend tout son
sens et montre son efficacité opératoire. Il faut mentionner & cet endroit 'ceuvre de Felix Klein®, synthétisée
dans son Programme d’Erlangen, qui donne une définition définitive a la géométrie en mathématiques : étudier
la géométrie d’un objet, c’est le considérer comme subissant ’action d’un groupe, que ’on regarde ainsi comme
un groupe de transformations de 1’objet lui-méme.

Ainsi, par exemple, Pobjet R?, n’a pas la méme géométrie selon le groupe de transformations (ici “naturelles”)
qu’on s’autorise. Faire de la topologie, c’est faire agir le groupe des homéomorphismes de R? sur lui-méme.
Faire du calcul différentiel, c’est faire agir le groupe des difféomorphismes de R? sur lui-méme. Faire de la
géométrie vectorielle (ou affine en ajoutant les translations), c’est faire agir le groupe GL (R?’)‘ Faire de la
géométrie (vectorielle) euclidienne, c’est faire agir le groupe O (R3), etc.

Définition (action a gauche)

Soient G un groupe et X un ensemble non vide. Une action d gauche de G sur X est un homomorphisme de
groupes ¢ : G — Gx. On dit aussi opération a gauche.

A noter

Une action ¢ comme ci-dessus étant donnée, on note le plus souvent g-z = ¢(g)(x), pour tous g € Get z € X —
parfois, on enléve le point et on note simplement gx. Avec ces notations, le fait que ¢ soit un homomorphisme
de groupes implique immédiatement que

Vee X, lg-x==x
(13)

V9.9 €G, Vz e X, g-(¢9x) = (99) =
Inversement, toute application G x X — X notée (g,x) — g - = et qui vérifie les deux axiomes (13) définit une
action de G sur X wia l'application G — &x, g — ¢+, ou g- est application X — X, x — g - z.

Exercice 48

Ecrire tous les détails de ce qu’affirme le a4 noter ci-dessus. En particulier, s’assurer de bien comprendre la
nécessité d’ajouter ’axiome 1 - x = x pour obtenir une équivalence.

Définition (action a droite)

Une action a droite d’'un groupe G sur un ensemble X est une application X x G — G qui vérifie :

Vee X, z-1lg ==
Vg, € G, Ve e X, (x-9)g =z (99").
Exercice 49
(i) Montrer que la donnée d’une action & droite est équivalente & la donnée d’une application ¥ : G — Sx qui

vérifie : ¥(gg") = ¥(g")(g), pour tous g,¢" € G.
(ii) Si ¢ est une action & droite de G sur X, on obtient une action & gauche de G sur X en posant 1(g) = ¢ (97!).

A noter

Dans ce cours, lorsqu’on parle d’action d’un groupe sur un ensemble sans spécifier s’il s’agit d’une action a
droite ou a gauche, c’est d’une action a gauche qu’il s’agit.

Exemples

(i) Si X est un ensemble et n un entier naturel, on note P, (X) 'ensemble des parties de cardinal n de X. Le
groupe Sx agit sur P, (X) par son action naturelle, définie par

Vo e &x, VWY € Pp(X), 0-Y =0(Y).

En effet, sic € Gx et si Y € P,(X), alors o(Y) est encore dans P, (X) puisque o est une bijection X — X.
Les axiomes d’action a gauche sont immédiatement vérifiés.

“Felix Klein, 1849 — 1925
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(ii) Soit V' un espace vectoriel. Pour tout entier naturel d, on note G4(V') Pensemble des sous-espaces vectoriels
de dimension d de V. Le groupe GL(V') agit sur G4(V') par son action naturelle, définie par

Vg € GL(V), YW € G4(V), g- W = g(W).

En effet, si g € GL(V) et si W € G4(V), alors g(W) est encore dans G4(V') puisque g est une application linéaire
bijective. Les axiomes d’action & gauche sont immédiatement vérifiés.

(iii) Si G est un groupe, G agit sur lui-méme par translation & gauche : il s’agit de opération

GxG — G
(g,h) = g-h=gh.

Elle est aussi décrite par 'homorphisme de groupes ¢ : G — S, défini par Vg, h € G, p(g)(h) = gh. Noter que
sa sceur, action & droite par translation définie par (g, h) — hg est une action & droite.

(iv) Si G est un groupe, G agit sur lui-méme par conjugaison : il s’agit de opération

GxG@ — @G
(9,h) — g-h=ghg™"

Elle est aussi décrite encore par ’homorphisme de groupes ¢ : G — Aut(G) C &, défini par Vg,h € G,
©0(g9)(h) = ghg™!. Pour tout g € G, la bijection ¢(g) est I'automorphisme intérieur h +— ghg~! déja rencontré.
LA encore, sa sceur qu’est la conjugaison dans I'autre sens (h, g) — g~ thg définit une action a droite.

(v) Le groupe SL(2,R) agit sur le demi-plan de Poincaré
H={z€C, (=) >0}
par homographies. 11 s’agit de 'action définie par
v(‘c‘ Z) vz € 9, (Ccl Z) 2= Zjiz
1l s’agit de vérifier que si M € SL(2,R) et si 2z € §), le nombre complexe M - z ainsi défini est bien dans §), ce
qui est garanti par le calcul

~ (az + b> o [ (az+b) (cZ +d) o [ adz + bcZ 3(z)
N3 = -_— = =
cz+d lez + d|? lez +d|? lez +d|*
la derniere égalité venant du fait que le déterminant de la matrice égale 1. Enfin, les axiomes de 'action a
gauche sont immédiatement vérifiées par un calcul élémentaire qui revient a simplifier la fraction

&/%j_s +b  (da+bc)z+ (a'b+bd)
cethpd (datde)z+ (Cb+dd)

(vi) D’autre exemples en vrac d’actions naturelles :

- Le groupe O(2) agit sur le cercle unité {v, ||v|| =1}, le groupe O(3) agit sur la sphere unité

- Le groupe des isométries du plan qui préservent un polygone régulier agit sur I’ensemble des milieux des arétes
- Le groupe des isométries de I’espace qui préservent un cube agit sur ses quatre diagonales

(vii) Soit X un espace topologique — par exemple, un espace métrique. On note Aut(X) le groupe des
homéomorphismes X — X pour la composition des applications. Un lacet tracé sur X est une application
continue ¢ : [0,1] — X qui vérifie £(0) = ¢(1). Le groupe Aut(X) agit sur Pensemble £(X) des lacets tracés sur
X par Paction Aut(X) x L(X) = L(X), (f,£) — fol.

Définitions (orbite, stabilisateur)
Soit G un groupe agissant sur un ensemble X. Pour tout = € X, 'orbite de x sous l’action de G , notée G - x
ou Gz est la partie de X

Gz = {gz, g € G}
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et le stabilisateur ou encore le groupe d’isotropie de x sous l'action de G est le sous-groupe de G, noté G, ou
Stab(x), défini par
G, ={9€G, gr=x}.

Exercice 50 Montrer que G, est bien un sous-groupe de G.

Exemples

(i) Soit ¢ un p-cycle de € &,,. On fait agir le groupe cyclique {c) sur ensemble {1,...,n} par son action
naturelle. Si z € {1,...,n}, l'orbite de z sous (c) est le support de c.

De méme, si o € &, est une permutation quelconque et si z € {1,...,n}, Porbite de x sous 'action naturelle de

(o) est le support du cycle qui contient = (dans son support) dans la décomposition de o en produit de cycles
a supports disjoints.

(if) Si n > 2, on fait encore agir le groupe &,, sur {1,...,n} par son action naturelle. Si z € {1,...,n}, le
stabilisateur de x est le sous-groupe des permutations de {1,...,n} qui fixent z. Il est isomorphe & &,,_;. En
effet, si on note T = {1,...,n} \ {z}, alors 'application

& - Stab(z)

. {yHS(y)Sly#x
T +— x.

est un isomorphisme de groupes ; en outre, les groupes &z et &,,_; sont isomorphes puisque ’ensemble T a
pour cardinal n — 1. Noter que pour prouver que ® est une bijection, on peut exhiber sa réciproque de la fagon
suivante. Si ¢t € Stab(z), alors ¢ stabilise aussi le complémentaire T de = ; autrement dit, ¢ (Z) C T — cette
inclusion est a vrai dire une égalité, par considération sur les cardinaux finis. En particulier, la restriction de ¢
a T induit une permutation T que l’on note t,. La réciproque de ® est application Stab(z) — &z, t — t.

(iii) Soit V un espace vectoriel. On note G;(V) ensemble des droites de V. On fait agir GL(V) sur G1(V)
par son action naturelle. Si D € G;(V), le stabilisateur de D est 'ensemble des applications linéaires bijectives
V' — V pour lesquelles D est une droite de vecteurs propres.

(iv) Soit C = [~1,1]® le cube de l'espace euclidien standard R3. L’ensemble O (C) = {f € O (R?), f(C) CC}
est un sous-groupe de O (R3) — c’est lui-méme un stabilisateur pour une certaine action de O (R3) ; exercice :
laquelle 7 On fait agir le groupe O (C) sur lensemble des point de C par son action naturelle (f,x) — f(x).
Alors, 'orbite d’un sommet de C par cette action est I’ensemble de tous les sommets de C. Pour voir cela, il
suffit de considérer I’action des rotations de O (C) dont les axes passent par les centres des faces.

