
UVSQ 2025/2026
Licence de sciences et technologie, santé
LSMA610 (groupes et géométrie)

Notes de cours

Table des matières
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6.1 Théorème des polynômes symétriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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1 Premiers éléments sur la structure de groupe

1.1 La structure

Lecture du polycopié Structures abstraites : groupes, sous-groupes, homomorphismes de groupes, exemples
fondamentaux.

Définition (ordre d’un groupe, ordre d’un élément dans un groupe)
Soit G un groupe. L’ordre de G est son cardinal — fini ou non. On note |G| l’ordre de G. Si x ∈ G, l’ordre de
x est le cardinal de {xn, n ∈ Z}.
Exemple
Si n est un entier naturel non nul, l’ordre du groupe (Z/nZ,+) est n. Si k ∈ Z, l’ordre de la classe de k modulo n
est n

PGCD(n,k) .

Exercice 1
Montrer que le groupe GL(2,Z/2Z) des matrices 2× 2 inversibles à coefficients dans le corps Z/2Z est d’ordre 6
en faisant la liste exhaustive de ses éléments. Montrer que ce groupe n’est pas abélien et calculer l’ordre de
chacun de ses éléments — on trouve trois éléments d’ordre 2 et deux éléments d’ordre 3.

Proposition (images directe ou inverse d’un sous-groupe)

Soit f : G→ G′ un homomorphisme de groupes.

(i) Si H est un sous-groupe de G, alors f(H) est un sous-groupe de G′.

(ii) Si H ′ est un sous-groupe de G′, alors f−1 (H ′) est un sous-groupe de G.

(iii) En particulier, le noyau et l’image d’un homomorphisme de groupes G→ G′ sont des sous-groupes respectifs
de G et de G′.

Preuve. On note les lois multiplicativement. (i) f(1G) ∈ f(H), f(x)f(y) = f(xy) ∈ f(H) et f(x)−1 =
f
(
x−1

)
∈ f(H), pour tous x, y ∈ H. Donc f(H) est un sous-groupe de G′. (ii) f(1G) = 1G′ et 1G′ ∈ H ′ ; donc

1G ∈ f−1 (H ′). Par ailleurs, si x, y ∈ f−1 (H ′), alors f(xy) = f(x)f(y) ∈ H ′ et f
(
x−1

)
= f(x)−1 ∈ H ′ ; cela

montre que f−1 (H ′) est un sous-groupe de G. (iii) Si Γ est un groupe, {1Γ} et Γ en sont des sous-groupes.

Définition (conjugaison dans un groupe)
Soit G un groupe. Si g, g′ ∈ G, on dit que g et g′ sont conjugués (dans G) lorsqu’il existe h ∈ G tel que
g′ = hgh−1. Deux sous-groupes H et H ′ de G sont dits conjugués (dans G) lorsqu’il existe g ∈ G tel que
H ′ = gHg−1.

Exercice 2

(i) Si H est un sous-groupe d’un groupe G et si g ∈ G, alors le conjugué gHg−1 est encore un sous-groupe de G.

(ii) La conjugaison est une relation d’équivalence sur les éléments d’un groupe. C’est aussi une relation
d’équivalence sur l’ensemble des sous-groupes de G. Lorsque le groupe est abélien, les classes d’équivalences
pour ces deux relations sont des singletons – autrement dit, dans un groupe abélien, la conjugaison est triviale.

(iii) Calculer les classes de conjugaison des éléments de GL(2,Z/2Z) — on trouve une classe à un élement, une
classe à deux élements et une classe à trois élements.

(iv) Dans un groupe, deux éléments conjugués ont le même ordre et deux sous-groupes conjugués sont isomorphes
— et ont donc le même ordre.

Définition (sous-groupe distingué)
Soit G un groupe. Un sous-groupe H de G est distingué (ou normal) lorsqu’il est stable par conjugaison. On
note alors H ◁ G. Autrement dit, H ◁ G si, et seulement si ∀g ∈ G, gHg−1 = H.

Exemple

Dans le groupe GL(2,Z/ZZ), le sous-groupe

{
I2,

(
1 1
1 0

)
,

(
0 1
1 1

)}
est distingué alors que le sous-groupe{

I2,

(
0 1
1 0

)}
ne l’est pas.

A noter Evidemment, tous les sous-groupes d’un groupe abélien sont distingués.
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Exercice 3
Soient G un groupe et H un sous-groupe de G. Les assertions suivantes sont équivalentes.

(i) H ◁ G

(ii) ∀g ∈ G, gHg−1 ⊆ H
(iii) ∀x ∈ G, ∀h ∈ H, ∃h′ ∈ H, xh = h′x.

Proposition (image inverse d’un sous-groupe distingué)

Soient f : G→ G′ un homomorphisme de groupes.

(i) Si H ′ un sous-groupe distingué de G′, alors, f−1 (H ′) est un sous-groupe distingué de G.

(ii) Si H est un sous-groupe distingué de G, alors f(H) est un sous-groupe distingué de f(G) — mais pas de
G′ en général.

(iii) En particulier, le noyau d’un homomorphisme de groupes est un sous-groupe distingué du groupe de départ.

Preuve. (i) Si g ∈ G et si h ∈ f−1 (H ′), alors f
(
ghg−1

)
= f(g)f(h)f(g)−1 est dans H ′ puisque f(h) ∈ H ′ et

puisque H ′ ◁ G′. Donc ghg−1 ∈ f−1 (H ′). (ii) Si g ∈ G et h ∈ H, alors f(g)f(h)f(g)−1 = f
(
ghg−1

)
∈ f(H)

puisque H ◁ G. (iii) est une conséquence immédiate de (i).