Proposition (les orbites forment une partition)
Soit G un groupe agissant sur un ensemble X . La relation binaire sur X définie par : v ~y <= 3dg € G, y =gz
est une relation d’équivalence. Ses classes sont les orbites sous l'action de G.

PREUVE. C’est immédiat, conséquence directe des axiomes de I'action. [ |

Proposition (les stabilisateurs de deux points d’une méme orbite sont conjugués)

Soit G un groupe agissant sur un ensemble X. Pour tous x € X et g € G, les groupes d’isotropie de x et de gz
sont conjugués. Plus précisément,

Ggm = gGmg_l'
PREUVE. Sih € G, alors ghg™! - gz = ghx = gz. Ainsi, gG,g7' C G4;. En conjuguant par g, cela entraine
que G, C g7 'Gyrg. On applique cette derniere formule en remplagant @ par gz et g par g~' ; on obtient
Gy C gG9™ 1, ce qui achéve de montrer I'égalité cherchée. [ |

Définitions (actions transitives, fidéles)

Soit G un groupe agissant sur un ensemble X. On dit que I'action est transitive, ou que G agit transitivement
lorsqu’elle n’a qu’une seule orbite. Autrement dit, lorsque Vz,y € X, 3¢9 € G, y = gz.

On dit que action est fidéle, ou que G agit fidélement lorsque seul 1 fixe tous les élements de X . Autrement dit,
laction G — G x est fidele lorsqu’elle est injective, ou encore lorsque Vg € G, (V:L’ e X, gxr = m) == (g = 1(;).

Exemples

(i) L’action naturelle de GL(V') sur les droites de V' est transitive, mais pas fidéle — sauf si le corps de base est
Z)27.

N. Pouyanne, UVSQ 2026, LSMA610 46



(ii) Sip € {1,...,n}, laction naturelle de &,, sur les parties & p éléments de {1,...,n} est transitive et fidele.
(iii) L’action de &3 par conjugaison sur ses sous-groupes n’est pas transitive, mais elle est fidele.

(iv) Si ¢ : G — Gx est une action de G sur X, elle induit, par propriété universelle du quotient, une action
fidele @ : G/ ker(¢) — S x du groupe-quotient G/ ker(p) sur X.

Par exemple, l'action naturelle de GL(V') sur les droites de V' (exemple (i)) induit une action fideéle et transitive
de PGL(V) sur les droites de V.

Définitions (partie stable ou fixe ; stabilisateur et fixateur d’une partie)

Soient GG un ensemble agissant sur un ensemble X, et Y une partie de X.

(i) On dit que Y est stable sous l'action de G lorsque Vg € G, Vy € Y, g-y € Y. On dit que Y est fize sous
laction de G lorsque Vg € G, Yy €Y, g-y =1y.

(ii) Le stabilisateur de Y est le sous-groupe des éléments de G' qui stabilisent Y, au sens restreint ou la partie
et son image son égales ; on le note (encore) Stab(Y'). Le fizateur de Y est le sous-groupe des éléments de G
qui fixent tous les éléments de Y ; on le note Fix(Y). Ainsi, en notant g-Y = {g -y, y € Y} pour tout g € G,

Stab(Y)={g€e G, g- Y=Y} e Fix(Y)={geG, VyeY, g-y=vy}.
Exercice 51
(i) S’assurer que Stab(Y') et Fix(Y") sont bien des sous-groupes de G.

(ii) Montrer que dans le cas général, {g € G, g-Y C Y} n’est pas un sous-groupe de G, mais que c’est le cas si
Y est une partie finie de X.

Exemple

On considére laction naturelle de GL(V') sur un espace vectoriel V. Soient D une droite de V et g € GL(V).
Dire que D est stable par g (ou par le groupe (g)) signifie que D est une droite propre de g. Dire que D est fixe
par g signifie que D est une droite propre de g associée a la valeur propre 1.

Définitions (normalisateur, centralisateur)
Soient G un groupe et H un sous-groupe de G. Le normalisateur et le centralisateur de H sont les sous-groupes
de G, notés respectivement Normeg (H) et Zg(H), définis par

Normg(H) ={g€ G, gHg ' =H} et Zg(H)={g€ G, Yhe H, gh=hg}.

Exercice 52
(i) Montrer que si H est un groupe fini, Normg(H) = {g € G, gHg™' C H}.

(ii) Montrer, dans les conditions de la définition, que H < Normg(H) et que Normg(H) est le plus grand
sous-groupe de G dans lequel H est distingué.

(iii) Zg(G) est le centre de G.

5.2 L’équation aux classes

Proposition (le cardinal d’une orbite est I’indice du stabilisateur)

Soit G un groupe agissant sur un ensemble X. Alors, pour tout x € X, | Card (G - z) = [G : G,]

PREUVE. Soit x € X. L’application G — X, g — gx a pour image 'orbite de z et est constante sur les classes
a gauche modulo G,. Mieux, ses fibres non vides sont exactement lesdites classes a gauche. Par propriété

universelle du quotient pour les applications, elle induit une bijection entre Iensemble quotient (G/G.) g €t

I'orbite de x. |

A noter
(1) C’est une égalité entre cardinaux que l'on peut aussi écrire sous la forme

|G| = |G| x Card (G - z) .
Dans le cas ou G est un groupe fini, cette formule dit notamment que les cardinaux des orbites sont finis et

divisent ’ordre de G.
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(ii) En particulier, lorsque I’action est transitive, il n’y a qu’une seule orbite w, les groupes d’isotropie sont tous
conjugués au méme groupe G, et |G| = |G, | x Card(w).
Proposition (partition en orbites)

Soit G un groupe agissant sur un ensemble fini X. On note R un systeme de représentants des orbites, c’est-
a-dire une partie de X qui contient un élément de chaque orbite et un seul. Alors,

Card(X) = Y [G:Ga]

TER

PREUVE. Les orbites forment une partition de X. La somme de leurs cardinaux est donc le cardinal de X. On
conclut avec la proposition précédente. [ |

Notation (ensemble des points fixes)
Soit G un groupe agissant sur un ensemble X. On note X I’ensemble des élément de X qui sont fixés par G.
Si g € G, on note aussi X9 ’ensemble des points fixes par g. Ainsi,

X9={reX,gr=x} et X ={ze€X,Vgeq, gr=a}= ﬂXg;
geG

Proposition (formule de Burnside, nombres d’orbites)

Soit G un groupe fini agissant sur un ensemble fini X. On note Q ’ensemble des orbites de laction. Pour tout
g € G on note aussi X9 l’ensemble des éléments de X fizes par g. Alors,

Card () = é Z Card (XY)

geG

PREUVE. Soit Z = {(g,z) € G x X, gz = x}. On compte le cardinal de Z de deux fagons, d’abord selon les g,
puis selon les . Pour chaque g € G, le nombre de couples (g,x) qui sont dans Z est le nombre de points
fixes de g. Cela montre, d’une part, que Card (Z) est la somme de la formule. D’autre part, pour chaque
z € X, le nombre de couples (g,z) qui sont dans Z est l'ordre du groupe d’isotropie G, ce qui montre que
CardT =} |G| Or, les groupes d’isotropie de deux points d’une méme orbite w sont conjugués ; ils ont
donc le méme ordre, qui est |G|/ Card(w). En regroupant les termes de la somme précédente en orbites, on
obtient que Card (Z) = ., Card(w) x |G|/ Card(w) = Card (Q2) x |G|. u

Définition (p-groupe)
Soit p un nombre premier. Un p-groupe est un groupe fini dont I’ordre est une puissance de p.

weN

Proposition (action d’un p-groupe)
Soient X un ensemble fini, p un nombre premier et G un p-groupe. On note X& lensemble des points fizes de
Vaction. Alors, Card(X) = Card (X%) [p].

PREUVE. On écrit la formule de partition de X en orbites : Card(X) =) _z[G : G| ot R est un systeme de
représentants des orbites. Puisque G est un p-groupe, tous les indices [G : G,] sont divisible par p, & Pexception
des orbites réduites & un singleton, qui sont exactement les éléments de X©. [ |

Proposition (le centre d’un p-groupe est non trivial)
Soient p un nombre premier et G un p-groupe. Alors, le centre de G n'est pas réduit au sous-groupe trivial {1}.

PREUVE. On fait agir G par conjugaison sur lui-méme. Un élement de G est fixe pour I’action si, et seulement
g1l est dans le centre de G ; autrement dit, avec les notations de la proposition précédente, GE = Z (G). Ainsi,
ladite proposition affirme que |Z(G)| = |G| [p]. Or, G est un p-groupe ; donc p divise |Z(G)|. Comme Z(Q)
contient 1, son ordre n’est pas nul ; donc |Z(G)| est un multiple non nul de p : le centre est non trivial. M

Exemple (groupe quaternionique Hg)
Le groupe Hg est le groupe d’ordre 8 dont les éléments sont notés {+1, +i,+j, +k}, soumis & la table de loi
donnée par la regle habituelle des signes et par les relations

P=2=k>=—1, ij=—ji=k, jk=—kj=1i, ki=—ik=j.
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On donne aussi une représentation de Hg comme sous-groupe de SL(2, C) engendré par les matrices :

(6 5)- 0 ))

Le groupe Hg est un 2-groupe dont le centre est {—1, 1}, comme on le vérifie immédiatement & partir de la table
de la loi de Hg. On peut aussi le représenter par les matrices de SL (4,7Z) suivantes :

0 -1 0 0\ (00 -1 0

H_<1000 000—1>

*~\{o o o 1)]'lt 0 0o o/
o0 -10/ \o1 0o o

[43

Noter que les signes “=" des lignes précédentes sont & prendre au sens des isomorphismes de groupes. Le
mot représentation a une signification précise en mathématiques, qui ne sera pas développée ici. Pour une
introduction lumineuse, voir par exemple le livre de Jean-Pierre Serre Représentation linéaire des groupes finis.

Proposition (un théoréme de Cauchy)
Soient G un groupe fini et p un nombre premier divisant ordre de G. Alors, G contient un élément d’ordre p.

PREUVE. On note n l'ordre de G — noter que n # 1 puisque p divise n. Soit

I:{(glvg2-'~7gp) €GP, glgg...gpzl},

Puisqu'un choix arbitraire de g1, ..., gp—1 conduit & un unique élément de Z en posant g, = g;_ll - Lle

cardinal de Z est n?~!. En particulier, ce nombre est un multiple de p. Soient ¢ € S, le p-cycle (1,2,...,p),
et C le sous-groupe cyclique d’ordre p de &, que c engendre. On fait agir C' sur les éléments de Z par I'action
naturelle o - (g1,92 ..., 9p) = (gg(l),gg(g) . ,ga(p)) — que cela définisse une action est élémentaire. Les points
fixes de cette action sont les (g, g, ..., g) pour lesquels g € G vérifie g? = 1, c’est-a-dire pour lesquels g = 1 ou
g est d’ordre p, puisque p est un nombre premier. Or, C' est un p-groupe. Donc le nombre de points fixes de
I’action égale #Z modulo p. Comme le cardinal de Z est un multiple de p, c’est vrai aussi du nombre de points
fixes de l'action. Or, ce nombre est non nul puisque (1,...,1) est un point fixe. Il y donc au moins p points
fixes de ’action, et en particulier au moins p — 1 éléments d’ordre p dans G. u

Exercice 53 Montrer que tous les sous-groupes de Hg sont distingués.

Exemple — paradigmatique au sens ou ’action d’un groupe sur un ensemble renseigne sur le
groupe lui-méme

On notre SO (C) le groupe positif du cube, qui est le groupe des rotations de Iespace euclidien de dimension 3
qui stabilisent un cube — disons le cube C = [0,1]3 déja rencontré, tous les cubes sont semblables et ont donc
des groupes conjugués. Le groupe G = SO (C) agit naturellement sur les six centres des faces du cube — ces
centres sont les points d’intersection du bord du cube et de sa sphere inscrite, qui sont toutes les deux stabilisées
par le groupe. En considérant les rotations d’angles multiples de 7/2 et dont les axes passent par les centres des
faces, on montre que cette action est transitive. Enfin, si ¢ est le centre d’une face et si G, est le stabilisateur
de ¢, alors tout élément de G. est une rotation dont I’axe passe par ¢ et qui agit sur les sommets de la face
— pour des raisons de distance maximale, par exemple. Cela montre que G, est le groupe cyclique d’ordre 4
engendré par n’importe laquelle des deux rotations d’ordre 4 et d’axe c. En appliquant la formule de partition
en orbites, cela montre que I'ordre de SO (C) est 6 x 4 = 24.

On note O (C) le groupe total du cube, qui est le groupe de toutes les isométries qui le stabilisent. La symétrie
centrale —I5 est une isométrie négative qui stabilise le cube. Ainsi, le déterminant O (C) — {—1,1} est surjectif
et son noyau est d’ordre 24. Cela montre que O (C) est d’ordre 48.

Exercice : une fois l'ordre de SO (C) et de O (C) connus, faire la liste de toutes ces isométries. Pour cela,
considérer celles qui se congoivent aisément, les compter, et se rendre compte qu’on les connait toutes.

Pour aller plus loin : en faisant agir le groupe positif du cube sur les quatre diagonales, on montre que

SO (C) ~ 64 et O (C) ~ 64 X Z/QZ
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5.3 Produits semi-directs de groupes

Définition (suite exacte d’homomorphismes de groupes)

Soient i : N — G et p: G — @ deux homomorphismes de groupes. On dit que la suite
1—-N-5G6-5Q—1 (14)

est exacte lorsque (1) i est injectif (2) p est surjectif (3) im(i) = ker(p). Lorsque les groupes sont abéliens, on

remplace souvent les 1 par des 0.
Autrement dit, la suite (14) est exacte si, et seulement si N <G et Q ~ G/N.

Exemples
(i) Soient G et H deux groupes. On note comme d’habitude G x H leur produit direct. Soient i; : G — G x H
Pinjection g — (g, 1) et p2 : G x H — H la second projection (g, h) — h. Alors, i et p sont des homomorphismes
de groupes et la suite )

1—G- 5 GxH2H—1

est exacte.
(ii) Le déterminant induit la suite exacte

1 — SO(3) -5 0(3) 2% (—1,1} — 1
ol ¢ est l'inclusion.

(iii) Si n > 2, la signature ¢ induit la suite exacte
1— A -5 6, = {~1,1} — 1

ou i est l'inclusion. En remplagant le groupe multiplicatif {—1,1} par sa version additive Z/27Z qui lui est
isomorphe, cette suite exactee s’écrit aussi 1 — A, — &,, — Z/2Z — 1.

(iv) Si V est un espace vectoriel de dimension finie sur un corps F, le déterminant induit la suite exacte

1 — SL(V) -5 GL(V) S5 FX — 1

ou i est (encore) l'inclusion. Pour s’assurer de la surjectivité du déterminant, prendre une version matricielle
de cette suite exacte et considérer les matrices diag(\, 1,...,1).

(v) La projection canonique Z — Z /27 annule 4Z, si bien qu’elle induit un homomorphisme surjectif de groupes
p: ZJAZ — ZJ2Z, x + AZ — x + 27Z. Par ailleurs, la multiplication par 2 induit un homomorphisme de
groupes Z — Z/4Z, x — 2z + 47 dont le noyau est 27Z ; elle induit donc un homomorphisme injectif de groupes
m:7/27 — Z/AZ.

On considére 'homomorphisme de groupes f : Z/27Z X Z/AZ — Z./27 x 7./2Z, (z,y) — (x,p(y)). 11 est surjectif
et son noyau est le sous-groupe de Z/27 x Z /47 engendré par (0,2). Autrement dit, f fournit une suite exacte

0 — Z/2Z —5 2)2Z x ZJAZ L (2/22)* — 0

ou i(z) = (0,m(x)) — attention & la notation additive qui invite & remplacer les 1 extrémaux habituels des
suites exactes par des 0. En résumé, en omettant de différencier les classes par des notations une fois que 'on
s’est bien assuré du sens des objets, les deux fleches centrales de la suite sont = — (0,2x) et (z,y) — (x,y).
Cette suite exacte n'est pas scindée car Z/27Z x Z/AZ contient un unique sous-groupe isomorphe a (Z/27)* et
la restriction de f a ce dernier n’est pas un isomorphisme puisque son image est Z/2Z x {0}.

Définition (produit semi-direct défini par une action par automorphismes)
Soient @) et N deux groupes, et ¢ : Q — Aut(/N) un homomorphisme de groupes — autrement dit, une action

de @ sur N par automorphismes. Le produit semi-direct de N et Q induit par ¢ est la loi de groupe définie sur
le produit cartésien N x @) par

(n,q) - (n',q') = (n-9(q)(n'),q-q). (15)

On note N %, @ ou simplement N x @ cette loi de groupe sur le produit cartésien N x Q. L’inverse de (n, )
est (o (a7) (n71) a7).
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Exercice 54

(i) Vérifier que cela définit bien une loi de groupe sur N x @ pour laquelle N <N X, Q.

(ii) Avec les notations de la définition, I'injection i; : N — N %, Q, n — (n,1) et la projection ps : N x,Q — @Q,
(n,q) — ¢ induisent la suite exacte

1— N5 Nx, Q2 Q—1. (16)

A noter

Une lecture possible de la définition du produit semi-direct (15) : la loi de groupe sur N x @ n’est pas celle du
produit direct qui se fait coordonnée par coordonnée, mais le produit sur la premiere coordonnée est “tordu”
par 'action.

Proposition (une suite exacte scindée est un produit semi-direct)

Soit ‘
1—-N-5G625Q—1

une suite exacte de groupes. Les assertions suivantes sont équivalentes.

(i) Il existe un homomorphisme de groupes s : Q — G tel que po s =idg.

i existe un sous-groupe e el que la restriction de p a soit un isomorphisme de groupes = 0.
i) 1l exist groupe Q' de G tel que | triction de p a Q' soit ' phi de group !
11 existe un sous-groupe distingué e G, un isomorphisme de groupes I : = , Un Sous-groupe
ii1) Il exist disti S N' de G ) hi d I:N’ N Q'
e et un isomorphisme de groupes P : AN els que l'application
de G et ' phi de groupes P : Q' tels que l'applicat
T N'xy@Q — G
(n,q) —  ng

soit un isomorphisme de groupes pour l’action v de Q' sur N' définie par ¥(q)(n) = qnqg=!

diagramme suivant soit commutatif

, et tels que le

i
1 — N e Ny Q22 @ — 1

LA

1] — N g Lo+

(i) Il existe une action de Q sur N par automorphismes ¢ : Q — Aut(N) et un isomorphisme de groupes
[N x,Q — G tels que le diagramme suivant soit commutatif

1HNLN>4¢Q&QH 1

R

A noter

Dire que le diagramme est commutatif signifie que les applications composées symbolisées par des suites de
fleches du diagramme ne dépendent pas du chemin choisi entre deux groupes du diagramme. Par exemple, dans
ce dernier diagramme, foi; =ioidy = 3.