A noter
Pour montrer qu’un sous-groupe est distingué, il suffit donc de le faire apparâıtre comme le noyau d’un homo-
morphisme de groupes. Cette remarque est à mettre au rang de méthode. On verra que, réciproquement, tout
sous-groupe distingué est le noyau d’un homomorphisme de groupes.

Exemple
Soit F un corps et F× son groupe multiplicatif. Si V est un F-espace vectoriel de dimension finie, l’ensemble
des applications linéaires bijectives V → V est un sous-groupe de l’ensemble des applications bijectives V → V
pour la composition des applications (exercice). On le note GL(V ) : c’est le groupe linéaire de V .
L’application déterminant

det : GL(V ) −→ F×

f 7−→ det(f)

est un homomorphisme de groupes — paraphrase du fait que le déterminant d’une composée est le produit des
déterminants. Son noyau est le groupe spécial linéaire de V ; on le note SL(V ). La proposition précédente
assure que SL(V ) ◁GL(V ).

Exercice 4
Soit F un corps et d ∈ N \ {0}. On noteMd (F) le F-espace vectoriel des matrices carrées à d lignes, d colonnes
et à coefficients dans F et GL (d,F) le groupe des matrices inversibles de Md (F) pour la multiplication des
matrices – exercice dans l’exercice : c’est bien un groupe. On note également Td (F) le sous-ensemble deMd (F)
formé des matrices triangulaires supérieures inversibles. Montrer que Td (F) est un sous-groupe non distingué
de GL (d,F).

Exercice 5 (Groupe des automorphismes d’un groupe ; automorphisme intérieur)

Soit G un groupe.

(i) Un automorphisme de G est un homomorphisme bijectif G→ G. Montrer que, muni de la composition des
applications, l’ensemble des automorphismes de G est un groupe que l’on note usuellement Aut(G).

(ii) Si g ∈ G, on définit l’application ig : G → G, h 7→ ghg−1 ; montrer que ig ∈ Aut(G). Les automorphismes
ig sont appelés automorphismes intérieurs de G.

(iii) Montrer que si G est un groupe, l’application G→ Aut(G), g 7→ ig est un homomorphisme de groupes.

(iv) Montrer que l’ensemble des automorphismes intérieurs de G est un sous-groupe distingué du groupe des
automorphismes de G.

Définition (centre d’un groupe)
Soit G un groupe. Le centre de G est l’ensemble de ses éléments qui commutent avec tous les éléments de G.
On le note généralement Z(G). Ainsi,

Z(G) = {g ∈ G, ∀h ∈ G, hg = gh} .

N. Pouyanne, UVSQ 2026, LSMA610 3



A noter
Le centre d’un groupe en est toujours un sous-groupe distingué (exercice). Bien sûr, un groupe est abélien si,
et seulement s’il égale son centre.

Proposition (centre du groupe linéaire)

(i) Si V est un espace vectoriel de dimension finie sur un corps F, alors le centre de GL(V ) est le groupe F× idV
de ses homothéties.

(ii) Si F est un corps et si d est un entier naturel non nul, le centre de GL(d,F) est F×Id.

Preuve. Avec les notations de (i) et (ii), si V est de dimension d, le choix d’une base B de V rend les
groupes GL(V ) et GL(d,F) isomorphes via l’isomorphisme de groupes u ∈ GL(V ) 7−→ MatB(u) qui envoie
toute homothétie x idv sur xId — les notations sont évidentes. Ainsi, il suffit de montrer (i).
Si V est de dimension 1, alors GL(V ) = F× idV est évidemment isomorphe au groupe abélien F×.
On suppose que dimV ≥ 2 et on prend c ∈ Z (GL(V )). Soit v ∈ V \ {0}. On suppose que v et w = c(v)
sont linéairement indépendants. En complétant (v, w) en une base de V , soient p et q dans GL(V ) tels que
p(v) = w et p(w) = v d’une part, q(v) = w et q(w) = v + w d’autre part — on notera que w et v + w sont
aussi linéairement indépendants. Alors, les égalités pc = cp et qc = cq appliquées à v assurent que v = c(w) et
v + w = c(w), ce qui contredit l’indépendance de v et w. On en déduit que pour tout v ∈ V , les vecteurs c(v)
et v sont colinéaires.
Autrement dit, tout vecteur de v est un vecteur propre de c. Cela oblige c à être une homothétie. En effet,
pour tout v ∈ V , soit λ(v) ∈ F tel que c(v) = λ(v)v. Alors, si v, w ∈ V sont indépendants, λ(v + w)(v + w) =
λ(v)v + λ(w)w, ce qui entrâıne que λ(v) = λ(w). Ainsi, l’application λ est constante sur toute base de V , ce
qui prouve que c est une homothétie.

Proposition (produit direct de groupes)

Soient G1 et G2 deux groupes notés multiplicativement. Alors, la loi de composition

(G1 ×G2)× (G1 ×G2) −→ G1 ×G2(
(g1, g2) , (h1, h2)

)
7−→ (g1h1, g2h2)

confère au produit cartésien G1 × G2 une structure de groupe dont l’élément neutre est (1G1
, 1G2

). Dans ce
groupe, l’inverse d’un élément (g1, g2) est

(
g−1
1 , g−1

2

)
.

Preuve. Exercice.