PREUVE. (i)=(ii) Soit Q" = im(s), sous-groupe de G. Alors, la restriction de p & " est un isomorphisme entre
Q' et @, dont la réciproque est s.

(ii)=>(iii) On note P : Q" — Q la restriction de p & Q" et s = P~! sa réciproque. On note aussi N’ = i(N)
et I : N' — N la réciproque de I'isomorphisme i : N — N’. Puisque la suite est exacte, N’ = kerp est un
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sous-groupe distingué de G ce qui entraine que 1, définie comme dans 1’énoncé, est bien une action sur N. Pour
Iaction 1, la loi de groupe de N’ x4 Q' s’écrit (n,q) - (n',¢') = (ngn’q™*,qq’). 1 en résulte immédiatement
que 7 est un homomorphisme de groupes. Soit alors p : G — N’ x Q' Papplication définie par p(g) =

(g (s Op(g))f1 , S Op(g)), pour tout g € G. D’une part, la définition de s assure que s o p(g) € Q'. D’autre

part, g- (s Op(g))f1 € kerp = N'. Enfin, soit g € G ; on note p(g9) = (n,q) € N’ x Q’. En particulier, g = ng, si
bien que 7o p(g) = ¢ : on a montré que 7o p = idg. Inversement, si (n,q) € N’ x Q’, alors pom(n,q) = p(ng).
Comme q € Q’, sop(ng) = sop(q) = q, et (nqg) (s Op(nq))f1 =ngq~! = n, ce qui montre que pon(n,q) = (n,q).
On a montré que 7 et p sont des bijections réciproques 'une de 'autre. Que le diagramme commute résulte
immédiatement des définitions de I, i1, m, po et P.

(iii)=>(iv) Dans la situation de (iii), soient I : N’ =5 N et P : Q' — @ deux isomorphismes de groupes.
Puisque le diagramme commute, la réciproque de I est i : N —> N’ et P est la restriction de p & Q' ; on note
51 Q — Q' la réciproque de P. On définit alors une action ¢ : Q — Aut(N) de Q sur N par la formule
o(q)(n) =1 (s(q)) (i(n))] = I [s(q)i(n)s(q)~']. Alors, i x s: N x,Q — N’ x4 Q', (n,q) — (i(n),s(q)) est
un homomorphisme de groupes, comme le montre un calcul élémentaire, évidemment bijectif. Puisque 7 est
un isomorphisme, la composée f = 7o (i X s): N x,Q — G, (n,q) — i(n)s(q) est aussi un isomorphisme de
groupes. Que le diagramme commute résulte immédiatement des définitions de f et de s. [ ]

Définition (suite exacte scindée, section)
Dans la situation de la proposition, on dit que la suite exacte est scindée et que ’homomorphisme s : Q — G
est une section (de la suite, ou de p). On appelle aussi parfois section le sous-groupe @' = s(Q) de G lui-méme.

A noter

(i) Une lecture opératoire de la proposition est la suivante : lorsqu’on a un suite exacte 1 - N - G — Q — 1,
le groupe G est isomorphe a un produit semi-direct N X, Q si, et seulement si la suite est scindée, i.e. si, et
seulement si elle admet une section.

(i) La version (iii) d’un suite exacte scindée est celle du produit semi-direct interne : N’ et Q' sont des sous-
groupes de G, N’ est distingué dans G et tout élément de G s’écrit de maniere unique sous la forme ng ou
n € N’ et g € Q. En outre, le produit de deux éléments de G ainsi décomposés se lit au travers de 1’action par
conjugaison de @ sur N, via la formule ng-n'q’ = n (qn’q”l) -qq’.

Autrement dit, si G posseéde deux sous-groupes N’ et Q' tels que

O N'«G

@ N'NQ ={1}

®G=NQ,

alors G est un produit semi-direct (interne) G ~ N’ x @Q’.

(iii) La version (iii) d’un suite exacte scindée est celle du produit semi-direct externe : les groupes N et Q ne
sont pas des sous-groupes de GG, mais ) agit sur N par automorphismes et le produit semi-direct qui résulte de
cette action est isomorphe a G.

Exemples

On reprend les exemples ci-dessus.

(i) Le groupe O(3) contient des matrices d’isométries négatives, comme par exemple D = diag(—1,1,1), mais
aussi —I3. Une telle matrice engendre un sous-groupe d’ordre 2 de O(3), et la restriction du déterminant a ce
sous-groupe est un isomorphisme.

On choisit d’abord la section (D). Elle scinde la suite exacte 1 — SO(3) — O(3) ety {-1,1} — 1, ce qui
montre qu’on a un produit semi-direct

0(3) ~ SO(3) x Z/2Z.

On choisit ensuite la section (—I3) du déterminant. Cette fois, puisque —I3 est dans le centre de O(3), le (iii)
de la proposition montre que Paction ¢ de (—I3) sur SO(3), qui est la conjugaison, est triviale. Ainsi, le produit
semi-direct pour cette action est un produit direct, et on a aussi un isomorphisme

0(3) =~ SO(3) x Z/2Z.

(ii) Lorsque n > 2, le groupe symétrique &,, contient des permutations négatives d’ordre 2 — par exemple, les
transpositions. Chacune d’elle fournit une section de la suite exacte 1 — 2, = &,, — Z/2Z — 1 qui est donc
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scindée. On a un produit semi-direct
S, ~A, X Z/27.

Noter que si n > 5, les seuls sous-groupes distingués de &,, sont {1}, 2,, et &,,. En particulier, &,, ne contient
pas de sous-groupe distingué d’ordre 2. Cela montre qu’il n’y a pas d’isomorphisme entre &,, et le produit
direct 2,, x Z/27. Exercice : montrer que cela vaut aussi pour n = 3 ou 4.

(iii) Sim > 1 et si F est un corps, les matrices diagonales {diag(x,1,...,1), € F*} forment un sous-groupe
de GL (n,F) qui fournit une section du déterminant. Ainsi, la suite 1 - SL (n,F) - GL (n,F) — F* — 1 est
scindée. On a un produit semi-direct

GL (n,F) ~ SL(n,F) x F*.

5.4 Théorémes de Sylow

Définition (p-Sylow d’un groupe fini)
Soient G un groupe fini et p un nombre premier. Un p-sous-groupe de Sylow™ de G est un p-sous-groupe S de
G dont I'indice n’est pas divisible par p. On dit parfois simplement un p-Sylow.

Autrement dit, si |G| = p*q olt @ > 0 et ol p ne divise pas ¢, un sous-groupe S de G est un p-Sylow de G si, et
seulement si |S| = p®.

Exemples

(i) Si G est un p-groupe, il a un unique p-Sylow qui est G lui-méme.

(ii) Si G est un groupe abélien fini et si p est un nombre premier, G admet un unique p-Sylow qui est sa
composante de p-torsion.

(iii) Soient p un nombre premier et n un entier naturel non nul. On note S, , le sous-groupe de GL (n,F,)
formé des matrices triangulaires supérieures avec des 1 sur la diagonale : si § désigne le symbole de Kronecker,

Snp={M € GL (n,F,), Vj,ke{l,....,n}, j> k= M, =01}
Autrement dit, S, ,, est formé des matrices de GL (n,F,) de la forme

1 *— %
0 N\ |
‘ *
0—01
Que S, , soit un sous-groupe de GL (n,F,) est immédiat. Puisque les n(n — 1)/2 coefficients au dessus de la
diagonale sont librement choisis dans F,,, Uordre de S, ,, est p*("*~1/2. Par ailleurs, 'ordre de GL (n,F,) est

n(n—1)

P =D —p) (" —p°)...(0"—p" ) =p 7 ¢

olt ¢ est un entier premier avec p — on a vu ce calcul, il suffit de compter les bases de ;. Cela montre que
Sy.p est un p-Sylow de GL (n,F,).

Exercice 55 Le conjugué d’'un p-Sylow est toujours un p-Sylow.

Théoréme (premier théoréeme de Sylow)
Si G est un groupe fini et si p est un nombre premier, alors G contient au moins un p-Sylow.

PREUVE. On note n = |G|.

Le premier geste consiste a voir G comme un sous-groupe d’un groupe de permutations — ce résultat est parfois
évoqué sous le nom de théoreme de Cayley. Pour cela, on fait agir G sur lui-méme par translation a gauche.
Cela fournit ’homomorphisme de groupes ¢ : G — &g, g — t4 ou t, est la permutation de G définie par
ty(h) = gh, pour tout h € G. Le noyau de ¢ est trivial (action est fidele), si bien que G est isomorphe & son
image par ¢ qui est un sous-groupe de Gg.

“Ludwig Sylow, 1832-1918.
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On suppose ainsi que G est un sous-groupe de &,,. Le deuxieme geste consiste a voir & son tour &,, comme un
sous-groupe de GL (n,F,), ou plutét de GL (FZ) Sio € 6, on note f, € GL (FZ) I'endomorphisme de F)) qui
permute sa base canonique (v1,...,v,) via o : il est défini par

Vke{l,....n}, f(vr) = o)

Un calcul élémentaire montre que I'application f : &, — GL (IF;‘), o +— f, est un homomorphisme injectif
de groupes. Ainsi, G, qui est un sous-groupe de &,,, est isomorphe a son image par f qui est elle-méme un
sous-groupe de GL (FJ2).

On suppose ainsi que G est un sous-groupe de GL (n,F,). On conclut alors avec le lemme suivant, appliqué a
G = GL (n,F,), qui contient le p-Sylow S,, ,, de 'exemple ci-dessus. [ |
Lemme

Soient G un groupe fini, p un nombre premier, S un p-Sylow de G et G un sous-groupe de G. Alors, il existe
h € G tel que hSh=' NG soit un p-Sylow de G.

PREUVE. On fait agir G sur 'ensemble (G/S) , des classes a gauche de G modulo S, par translation a gauche.
Sige GetsihS e (Q/S)g, Paction s’écrit g - hS = (gh)S — que ce soit une action a gauche a déja été vu :
c’est la restriction a G de I'action de G sur (Q/S)g par translation a gauche. Si h € G, le groupe d’isotropie de
hS pour cette action est Gis = {g € G, ghS = hS} = hSh™ 1 N G. C’est un p-sous-groupe de G puisque c’est
a la fois un sous-groupe de G et un sous-groupe du p-groupe hSh~!. Il suffit ainsi de trouver h € G tel que p
ne divise pas l'indice [G : Gps], puisque dans ces conditions, Grs = hSh™! N G sera un p-Sylow de G. On écrit
I’équation aux classes :
[G:8]=> [G:Ghs]

heR
ou R C (G/S) p désigne un systeme de représentant des orbites. Puisque S est un p-Sylow de G, le nombre

[G : S] n’est pas un multiple de p. Par conséquent, I'un au moins des termes de la somme n’est pas un multiple
de p : soit h € R tel que p ne divise pas [G : Gps]. Alors, Gps = hSh™! N G est un p-Sylow de G. ]

A noter

(i) Ce que montre le lemme, ce n’est pas que Uintersection d’un p-Sylow S avec un sous-groupe G est un p-Sylow
de G, mais que l'intersection de G et d’un certain conjugué de & — qui est encore un p-Sylow — est un p-Sylow
de G.

(ii) Le premier théoréeme de Sylow montre l'existence de p-Sylow dans n’importe quel groupe fini. Ces p-
Sylow sont évidemment des p-sous-groupes maximaux (pour I'inclusion). Un autre point de vue est parfois pris
pour introduire les p-Sylow en les définissant comme étant les p-sous-groupes maximaux dont l’existence est
immédiate, le premier théoreme de Sylow consistant alors a montrer que ce sont les p-sous-groupes dont p ne
divise pas I'indice.

Théoréme (deuxiéme théoréme de Sylow)

Soient G est un groupe fini et p un nombre premier. Alors,

(i) tout p-sous-groupe de G est contenu dans un p-Sylow de G ;

(ii) tous les p-Sylow de G sont conjugués.

PREUVE. Soit H un p-sous-groupe de G. Soit aussi S un p-Sylow de G — on sait qu’il en existe grace au
premier théoreme de Sylow. On applique le lemme & cette situation : soit g € G tel que ¢Sg~! N H soit un
p-Sylow de H. Comme H est un p-groupe, il est son unique p-Sylow ; autrement dit, gSg~' N H = H. En

particulier, H est contenu dans le p-Sylow gSg~!, ce qui démontre (i). Si en outre H est lui-méme un p-Sylow,
alors H = gSg~!, ce qui montre que tout p-Sylow est conjugué a S : (ii) est démontré. [ ]

A noter
En particulier, le fait que les p-Sylow soient tous conjugués entraine le résultat suivant. Soient G un groupe, p
un nombre premier et S un p-Sylow de G. Alors

S <G <= 8 est I'unique p—Sylow de G.

Théoréme (troisiéme théoréme de Sylow)
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Soient G est un groupe fini et p un nombre premier. On note s, le nombre de p-Sylow de G. Alors,

sp divise |G| et sp, =1 [p].

PREUVE. Soient S 'ensemble des p-Sylow de G et S € S. Alors, s, = Card S.

(D) On fait agir G sur S par conjugaison. Le deuxiéme théoréme de Sylow assure que l'action est transitive.
Autrement dit, 'action admet S tout entier pour unique orbite. L’équation aux classes montre alors que s,||G|.
(2 On fait agir cette fois S sur S par conjugaison. Comme S est un p-groupe, 'ensemble S° des points fixes de
cette action vérifie s, = Card (SS ) [p] — voir la proposition Action d’un p-groupe, page 48. Bien siir, S € .
On montre que ¥ = {S}, ce qui permet de conclure. Pour tout T' € S, on note Normg (7)) le normalisateur de
T dans G, assavoir Normg(T') = {g €q, gTg' = T}. Alors, pour tout T' € S, le sous-groupe 1" de Normg (T')
en est I'unique p-Sylow, puisque c’en est un p-Sylow distingué. Si en outre T' € S°, alors S est aussi un p-Sylow
de Normg(T), ce qui impose que S =T. On a montré que S est 'unique point fixe de 'action. [ ]

Exemples d’application

(i) Il n’y a pas de groupe simple d’ordre 91.

En effet, soit G un groupe d’ordre 91. Alors, le nombre de 7-Sylow de G vérifie 57|13 et s, = 1 [7], ce qui impose
que s; = 1. Comme le conjugué d’un 7-Sylow est encore un 7-Sylow, on en déduit que I'unique 7-Sylow de G
en est un sous-groupe distingué propre : G n’est pas simple.

(ii) L’unique 3-Sylow de &3 est A3 = ((123)). En revanche, &3 contient trois 2-Sylow qui sont les sous-groupes
engendrés par une transposition.

Exercice 56 Compter et décrire tous les Sylow de 204, &4, A5, Ss.

Une application classique, rapidement
Proposition Tout groupe simple d’ordre 60 est isomorphe a 2s.

Une preuve : soit G un groupe simple d’ordre 60. Le nombre de ses 5-Sylow est 1 ou 6 ; c’est 6 puisque G
est simple. L’action de GG sur ses 5-Sylow par conjugaison fournit un homomorphisme ¢ : G — Gg, injectif
puisque Paction sur les 5-Sylow est transitive. En passant aux groupes dérivés, on obtient que ¢(D(G)) est un
sous-groupe de D (Sg) = Ag. Mais comme G est simple, D(G) = G. Donc 'image de ¢ est incluse dans 2.
Ainsi, G est isomorphe & un sous-groupe simple d’indice 6 de 2.

Or, tout sous-groupe H simple d’indice 6 de RUg est isomorphe a 5.

En effet, on fait agir H sur les six classes & gauche de 2g modulo H par translation a gauche : h-(cH) = (ho)H.
Cela fournit un homomorphisme de groupes ¢ : H — &g, injectif puisque H est simple et puisque 'action n’est
pas triviale — si elle était triviale, H serait un sous-groupe distingué propre de 2lg alors que ce dernier est
simple. Le groupe d’isotropie Hy de la classe H contient H. Donc ¢ (H), qui est isomorphe & H, est contenu
dans Hy. Or Hy est le fixateur dans &g,/ f) =~ & d'un point de {1,...,6} — savoir H — : il est isomorphe

a G5. On a la situation suivante : H est un séqus—groupe d’indice 2 de Hy ~ &5. Donc H est isomorphe a 2As.

Exercice 57 Démontrer le théoreme de Cauchy page 49 a ’aide de la théorie de Sylow.
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6 Polynomes symétriques

Dans tout le chapitre, les anneaux considérés sont commutatifs et unitaires.

6.1 Théoréme des polynéomes symétriques

Définition (action naturelle du groupe symétrique sur un anneau de polynéme)
Soient n un entier naturel non nul et .4 un anneau. Pour toute o € &,, et pour tout P € A[Xq,...,X,], on
note o - P ou simplement ¢ P le polynoéme

O'-P(Xl,...,Xn) = P(Xo(1)7--~7Xa(n)) .
On voit immédiatement que cela définit une action (& gauche) de &,, sur A[X7,..., X, ], qui vérifie en outre
c-(P+Q)=(c-P)+(c-Q)eto-(PxQ)=(c-P)x(c-Q), pour tous P,Q € A[Xq,...,X,]

Définition (polynome symétrique)
Soient n un entier naturel non nul et A un anneau. Un polynéme P de A[Xy,...,X,] est dit symétrique
lorsqu’il est invariant par toutes les permutations, c’est-a-dire lorsque o - P = P, pour tout ¢ € &,,. On note

AlXy,. .., X,
le sous-anneau des polynoémes symétriques de A [X7,..., X,].
Exercice 58
(i) Vérifier que les polynémes symétriques forment bien un sous-anneau de 'anneau de tous les polynomes.
(ii) Un polyndme est symétrique si, et seulement §’il est invariant par toute transposition.
Exemples
(i) Pour tout n € N* et pour tout p € N, le polynéme de Newton

Sp=8p (X1,..., Xn) = > XF
k=1

est (évidemment) symétrique.