Définition (produit direct de groupes)
Le groupe décrit dans la proposition précédente est le produit direct des groupes G1 et G2. Le produit direct
G×G est noté G2. De façon analogue, on définit le produit direct G1× · · · ×Gn d’une famille finie de groupes,
la composition se faisant terme à terme. Lorsque tous les Gk sont égaux à un même groupe G, ce produit est
noté Gn.

Exercice 6 Soient G, H et K des groupes.

(i) Les groupes produits G×H et H ×G sont (canoniquement) isomorphes.

(ii) Les groupes produits (G×H)×K, G×(H ×K) et G×H×K sont (canoniquement) isomorphes. Généraliser
au cas d’une famille finie quelconque de groupes.

(iii) Si n et m sont des entiers naturels premiers entre eux, les groupes Z/mnZ et Z/mZ×Z/nZ sont isomorphes
— c’est le théorème chinois, ils sont même isomorphes en tant qu’anneaux.

1.2 Sous-groupes engendrés

Proposition (intersection d’une famille de sous-groupes)

Soient G un groupe et (Hi)i∈I une famille de sous-groupes de G. Alors,
⋂
i∈I

Hi est un sous-groupe de G.

Preuve. Exercice.

Définition (sous-groupe engendré par une partie)
Soient G un groupe etX une partie de G. Le sous-groupe de G engendré par X est l’intersection des sous-groupes
de G qui contiennent X. On le notera ⟨X⟩.
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Proposition (minimalité des sous-groupes engendrés)

Soit G un groupe et X une partie de G. Alors, le sous-groupe engendré ⟨X⟩ est le plus petit sous-groupe de G
contenant X au sens de l’inclusion, i.e. si H est un sous-groupe de G, alors X ⊆ H =⇒ ⟨X⟩ ⊆ H.

Preuve. Exercice.

Proposition (caractérisation des sous-groupes engendrés)

Soient G un groupe et X une partie de G. Alors, le sous-groupe engendré par X est l’ensemble des produits
finis d’éléments de X ou de leurs inverses Autrement dit,

⟨X⟩ =
{
x1x2 . . . xn, n ∈ N \ {0} , ∀k ∈ {1, . . . , n} , xk ∈ X ou x−1

k ∈ X
}
.

Preuve. On note E =
{
x1x2 . . . xn, n ∈ N \ {0} , ∀k ∈ {1, . . . , n} , xk ∈ X ou x−1

k ∈ X
}
. D’abord, E est un

sous-groupe de G. En effet, il n’est pas vide et est évidemment stable par produit et par passage à l’inverse
(attention au renversement dans la formule (x1x2 . . . xn)

−1
= x−1

n . . . x−1
2 x−1

1 ). Par ailleurs, il contient X. Ainsi,
par minimalité des sous-groupes engendrés, ⟨X⟩ ⊆ E. Enfin, puisque ⟨X⟩ est un sous-groupe, il est stable par
produit et par passage à l’inverse ; puisqu’il contient X, il contient donc E — raisonner par récurrence sur le n
de la définition de E. Ainsi, ⟨X⟩ ⊇ E.

Le slogan : le sous-groupe engendré par X est l’ensemble des mots formés d’éléments de X ou de leurs
inverses (sous-entendu : entre deux lettres du mot, on met le symbole de la loi de groupe).

A noter
Dans les conditions de la proposition, on note parfois X−1 l’ensemble des inverses dans G des éléments de X.
Alors, la proposition s’énonce ainsi :

⟨X⟩ =
{
x1x2 . . . xn, n ∈ N \ {0} , ∀k ∈ {1, . . . , n} , xk ∈ X ∪X−1

}
.

Définition (groupes cycliques et monogènes)
Un groupe est monogène lorsqu’il est engendré par un singleton. Un groupe est cyclique lorsqu’il est monogène
et fini.

A noter

(i) Ainsi, si un groupe G, dont la loi est notée multiplicativement, est monogène et si g ∈ G est un générateur
de G, alors G = ⟨g⟩ = {gn, n ∈ Z}. Si le groupe est noté additivement, alors G = {ng, n ∈ Z}.
(ii) Si G est un groupe et si g ∈ G, alors l’ordre de g est l’ordre du groupe monogène ⟨g⟩.
Exemples
Le groupe additif Z est monogène, engendré par le singleton {1}. Si n ∈ N \ {0}, le groupe additif Z/nZ est
cyclique, engendré par le singleton

{
1
}
– on a noté 1 la classe du nombre 1 modulo n.

Exercice 7 (en forme de révision du cours d’algèbre de L2)

(i) Si x ∈ Z, alors Z = ⟨{x}⟩ si, et seulement si x = ±1.
(ii) Soit n ∈ N \ {0}. Si x ∈ Z, alors Z/nZ = ⟨{x}⟩ si, et seulement si x et n sont premiers entre eux — on a
noté x la classe de x modulo n.

(iii) Si n ∈ N \ {0}, alors Z/nZ est simple si, et seulement si n est un nombre premier.

(iv) Tout groupe monogène infini est isomorphe à Z. Si n ∈ N\{0}, tout groupe cyclique d’ordre n est isomorphe
au groupe additif de Z/nZ, ou encore au groupe multiplicatif Un des racines complexes ne de l’unité.

Noter que considérer un groupe cyclique d’ordre n comme étant isomorphe à (Z/nZ,+) ou à (Un,×) constitue
un choix de point de vue, l’un ou l’autre pouvant s’avérer le plus pertinent selon l’argumentation que l’on
cherche à apporter.

(v) Soient (a, b) et (c, d) dans Z2. Alors, la paire {(a, b), (c, d)} engendre le groupe additif Z2 si, et seulement si

det

(
a c
b d

)
= ad− bc = ±1.
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Définition (fonction d’Euler)
Si n est un entier naturel non nul, on note φ(n) le nombre de nombre entiers naturels de {1, . . . , n} qui sont
premiers avec n. La fonction N∗ → N∗, n 7→ φ(n) est appelé fonction (indicatrice) d’Euler.

A noter

(i) L’exemple (ii) ci-dessus montre que φ(n) est le nombre d’éléments de Z/nZ qui engendrent le groupe additif
Z/nZ.
Autrement dit, φ(n) est le nombre de racines primitives ne de l’unité dans C.
[Une racine ne complexe de l’unité est dite primitive lorsqu’elle engendre le groupe Un de toutes les racines ne de l’unité. Les racines

primitives ne de l’unité sont ainsi les exp
(
2ikπ
n

)
où k est premier avec n.]

C’est aussi l’ordre du groupe (Z/nZ)× des inversibles de l’anneau Z/nZ.

(ii) On dessine ci-dessous le tableau des premières valeurs de φ et son graphe sur {1, . . . , 200} :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8

Graphe de la fonction d’Euler

(iii) Soit p un nombre premier. Alors φ(p) = p − 1. Plus généralement, si n est un entier naturel non nul,
φ (pn) = pn−1(p− 1).

(iv) Le théorème chinois assure que lorsque n et m sont premiers entre eux, alors l’anneau Z/mnZ est isomorphe
à l’anneau produit Z/mZ×Z/nZ. L’isomorphisme entre les groupes des inversibles de ces deux anneaux assure
alors, en considérant les seuls cardinaux, que si m et n sont premiers entre eux, alors φ(mn) = φ(m)φ(n).

Proposition (somme des φ)

Pour tout n ≥ 1, n =
∑
d|n

φ(d).

Preuve. On se place dans le groupe Un des racines ne complexes de l’unité. Toute racine ne est une racine

primitive de, où d est un diviseur de n, puisque exp
(
2ikπ
n

)
= exp

(
2i(k/δ)π
n/δ

)
où δ = pgcd(n, k) est une racine

primitive n/δe de l’unité. Comme une racine primitive de n’est pas une racine primitive d′e si d ̸= d′, cela
montre que la famille des racines primitives de, lorsque d parcourt l’ensemble des diviseurs de n, constitue une
partition de Un.

A noter
On peut aussi partitionner les éléments du groupe additif Z/nZ en éléments d’ordre d lorsque d parcourt
l’ensemble des diviseurs de n. Cela fournit version légèrement différente de la preuve qui précède.
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Exercice 8

(i) La fonction µ de Möbius est définie sur N∗ par µ(1) = 1, µ(n) = 0 lorsque n est divisible par le carré d’un
entier supérieur ou égal à 2, et µ(p1p2 . . . pr) = (−1)r si les pk sont des nombres premiers distincts.

Montrer que
∑
k|n

µ(k) = 0, pour tout entier n ≥ 2 — et que si n = 1, cette somme vaut 1.

(ii) Soient (an)n∈N∗ et (bn)n∈N∗ des suites à valeurs dans un groupe additif (abélien). Montrer qu’il y a
équivalence entre :

1○ pour tout n ≥ 1, bn =
∑
k|n

ak ;

2○ pour tout n ≥ 1, an =
∑
k|n

µ
(n
k

)
bk.

(iii) En déduire que pour tout n ≥ 1, φ(n) = n
∑
d|n

µ(d)

d
.

Définition (commutateur, groupe dérivé)
Soit G un groupe. Un commutateur de G en est un élément de la forme ghg−1h−1, où g, h ∈ G. Le groupe
dérivé de G est le sous-groupe de G engendré par ses commutateurs. On le note généralement D(G). Ainsi,

D(G) =
〈{
ghg−1h−1, (g, h) ∈ G2

}〉
.

A noter

(i) En général, le produit de deux commutateurs n’est pas un commutateur.
[Mais trouver des exemples n’est pas si simple !]

(ii) Bien sûr, G est abélien si, et seulement si D(G) = {1G}.
Exemple

D (GL (2,Z/2Z)) =
〈(

0 1
1 1

)〉
. A ce stade, ce calcul est un peu fastidieux. Il aura une interprétation limpide

une fois le groupe symétrique mis en place.

Proposition

Soit G un groupe. Alors, D(G) ◁ G.

Preuve. z
(
xyx−1y−1

)
z−1 =

(
zxz−1

) (
zyz−1

) (
zx−1z−1

) (
zy−1z−1

)
: le conjugué d’un commutateur est

encore un commutateur. Cela suffit à prouver le résultat.

1.3 Classes à droite et à gauche, théorème de Lagrange

Définitions
Soient G un groupe, H un sous-groupe de G et x ∈ G. La classe à gauche de x modulo H est la partie xH
de G : la classe à droite de x modulo H est la partie Hx de G. Pour préciser les notations évidentes,

xH = {xh, h ∈ H} et Hx = {hx, h ∈ H} .

Exercice 9
Dans les conditions des définitions précédentes, la relation binaire sur G définie par x ∼ y ⇔ x−1y ∈ H est une
relation d’équivalence dont les classes sont les classes à gauche modulo H. De même, la relation binaire sur G
définie par x ∼ y ⇔ xy−1 ∈ H est une relation d’équivalence dont les classes sont les classes à droite modulo H.