(ii) Dans Z[X,Y, Z], les polynomes S; = X +Y + 7, 00 = XY + XZ +YZ et So = X2 +Y? + Z? sont
symétriques et sont reliés par la relation S? = Sy + 205.

Définition (polyndémes symétriques élémentaires)

Soit n > 1. Pour tout p € {0,...,n}, on note o, € Z[X1,...,X,] le p° polynéme symétrique élémentaire a n
indéterminées, défini par le développement polynomial dans Z [X1,. .., X, T] suivant :
n n
[Ta+7x0)=> 0, (X1,.... X,)T7 (17)
k=1 p=0
A noter

(i) En particulier, og (X1,...,X,) = 1, 01 est la somme o7 (X1,...,X,) = X5 + -+ X,, et 0, est le produit
O'H(Xh...,Xn) :XlXQ...Xn.

(ii) En faisant agir une permutation ¢ € &,, sur les membres de droite et de gauche de (17) dans 'anneau
Z[T)[X1,...,Xy,], on vérifie que les o) sont bien des polynémes symétriques.

(iii) Une conséquence immédiate de (17) est la relation entre racines et coefficients d’un polynéme

n n

[T -x0)=> (-1)fon_p (X1,..., X)) T,

k=1 p=0

Si on donne ce nom a cette identité polynomiale, c’est parce que si A est un anneau integre et si P =
ZZ:O Tk € A[T] est un polynéme unitaire de degré n admettant pour racines z1,...,x, € A, alors les
racines et les coefficients de P sont liés par les relations

Vke{l,...n}, ok (z1,...,2n) Pn = (—1)"_kpk.
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Ainsi, les coefficients d’un polynémes sont des polynomes explicites en ses racines. Noter en passant que la
démarche inverse qui consiste a exprimer les racines d’un polynome en fonction de ses coefficients est autrement
plus épineuse. C’est la question de la résolution des équations polynomiales. Par exemple, la question de la
résolubilité des équations polynomiales “par radicaux” trouve une réponse dans le magnifique cadre de la théorie
de Galois.

(iv) On peut aussi écrire les o par une formule close, obtenue en développant (17). Cette formule est la

suivante :
op (X1,..., X)) = > 1T x:.
- i1<‘i2<---<i,,
=X X0 . . Xp+ X0 Xo. . Xp 4+ + X p1 X pyo. .. Xy

C’est le polynéme homogene de degré p, somme de tous les monémes de degré p sans carré. Par exemple,
03 (X1, X2, X3, Xy) = X1 Xo X3 + X1 Xo Xy + X1 X3Xy + X0 X3X,.

Exercice 59 Montrer que le nombre de monémes de o, (X1,. .., X,) est le coefficient du binéme (Z)

Exemple
Le polynéme de Z [X;, X2, X3, X4]

P=X2XoX5+ X2Xo Xy + X2X35X,
FX2X3X, + X2X5 X, + X2X, X,
FX2X4 X, + X2X, X5 + X2X1 X,
FX2X1 Xo + X2X, X5 + X2X5 X5

est symétrique, comme on le vérifie immédiatement en voyant qu’il est invariant par les six transpositions de Gy4.
Un calcul élémentaire montre que, pour ces quatre indéterminées, o103 = P + 404, ce qui permet d’exprimer P
comme un polynéme en les oy, selon la formule P = o103 — 40y4.

Avant d’aborder la question des anneaux de polyndémes invariants par le groupe symétrique ou par le groupe
alterné, on prouve un lemme élémentaire dans les anneaux de polynomes généraux, qui sera bien utile pour
prouver les théoremes qui suivent.

Lemme

Soient n un entier naturel non nul, A un anneau commutatif unitaire et P € A[X1,..., Xn].

(i) Si P(X1,...,Xn-1,0) =0, alors X,, divise P.

(i) Si X1P =0, alors P = 0.

(#ii) Si X1P # 0, alors P # 0 et deg (X1 P) =1+ deg P.

(i) Si X1, Xs, ..., Xy divisent P, alors le produit X1Xa, ... Xy divise P, pour tout k € {1,...,n}.
(v) Si (X1 — X2)P =0, alors P =0.

(vi) Si X1 — X5 et X1 — X3 divisent P, alors (X1 — X5) (X1 — X3) divise P.

(vii) Si X1 — Xy et X3 — Xy divisent P, alors (X1 — X5) (X3 — X4) divise P.

PREUVE. Tous ces résultats sont immédiats si A est factoriel, puisqu’alors, A[X1, ..., X,] Pest aussi, en vertu
du théoréme de transfert de Gauss. Ils restent cependant valides dans le cas général. (i) On fait la division
euclidienne de P dans A[X7,...,X,_1][X,] par le polynéme unitaire X,,, puis on spécialise X, = 0. (ii)
et (iii) On considere 1'égalité X1 P = 0 dans 'anneau A[Xs,..., X,,][X1]. Vue ainsi, les résultats de (ii) et
(iii) sont immédiats : la multiplication par X; n’est qu'un décalage des coefficients. (iv) En procédant par
récurrence sur k (et n), il suffit de montrer le résultat pour £k = 2. On suppose que X; et Xy divisent P.
Soit @ € A[X1,...,X,] tel que P = X5Q. On fait la division euclidienne de @ dans A[Xa,...,X,][X1] par
le polynéme unitaire X;. Soient R € A[X1,...,X,] et S € A[Xa,...,X,] tels que @ = X;R + S. Alors,
P = X1 XoR + X2S. En spécialisant X; = 0, on obtient que X5S5 = 0, et donc, en utilisant (ii), que S = 0.
(v) Il suffit de le montrer pour n = 2, quitte & remplacer A[X3,...,X,] par A. On explicite les coefficients
de P(X,Y) = anzo ap,qXPY?, on écrit I'égalité XP = Y P, on obtient des formules de récurrence sur les
apq qui aboutissent directement au résultat. (vi) D’abord, P = (X1 — X3) Q1 (X1, Xs,...,X,). Ensuite,
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par division euclidienne de @7 dans A[Xs,...,X,][X1] par le polynéme unitaire X; — X5, on obtient P =
(X1 —X3) (X1 —X0)Q (X1, Xs,...,X,) + (X1 — X3) R(Xa,...,X,), ce qui implique en spécialisant X; = Xo
que (X2 — X3) R(Xa,...,X,) =0. En appliquant (v), on conclut que R = 0 et ainsi que (X; — X2) (X1 — X3)
divise P. (vii) D’abord, P = (X35 — X4) @1 (X1, Xs,...,X,,). Ensuite, par division euclidienne de Q; dans
A[Xa,..., X,] [X1] par le polynéme unitaire X1 — X5, on obtient P = (X35 — X4) (X1 — X2) Q (X1, X2, ..., Xpn)+
(X5 — X4) R(Xa,...,X,), ce qui implique en spécialisant X; = X5 que (X3 — X4) R(Xs,...,X,,) =0. En ap-
pliquant (v), on conclut que R = 0 et ainsi que (X1 — X2) (X3 — X4) divise P. [ |

Théoréme (théoréme des polyndémes symétriques, version 1)

Soient n un entier naturel non nul et A un anneau commutatif unitaire. Alors, pour tout P € A[Xq,..., Xn]G",
il existe un unique Q € A[Xq,...,X,] tel que

P(Xl,...,Xn):Q(Ul,...,Un).

PREUVE. Dans toute la preuve, si k € {0,...,n}, on notera (o), le polynome spécialisé
(O'k)o (Xl, e aXn—l) = 0L (Xl, o 7Xn—170) .

— on vérifie immédiatement que (o7), est aussi le k° polynome symétrique élémentaire en les n—1 indéterminées
Xq,..., X0 1.

(1) On commence par l'existence. On procéde par récurrence sur n. Sin =1, il n’y a rien & démontrer puisque
01 = X1. On suppose que n > 2 et que tout polynome symétrique a n — 1 indéterminées est un polyndome en
les polynémes symétriques élémentaires en lesdites n — 1 indéterminées. On montre par récurrence sur d que
tout polynéme symétrique non nul de degré d de A[Xy,...,X,] est un polynéme en oq,...,0,. Sid =0, il
n’y a rien & faire. On suppose que d > 1 et que P est un polynéme symétrique de degré d de A[Xy,..., X,].
Alors, P (X3,...,X,-1,0) est un polynéme symétrique (de degré d) de A[X1,...,X,—1]. Par hypothese de
récurrence, soit Q1 € A[X1,..., X, 1] tel que P (Xy,...,X-1,0) = Q1 ((01)g,---,(0n-1)y)- On pose alors
P,=P(X1,....Xn)—Q1(01,...,0n-1) € A[X1,..., Xn]e". Puisque P; (X1,...,X,-1,0) =0, le (i) du lemme
montre que X,,|P;. Puisque P; est symétrique, cela entraine que tous les X}, divisent P. Ainsi, selon le (iv) du
lemme, o, divise P. Soit donc P; € A[Xq,...,X,] tel que P, = 0, P,. L’application n fois du (ii) du lemme
précédent montre alors que P» est également symétrique. Si P, = 0, on a montré que P = Q1 (01,...,0,-1)
et c’est finl. Si Py # 0, alors deg(P;) < d puisque deg (Q1 (01,...,0n-1)) = deg(Q1 ((61)gs---»(Tn=-1)y))-
Alors, lapplication n fois du (iii) du lemme précédent montre que deg (P2) < d —n. On applique I’hypothese
de récurrence & Py : soit Q2 € A[Xy,...,X,] tel que P, = Q2 (01,...,04,). Alors, on a montré que P s’écrit
P=Q(o1,...,0n-1)+0p,Q2(01,...,0,) qui est de la forme voulue.