On notera respectivement (G/H)g l’ensemble des classes à gauche modulo H et (G/H)d l’ensemble des classes
à droite modulo H. Ces deux ensembles de parties de G forment deux partitions de G, en général distinctes.

Exemples

(i) On note T le sous-groupe de GL(2,R) formé des matrices trigonales inférieures — le coefficient en haut à

droite est nul, les coefficients diagonaux sont non nuls. On note également j =

(
1 1
0 1

)
∈ GL(2,R). Alors,
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les classes à droite et à gauche de j modulo T sont différentes. En effet, jT est le sous-ensemble de GL(2,R)

formé des matrices dont la seconde colonne est proportionnelle à

(
1
1

)
alors que Tj est est le sous-ensemble de

GL(2,R) formé des matrices dont la première ligne est proportionnelle à
(
1 1

)
.

(ii) Soient M ∈ GL(2,R) et S ∈ SL(2,R). Alors, SM = M
(
M−1SM

)
avec det

(
M−1SM

)
= 1. De même,

MS =
(
MSM−1

)
M avec det

(
MSM−1

)
= 1. Cela montre que les classes à droite et à gauche de M modulo

SL(2,R) sont égales — quel que soit M ∈ GL(2,R).

Exercice 10
Soient G un groupe et H un sous-groupe de G. Alors, les assertions suivantes sont équivalentes.

(i) H ◁ G

(ii) xH = Hx pour tout x ∈ G
(iii) xH ⊆ Hx pour tout x ∈ G
[L’équivalence entre (ii) et (iii), immédiate lorsque H est fini, est toujours vraie. En effet, si on suppose (iii) vraie, soient x ∈ G et h ∈ H.

On écrit hx = x
(
x−1hx

)
. Comme x−1h ∈ x−1H ⊆ Hx−1, soit h′ ∈ H tel que x−1h = h′x−1. Alors, hx = xh′ ∈ xH, cqfd.]

Proposition (théorème de Lagrange)
Soient G un groupe et H un sous-groupe de G.

(i) Toutes les classes à droites et toutes les classes à gauche modulo H ont un cardinal commun : celui de H.

(ii) Le cardinal de l’ensemble des classe à gauche et le cardinal de l’ensemble des classe à droite sont égaux. Ce
cardinal commun est noté [G : H].

(iii) |G| = |H| × [G : H] — égalité entre cardinaux.

(iv) Si G est un groupe fini, alors |H| divise |G| — et le quotient égale [G : H].

Preuve. (i) Soit x ∈ G. Alors, l’application H → xH, h 7→ xh est une bijection — sa surjectivité résulte de
la définition de xH, son injectivité de l’existence de x−1. Il en va de même pour H → Hx, h 7→ hx. (ii) et (iii)
Les classes à gauche forment une partition de G dont toutes les parts ont le même cardinal — celui de H. On
conclut avec le théorème des bergers. Idem pour les classes à droite. (iv) est une conséquence immédiate de
(iii) puisque ces cardinaux sont des nombres.

Définition (indice d’un sous-groupe)
Dans les conditions de la proposition précédente, [G : H] est l’indice de H dans G.

Exemples
(i) Il n’y a pas de sous-groupe d’ordre 35 dans Z/27Z× Z/135Z.
(ii) Soit p un nombre premier. Tout homomorphisme de groupes Z/pZ→ G est constant ou injectif.

Exercice 11 Tout sous-groupe d’indice 2 est distingué.

Définition (groupe simple)
Un groupe G est dit simple lorsque ses seuls sous-groupes distingués sont G et 1G.

Exemple
Si n est un entier naturel non nul, le groupe (Z/nZ,+) est simple si, et seulement si n est un nombre premier.

1.4 Groupe-quotient, théorèmes d’isomorphismes

Lemme (compatibilité de la multiplication modulo un sous-groupe)

Soient G un groupe et H un sous-groupe de G. Les assertions suivantes sont équivalentes.

(i) Pour tous x, y ∈ G, la classe à gauche de xy modulo H ne dépend que de xH et de yH.

(ii) Pour tous x, y ∈ G, la classe à droite de xy modulo H ne dépend que de Hx et de Hy.

(iii) H ◁ G

Preuve. On précise ce que signifie l’assertion (i) :

∀x, y, x′, y′ ∈ G,
(
xH = x′H et yH = y′H

)
=⇒

(
xyH = x′y′H

)
. (1)
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Autrement dit, (i) signifie que la congruence à droite modulo H est compatible avec la loi du groupe. On montre
l’équivalence de (i) et de (iii) ; celle entre (ii) et (iii) est du même acabit.
(iii)⇒(i) On suppose que H ◁ G. Soient x, x′, y, y′ ∈ G tels que xH = x′H et yH = y′H. Soient alors h, k ∈ H
tels que x′ = xh et y′ = yk. Puisque H est distingué, soit ℓ ∈ H tel que hy = yℓ. Dans ces conditions,
x′y′ = xhyk = xy(ℓk) ∈ xyH. Cela montre que x′y′H = xyH.
(i)⇒(iii) On suppose que (1) est vraie. Soient h ∈ H et x ∈ G. Puisque h ∈ 1H et x ∈ xH, alors hx ∈ 1xH, ce
qui signifie que hx ∈ xH. L’arbitraire sur x et h montre que H ◁ G.

Lorsque H ◁ G, les classes à gauche et les classes à droite sont les mêmes, au sens où xH = Hx pour tout
x ∈ G. On parle alors de classe modulo H, sans préciser s’il s’agit d’une classe à droite ou à gauche. Dans ces
conditions, le lemme montre qu’on peut définir une loi de composition interne sur les classes modulo H. C’est
cette loi qui confère à l’ensemble des classes modulo H une structure de groupe.

Proposition (définition du groupe-quotient modulo un sous-groupe distingué)

Soient G un groupe et H un sous-groupe distingué de G. On note G/H l’ensemble des classes modulo H
des élément de G. Alors, l’application G/H × G/H → G/H, (xH, yH) 7→ xyH est bien définie et confère à
l’ensemble G/H une structure de groupe. Son élément neutre est H = 1.H et pour tout x ∈ G, l’inverse de xH
est x−1H.

Preuve. Que la loi soit bien définie est conséquence du lemme. Si x ∈ G, on note x = xH = Hx la classe
de x modulo H. En particulier, 1 = H. La définition de la loi sur G/H s’écrit alors x · y = xy. Si x, y, z ∈ G,
alors (x · y) · z = xy · z = (xy)z = x(yz) = x · yz = x · (y · z), ce qui montre l’associativité de la loi. Par
ailleurs, 1 · x = 1 · x = x et x · 1 = x · 1 = x : la classe 1 = H est élément neutre. Enfin, si x ∈ G, alors
x · x−1 = x · x−1 = 1 ce qui montre que x−1 est inverse à droite de x. Un calcul analogue montre que x−1 est
également inverse à gauche de x.

A noter
Le lemme précédent montre aussi que si H n’est pas distingué, il est vain de chercher à définir une loi de groupe
sur les classes à droite ou à gauche modulo H par une formule du type xH.yH = xyH ou Hx.Hy = Hxy.

Définition (projection canonique)
Soient G un groupe et H un sous-groupe distingué de G. L’homomorphisme de groupes

p : G −→ G/H
x 7→ x = xH = Hx

est appelé surjection canonique ou projection canonique — que ce soit un homomorphisme de groupes résulte
immédiatement de la définition de la loi de groupe sur G/H dont c’est une paraphrase.

La propriété universelle du quotient, qui suit, est l’énoncé opératoire des groupes-quotient. C’est elle qui permet
notamment de définir des homomorphismes de groupes dont l’ensemble de départ est un quotient avec le confort
argumentaire procuré par son automatisme technique.

Proposition (propriété universelle des groupes-quotient)
Soient G et G′ des groupes, f : G → G′ un homomorphisme de groupes et H un sous-groupe distingué de G.
On note p : G → G/H la projection canonique. On suppose que H ⊆ ker f . Alors, il existe un unique
homomorphisme de groupes f : G/H → G′ tel que f = f ◦ p. En outre,

(i) ker f = p (ker f) = {xH, x ∈ ker f} ; en particulier, f est injectif si, et seulement si ker f = H ;

(ii) im f = im f ; en particulier, f est surjectif si, et seulement si f l’est.

Le diagramme commutatif (et même cartésien) standard est le suivant :

G G′

G/H

f

p
f

Preuve. On prouve d’abord l’unicité. On suppose que f : G/H → G′ existe et vérifie f = f ◦ p. Alors,
pour tout x ∈ G, f (x) = f(x). Cela montre que l’application f cherchée est déterminée par f , ce qui prouve
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l’unicité. Maintenant l’existence. On n’a pas le choix, le raisonnement précédent oblige à définir f par la formule
f (x) = f(x). Il s’agit de montrer que cette formule a du sens, ce qui est garanti par l’hypothèse H ⊆ ker f . En
effet, si xH = yH, alors x−1y ∈ H ⊆ ker f et donc f(x) = f(y) : l’application f est constante sur les classes de
congruence modulo H. Il reste à vérifier que f est un homomorphisme de groupes, ce qui est une pure routine.
(i) et (ii) sont immédiates.

Exemple
Soient m et n deux entiers naturels non nuls. On suppose que m divise n, c’est-à dire que nZ ⊆ mZ. Le
groupe Z est abélien, inutile de se préoccuper de distinction pour passer au quotient : la projection canonique
Z → Z/mZ se factorise, via la projection canonique Z → Z/nZ, en un homomorphisme surjectif d’anneaux
Z/nZ → Z/mZ. Ce dernier envoie la classe modulo n d’un entier sur sa classe modulo m. Son noyau est
l’ensemble des classes modulo n des multiples de m. C’est le sous-groupe cyclique ⟨m⟩ de Z/nZ, où m désigne
la classe de m modulo n. Il est d’ordre n

m .

Théorème (premier théorème d’isomorphisme pour les groupes)

Soit f : G→ G′ un homomorphisme de groupes. Alors, f induit un isomorphisme de groupes

G/ ker f ≃ im f

Preuve. C’est une application directe de la PUQ.

Exemples

(i) Si V est un espace vectoriel de dimension finie sur un corps F, le déterminant induit un isomorphisme de
groupes

GL(V )/ SL(V ) ≃ F∗.

En effet, l’homomorphisme de groupes det : GL(V ) → F× a pour noyau SL(V ). En outre, il est surjectif.
Pour montrer ce dernier point, on peut prendre une base de V qui établit une application linéaire bijective
FdimV ∼−→ V et aussi un isomorphisme de groupes GL(V ) ≃ GL(dimV,F). Trouver un automorphisme de
V dont le déterminant x ∈ F× est prescrit devient alors un jeu d’enfants : il suffit de considérer la matrice
diagonale diag(x, 1, . . . 1).