(2) Unicité. 11 suffit de montrer que VP € A[Xq,...,X,], P(o1,...,0,) = 0 = P = 0. On procede par
récwrrence sur n. Sin > 1, il n’y a rien & démontrer puisque P (o7) = P. On suppose que n > 2. On
suppose, par l'absurde, qu’il existe P # 0 tel que P (oy,...,0,) = 0. Soit P un tel polynoéme, de degré
minimal. On ordonne P = Py + X,,P, + - + X4P; on P, € A[Xy,...,X,,_1] pour tout k. On substitue
X, =o01,...,X, = o, et on spécialise X,, = 0. On obtient 0 = Py ((01)0 e (0’1)n_1). Par récurrence, cela
entraine que Py = 0 et donc que X, divise P. Soit donc Q € A[X1,..., X,] tel que P = X,,Q. D’apres le lemme,
deg(Q) = deg(P) — 1. En outre, 0,Q (01,...,0,) = 0. Le (ii) du lemme assure alors que Q (o1,...,0,) =0, ce
qui contredit le caractere minimal du degré de P. ]

Définition (indépendance algébrique, transcendance)
Soient B un anneau, A un sous-anneau de 3, n un entier naturel non nul et by, ...,b, € B. On dit que by,...,b,
sont algébriquement indépendants sur A, ou que la famille {b1,...,b,} est algébriquement libre lorsque

VP e A[Xy,...,X,], P(b1,...,by) =0= P =0.

Sinon, les by sont algébriqguement dépendants sur A, ou encore la famille {by, ..., b,} est algébriguement liée. Si
b € B, on dit que b est algébrique sur A lorsque {b} est algébriquement liée. Sinon, on dit que b est transcendant

sur A.

Exemples
(i) Dans C, tout élément est algébrique sur R.
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(i) Si z € C, z est algébrique sur Q si, et seulement si le Q-espace vectoriel Q[z] est de dimension finie.

(iii) Dans les conditions de la définition, by, ..., b, sont algébriquement indépendants si, et seulement si le sous-
anneau A [by,...,b,] de B engendré par AU{by,...,b,} est isomorphe & "anneau de polynomes AU[X7, ..., X,].

Notation
Dans les conditions de la définition des polyndmes symétriques, on note A[oy,...,0,] le sous-anneau de
A[Xy,...,X,] engendré par AU {o1,...,0,}. Le théoréme de caractérisation des sous-anneaux engendrés
assure que

Alor,...,on] ={P(01,...,00), P€ A[X1,..., X0]}.

Théoréme (théoréme des polyndémes symétriques, version 2)
Soient n un entier naturel non nul et A un anneau commutatif unitaire.

(i) A[X1,..., X, = Aloy, ..., 0]

(ii) o1, ...,0, sont algébriquement indépendants sur A[Xq,...,Xn].
PREUVE. C’est une paraphrase de 'existence et de 1'unicité de la version 1. [ ]
A noter

Dans les conditions du théoreme des polynémes symétriques, on a la situation suivante :

A[Xy, . X, = Aloy, .. om] ~ A[Xy, .., X,

6.2 Polynomes antisymétriques, polynémes invariants par le groupe alterné

Définition (polyndme invariant sous ’action du groupe alterné)
Soient n un entier naturel non nul et A un anneau. Un polynéme P de A[X;,...,X,] est dit invariant sous
Uaction du groupe alterné lorsque o - P = P, pour tout o € 2,,. On note

AlXy, . X
le sous-anneau de A [X1, ..., X,] formé des polyndmes invariants sous ’action du groupe alterné.
Exercice 60 A[X;,...,X,]™ est bien un sous-anneau de A[X1,..., X,]. Il contient A[Xy, ..., X,]"".

Exemple
Pour tout entier naturel non nul n, soit

V=V(X,...X,)= 11 (X; — Xi)
(i.4)€{L,....,n}*
i<j

le polynome de Vandermonde. Son expression déterminantale montre immédiatement que pour tout o € &,
o-V =¢(o)V, ou e désigne la signature. En particulier, V € Z[X7,... ,Xn]gl". L’action de &,, sur V montre
aussi que V2 est un polyndéme symétrique.

En deux indéterminées, V(X,Y)? = (X —Y)? = (X +Y)? — 4(XY)? = 02 — 209. Relier cette formule avec
le discriminant du polynéme (T'— X) (T —Y), qui est précisément V2. En d’autres termes, on dit que le
discriminant du polynéme T2 — a7 + b est a® — 4b.

Définition (discriminant)
Soit n un entier naturel non nul. Le discriminant a n indéterminées est le polynome symétrique

n(n—1)

AXy,. X)) =V (X, X)) =077 ] Xi-X)).

(i.3)€{L,....n}*
i#]

En appliquant le théoréme des spolynomes symétriques, on note § I'unique polynéme a n indéterminées tel que
A(X1, o X)) = 8(01 (X1 Xn) s 0m (X, X))

Définition (polyndme antisymétrique)
Soient n un entier naturel non nul et .4 un anneau. Un polynéme P de A[X7,...,X,] est dit antisymétrique
lorsque o - P = &(0) P, pour toute o € &,,.
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Proposition (structure des polyndémes antisymétriques)

Soient n un entier naturel non nul, A un anneau commutatif unitaire dont la caractéristique est nulle ou impaire.
Alors, les polyndmes antisymétriques sont les polynémes de la forme VQ ot Q € A[X1, ..., X,] est un polyndme
symétrique.

PREUVE. On suppose n > 2, sans quoi il n’y a rien a faire. Que ces polynémes soient antisymétriques est
évident. Inversement, soit P un polynome antisymétrique. On fait la division euclidienne de P dans I'anneau
A[Xs,..., X,][X1] par le polyndme unitaire X; — X5 : soient Q € A[Xy,...,X,] et R € A[Xs,...,X,] tels
que P = (X; — X3) @ + R. En spécialisant, X; = Xo, on obtient que R = P (X3, Xo,...,X,,). Or, puisque P
est antisymétrique, (12) - P = —P ce qui, en spécialisant X; = Xo assure que 2P (Xo, X5,...,X,,) = 0. Ainsi,
2R = 0. Comme la caractéristique de A est nulle ou impaire, cela implique que R = 0. On a montré que
X1 — X, divise P. De la méme fagon, tous les X; — X;, ¢ # j divisent P. En faisant une récurrence qui utilise
(vi) et (vil) du lemme précédent, on conclut que V divise P. Soit ainsi @ € A[X1,...,X,] tel que P = VQ.
Il reste & montrer que @ est symétrique. Si 7 € &,, une transposition. On fait agir 7 sur les polynomes de
Pégalité P = VQ. On obtient —P = —V x 7@, ce qui entraine que V (Q — 7 - Q) = 0. Par application répétée
(récurrence) du (v) du lemme, on conclut que @ — 7 - Q = 0 ce qui prouve que @ est symétrique. |

Théoréme (théoréme des polyndémes invariants par le groupe alterné)

Soient n un entier naturel non nul et A un anneau commutatif unitaire dans lequel le nombre 2 est inversible.
- an

(i) A X1,....Xp] " =Alo1,...,on, V]

(i) Plus précisément, tout élément de A[X;, ... ,Xn]gl" s’écrit de maniére unique sous la forme P+ QV ou P
et Q sont des polyndomes symétriques.

(iii) L’anneau A[X1, ..., Xn|™ est isomorphe & U'anneau- quotient

AlX 1, X~ A X X, T (T2 = 6 (X, X))

PREUVE. Gréce au théoreme des polynomes symétriques, (i) découle de (ii). On montre (ii).

(1) Unicité. Sin =1, il n’y a rien a faire. On suppose n > 2 et que P+ QV =0 ol P et @ sont symétriques.
On fait agir la transposition (12) sur cette égalité. On obtient P — QV = 0, ce qui entraine immédiatement que
2P = 0 et 2QV = 0. Puisque la caractéristique de A est nulle ou impaire, cela impose que P = 0 et QV = 0,
ce qui implique @ = 0 par applications répétées (récurrence) des points (vi) et (vii) du lemme. On a montré
lunicité.

(@) Existence. Soit A € A[Xy,...,X,]*". Onnote P = A+ (12)- Aet Q' = A— (12) - A. On montre
successivement que P’ est symétrique, que @’ est antisymétrique. En particulier, grace au théoréme de structure
des polynémes antisymétriques, il en résulte que Q' = VQ ot Q est symétrique. Comme 2 est inversible, puisque
A= 1P+ 1QV, le résultat s’en trouve démontré.

Le groupe &,, est engendré par son sous-groupe 2, et par la transposition (12) — plus précisément, on a la
partition &,, = A, U (12)2,,. Si o € A, puisque A, < &, il existe 7 € A, tel que (12) = (12)7 ; ainsi,
o-P'=0-A+(12)7- A = P’ puisque A est invariant par o et par 7. Par ailleurs, (12)-P' = (12)- A+ A=P':
on a montré que P’ est symétrique. De méme, o - Q' = Q' et (12)Q’ = —Q’, ce qui suffit & prouver que Q' est
antisymétrique.

(iii) Soit s : A[X1,..., X, T] = A[X1,... ,Xn}m" la spécialisation P — P (o1,...,0,, V). Sa surjectivité est
garantie par (i). Son noyau contient 72 — § par définition du discriminant. Inversement, soit P € kers. On
fait la division euclidienne de P par le polynéme unitaire 72 — § dans anneau A[Xq,...,X,][T] : soient
Qe AXy,...,X,, Tl et R,S € A[X;,...,X,] tels que P = (T2 —5) @ + RT + S. En spécialisant via s, il
vient R (o1,...,0,)V (X1,...,Xn) + R(01,...,0,) = 0. L’unicité du (ii) et I'indépendance algébrique des oy,
entrainent alors que R = S = 0. On a montré que le noyau de s est I'idéal engendré par T2 — §. On conclut
avec le premier théoréeme d’isomorphisme pour les anneaux. [ |

A noter
(i) Dans Z/4Z[X,Y], on a I’égalité 201 +2V =2(X +Y) 4+ 2(Y — X) = 0 alors que 2(X 4+ Y) est symétrique
et non nul. L’unicité tombe en défaut sur cet anneau de caractéristique 4.

(ii) Si la caractéristique de A est nulle sans que 2 ne soit inversible, l'unicité subsiste.
En revanche, 'existence tombe en défaut. Par exemple, le polynéme A = X2Y + Y27 + Z2X est invariant
par le groupe 2A3. Sa décomposition sur Q s’écrit A = P+ VQ ou Q = % et ou P = %(A—i— (12)A) =
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$ (XY +Y2Z + 22X + XY? +YZ%+ ZX?). Le polynome A € Z[X,Y, Z]** n’a pas de décomposition sous
la forme P+ VQ ou P,Q € Z[X,Y, Z]®3.

(iil) Sur un corps (ou plus généralement sur un anneau factoriel) de caractéristique différente de 2, les arguments
des preuves sont simplifiés par la factorialité de A[X7, ..., X,].

6.3 Séries formelles et formules de Newton

Définition (série formelle)
Soit A un anneau. Une série formelle & coefficents dans A est une suite (indexée par N) d’éléments de A. Si
(@n),cn est une série formelle, on note

(an)pen = Z ap X",

n>0

Les a,, sont les coefficients de la série formelle > a,X™. L’ensemble des séries formelles & coefficients dans A
est noté

A[XT]]-

On définit sur 'ensemble des séries formelles deux lois de composition interne notées additivement et multiplica-
tivement par les formules suivantes, qui miment ’addition et la multiplication des développements a 1’origine
des fonctions holomorphes (ou analytiques) : si A =5 a, X" et B=>_b,X", on définit

A+B =Y (an+by) X" et AB_Z< > apbq>xn

n>0 n>0 \p+qg=n

ou 'addition et la multiplication utilisées dans ces formules sont celles de 'anneau A.
Exercice 61 Ces sommes sont bien définies : ces formules ont un sens.
Proposition (anneau des séries formelles)

Soit A un anneau (commutatif unitaire).

(i) L’addition et la multiplication ainsi définies conférent a A[[X]] une structure d’anneau commutatif unitaire.
Son zéro est la série formelle, notée 0, dont tous les coefficients sont nuls. Son unité est la série formelle, notée
0, dont tous les coefficients sont nuls a l’exception du premier qui est l'unité de A.

(ii) Si A est intégre, alors A[[X]] est aussi intégre.
PREUVE. Exercice. u

A noter

(i) Les opérations dans "anneau A[[X]] se comportent comme si la notation ), était une somme de série entiere
convergente. Autrement dit, les regles de calcul dans A[[X]] sont celles des séries entieres convergentes.

(ii) On vérifie immédiatement que 'anneau des polynémes A[X] est un sous-anneau de A[[X]].

Exercice 62 (Substitution dans une série formelle)
Soient A un anneau et @ € A[[X]] une série formelle dont le terme constant est nul. Alors, 'application

A[[X]] — A[[X]]
A:ZanX" — AoQ= ZanQn

est bien définie et est un homomorphisme d’anneaux. C’est la substitution de Q a l’indéterminée.

Exemple Dans Z[[X]], le polynéme 1 — X est inversible et son inverse est

1-x)"'=>"x"

n>0
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Proposition (inverser les séries formelles &4 valuation non nulle)

Soit A un anneau et Q € A[[X]]. On suppose que le coefficient constant de Q est nul. Alors, 1 —Q est inversible
dans A[[X]] et

il oY

n>0

PREUVE. Une fois le sens de la série formelle ano Q™ assuré, il suffit de substituer Q & X dans la formule
(1- X) (znzoxn) =1 n

Corollaire (développement des fractions rationnelles en séries formelles)

Soient F un corps et F' € F(X). On suppose que 0 n’est pas un pdle de F' (i.e. on suppose que X ne divise pas le
dénominateur de F). Alors, F “est” une série formelle dans le sens suivant : il existe une unique Sy € F[[X]]
telle que, pour tous N, D € F[X],

N
D F

PREUVE. Puisque 0 n’est pas un pole de F', soient A, B € F[X] tels que F' = % et B(0) # 0. Alors,
B = B(0)(1 — Q) ou Q € F[X] vérifie Q(0) = 0. Dans ces conditions, la série formelle B est inversible et son
inverse est B! = % Y onso Q" Alors, Sp = AB™! est I'unique série formelle qui convienne. ]
Notation Sin € N* et si k € N, dans Z[Xy,...,X,], on note S, = > | XF la k° somme de Newton. Si
0 < k < n, on note oy, le k° polynome symétrique élémentaire ; si k > n + 1, on note aussi o = 0.

Proposition (formules de Newton)

Soient n un entier naturel non nul. Alors, pour tout k € N, dans Uanneau Z [ X1, . .., Xpn],
> (110 Sy = (- (k + Do,
(p,q)eN?
p+q=Fk
PREUVE. Dans 'anneau de séries formelles Z [ X7, ..., X,,] [[T]], soit

F=Jl0-7Xp) =) (-Dfor (X1,.... Xn) T".
k=1 >0

On calcule la dérivée logarithmique S = F'/F € Q(X1,...,X,,T) de F & partir de sa forme produit :
K —~ X - £yl ‘
I DL ML B yeay
k=1 k=1  £>0 £>0
Alors, les formules de I’énoncé sont les égalités terme & terme des coefficients de la série F'S = F’ : écrire
S (=Dfor (X, X)) T | =) ST | =D (-1 o (Xa,..., X,) T,
£>0 £>0 £>0

développer le produit, identifier les coefficients de T*. [ |
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A noter
Avec des pointillés, ces formules s’écrivent

S1 =01

Sy — 0151 = —209

S3 — 0152 + 0251 = 303

Sy — 0153 + 0259 — 0351 = —4oy

(—1)”710'71,151 = (—1)”*1n0n
1)”U,LS1 =0
1)”4_10'71_5_151 =0

Snfl - UlSn72 + 0‘25,,173 — 4
Sy — 0181+ 025,20 — -+ (_
Snt1— 015, + 0251 — -+ (—

Elles fournissent un systéme triangulaire (infini) qui permet de calculer les sommes de Newton en fonction des
polynomes symétriques élémentaires. Ainsi, Sy = 02 —209, S3 = 03 —30109+303, S4 = 0f —4o209+40103+203,
etc.

Exercice 63

(i) Calculer S3 = X3 + Y3 et Sy = X*+ Y* en fonction de X +Y et XY dans Z[X,Y].

(i) Calculer Sy = X*+ Y4+ Z% et S5 = X° +Y® + Z% en fonctionde X +Y + Z, XY + XZ+YZ et XY Z
dans Z[X,Y, Z].

Exercice 64

Montrer que le déterminant du systéme linéaire, obtenu & partir des formules de Newton, dont les inconnues
sont les Si, 1 < k < n et les parametres les oy, 1 < k < n, a pour déterminant 1. Montrer que le déterminant
du systeme linéaire dont les inconnues sont les o, 1 < k < n et les parametres les Si, 1 < k < n, a pour
déterminant n!.

Proposition (les sommes de Newton forment une base algébrique des polyndémes symétriques)

Soient n un entier naturel non nul, F un corps de caractéristique nulle, et S1,...,S5, les n premiéres sommes
de Newton dans F[Xy,..., X,]. Alors,

F[X1,..., X, =F[S,..., 5]

et S1,...,Sy sont algébriguement indépendants.

PREUVE. Gréce au théoréme des polyndmes symétriques, il suffit de montrer que F [Sy,...,S,] =F[o1,...,04].
Les formules de Newton et I'exercice précédent fournissent la clef de I’argumentation. ]

A noter
(i) S’assurer de bien comprendre & quel endroit I'hypotheése sur le corps intervient.

(ii) Plus précisément,

Z[S1,.... 8] CZ[X1,.... X" =Z[o1,...,00] CQo1,-. . 00 =Q[S1,...,Sn] = Q[X1, ..., X, ]°".
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