(ii) L’exponentielle imaginaire (R,+) 7→ (C×,×), t 7→ exp(it) est un homomorphisme de groupes (l’exponentielle
d’une somme est le produit des exponentielles). Son image est le groupe multiplicatif S1 = {z ∈ C, |z| = 1} des
nombres complexes de module 1. Son noyau est le sous-groupe 2πZ de R. Le premier théorème d’isomorphisme
montre que l’exponentielle imaginaire induit un isomorphisme de groupes

R/2πZ ≃ S1.

A vrai dire, l’exponentielle jouit d’autre propriétés intéressantes, notamment topologiques. Ces propriétés
se transmettent ou se traduisent presque toujours sur l’isomorphisme R/2πZ ≃ S1. Par exemple, à condi-
tion de définir proprement une topologie sur le quotient (par exemple, la topologie quotient !), on obtient un
homéomorphisme.

(iii) Soit F =

{(
1 a
0 b

)
∈M2 (R) , a, b ∈ R, b ̸= 0

}
l’ensemble des matrices de GL(2,R) qui fixent le vecteur-

colonne
t
(1, 0). Alors, F est un sous-groupe de GL(2,R) et l’application F → R×,

(
1 a
0 b

)
7→ b est un homo-

morphisme de groupes surjectif dont le noyau est le sous-groupe U =

{(
1 a
0 1

)
, a ∈ R

}
de F , isomorphe à

(R,+) (exercice). Le premier théorème d’isomorphisme montre que les groupes F/U et R× sont isomorphes.

Exercice 12
Sur le mode de l’exemple (ii) ci-dessus, trouver des isomorphismes entre les groupes suivants.

(i) Z/nZ ≃ Un si n est un entier naturel non nul et si Un désigne le groupe des racines ne complexes de l’unité,
qui est un sous-groupe fini de S1.

(ii) (C/2iπZ,+) ≃ (C×,×).
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(iii) Q/Z ≃ U∞ où U∞ désigne le groupe multiplicatif de toutes les racines complexes de l’unité (les racines
carrées, cubiques, 4e, 5e, etc), qui est un sous-groupe dense de S1.

A noter
Soient G un groupe, H un sous-groupe distingué de G et p : G → G/H la surjection canonique. Alors, les
sous-groupes de G/H sont les classes modulo H des sous-groupes de G contenant H, en le sens suivant.

1○ Si K est un sous-groupe de G/H, alors p−1 (K) est un sous-groupe de G contenant H.

2○ Inversement, si K est un sous-groupe de G contenant H alors H ◁ K et le groupe K/H, qui est l’ensemble
des classes modulo H des éléments de K, est un sous-groupe de G/H.

3○ Les deux opérations K 7→ p−1 (K) et K 7→ K/H définissent deux bijections réciproques l’une de l’autre entre
l’ensemble des sous-groupes de G/H et l’ensemble des sous-groupes de G contenant H.

Théorème (deuxième théorème d’isomorphisme pour les groupes)

Soient G un groupe, H et K deux sous-groupes distingués de G, tels que H ⊆ K. Alors, K/H ◁ G/H et la
projection canonique G 7→ G/K induit un isomorphisme de groupes

(G/H) / (K/H) ≃ G/K

Preuve. Que H soit un sous-groupe distingué de K est immédiat et donne du sens au groupe-quotient K/H.
Soit p : G 7→ G/K la projection canonique. Puisque H◁G et H ⊆ ker p = K, la propriété universelle du quotient
induit un homomorphisme surjectif de groupes G/H → G/K dont le noyau est p(K) = {kH, k ∈ K} = K/H.
On conclut avec le premier théorème d’isomorphisme.

A noter
On peut résumer la situation et la preuve du deuxième théorème d’isomorphisme par le diagramme commutatif
suivant. S’assurer de bien comprendre comment les flèches sont définies (quels homomorphismes d’anneaux elles
représentent).

G G/K

G/H

(G/H)

(K/H)

p

Théorème (troisième théorème d’isomorphisme pour les groupes)

Soient G un groupe, H et K deux sous-groupes de G. On suppose que H normalise K, ce qui signifie que
hKh−1 = K, pour tout h ∈ H. Alors,

(i) H ∩K est un sous-groupe distingué de H ;

(ii) si on note HK = {hk, h ∈ H, k ∈ K}, alors HK = KH et HK est un sous-groupe de G ;

(iii) K est un sous-groupe distingué de HK ;

(iv) on a un isomorphisme de groupes

HK/K ≃ H/H ∩K

Preuve. D’abord, l’hypothèse que H normalise K assure que HK = KH. En effet, si h ∈ H et k ∈ K, alors
k′ = hkh−1 ∈ K et donc hk = k′h ∈ KH. De même, k′′ = h−1kh ∈ K et donc kh = hk′′ ∈ HK : on a montré
que KH = HK.
Si h, h′ ∈ H et k, k′ ∈ K, soit k′′ ∈ K tel que kh′ = h′k′′. Alors, hk · h′k′ = hh′ · k′′k ∈ HK et (hk)−1 =
k−1h−1 ∈ KH = HK : on a montré que HK est un sous-groupe de G.
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Si k′ ∈ K et si hk ∈ HK, alors (hk)k′(hk)−1 = h
(
kk′k−1

)
h−1 ∈ K, ce qui montre que K ◁HK. On peut donc

considérer le groupe-quotient HK/K.
Enfin, on compose l’inclusion H ↪→ HK et la projection canonique HK → HK/K, ce qui fournit un homo-
morphisme de groupes f : H → HK/K dont le noyau est H ∩K. En outre, si hk ∈ HK, alors f(h) = f(hk)
est la classe de hk modulo K, ce qui montre que f est surjectif. On conclut en appliquant le premier théorème
d’isomorphisme à f .

Exercice 13 Soient G un groupe.

(i) Montrer que le groupe-quotient G/D(G) est abélien. On appelle ce groupe l’abélianisé de G.

(ii) Soit H un sous-groupe distingué de G. On suppose que le groupe-quotient G/H est abélien. Montrer que
D(G) ⊆ H et que G/H est isomorphe à un quotient du groupe abélien G/D(G).
[Le slogan, littéralement impropre mais parlant et souvent entendu, est le suivant : G/D(G) est le plus grand quotient abélien de G. Son

sens précis est : tout quotient abélien d’un groupe est (isomorphe à) un quotient de son abélianisé.]
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2 Le groupe symétrique

2.1 Permutations d’un ensemble fini

Définition (groupe symétrique d’un ensemble)
Si E est un ensemble non vide, toute application bijective E → E est appelée permutation de E. Le groupe
symétrique de E est l’ensemble des permutations de E muni de la composition des applications. On le noteraSE .

A noter

(i) L’unique bijection ∅ → ∅ est celle dont le graphe est vide. On convient de dire que S∅ = {∅} est le groupe
trivial.

(ii) L’élément neutre de SE est l’application identique de E, que l’on notera idE , ou même parfois 1. Le
symétrique d’un élément σ ∈ SE est sa réciproque. Bien souvent, on omettra de noter la composition : si
σ, τ ∈ SE , on notera σ ◦ τ = στ . De même, si n ∈ N \ {0}, on définit par récurrence σn = σ ◦ · · · ◦ σ (n fois) et

σ−n =
(
σ−1

)n
= (σn)

−1
. Par commodité, on note aussi σ0 = idE .

Proposition (le groupe symétrique ne dépend que du cardinal)
Soient E et F deux ensembles non vides équipotents. Alors, les groupes symétriques SE et SF sont isomorphes.

Preuve. Soit φ : E → F une application bijective. Alors, l’application SE → SF , σ 7→ φ ◦ σ ◦ φ−1 est un
isomorphisme de groupes dont la réciproque est SF → SE , σ 7→ φ−1 ◦ σ ◦ φ.
Définition (groupe Sn)
Si n est un entier naturel non nul, on note Sn = S{1,...,n}. Fort de la proposition précédente, on l’appelle
parfois groupe des permutations de n objets.

Exercice 14

(i) Si n est un entier naturel non nul, l’ordre de Sn est n!.

(ii) Tout groupe est (isomorphe à) un sous-groupe d’un groupe de permutations.

En effet, soit G un groupe. Si x ∈ G, on note sx : G→ G l’application définie par sx(y) = xy, pour tout y ∈ G ;
montrer que sx est une permutation de G. Montrer que l’application G→ SG, x 7→ sx est un homomorphisme
injectif de groupes. En déduire que G est isomorphe à un sous-groupe de SG.

(iii) Montrer que si ∅ ≠ E ⊆ F , alors SE est (canoniquement) isomorphe à un sous-groupe de SF .
[Pour prolonger à F une permutation de E, fixer tous les éléments de F \ E.]

Définition (support d’une permutation)
Soient E un ensemble et σ une permuttation de E. Le support de σ est le complémentaire dans E de l’ensemble
de ses points fixes. On le note Supp(σ). Ainsi,

Supp(σ) = {x ∈ E, σ(x) ̸= x} .

Exercice 15
Le support d’une permutation ainsi que son complémentaire sont stables par cette permutation. Cela signifie
que si s ∈ SE alors s(x) ∈ Supp(s), pour tout x ∈ Supp(s) et s(x) ∈ E \ Supp(s), pour tout x ∈ E \ Supp(s).
On se concentre davantage sur le calcul des permutations d’un ensemble fini, c’est-à-dire sur la structure du
groupe Sn. Dans cette étude, la notion de cycle est essentielle.

Définition (cycle, ou permutation cyclique)
Soient E un ensemble, p un entier naturel non nul et a1, . . . , ap des éléments distincts de E. Le p-cycle noté
(a1, . . . , ap) est la permutation c de E définie par :

∀k ∈ {1, . . . , p− 1} , c (ak) = ak+1

c (ap) = a1

∀x ∈ E \ {a1, . . . , ap} , c(x) = x.

Le nombre p est la longueur du cycle (a1, . . . , ap). Lorsqu’il n’y a pas d’ambigüıté, on note parfois les cycles
sans virgule : (a1, . . . , ap) = (a1 . . . ap).
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A noter

(i) Si a ∈ E, le 1-cycle (a) est l’application identique : son support est vide. Si p ≥ 2, le support d’un p-cycle
(a1, . . . , ap) est l’ensemble {a1, . . . , ap}. Cela montre en particulier que la notion de longueur est bien définie
— attention au cycle de longueur 1, un peu stupide.

(ii) Il n’y a pas d’unicité de l’écriture d’un cycle noté à l’aide des parenthèses. Par exemple, dans S5, (12) = (21)
et (12345) = (23451) = (34512) = (45123) = (51234). Dans Sn, lorsqu’on a besoin d’une forme univoque, on
choisit souvent de placer le plus petit élément du support en première position : on préférera ainsi (12), (12345)
et (26374) aux autres écritures.

(iii) Prendre garde à la notation lorsque l’on compose des cycles. Par exemple, dans S6, (1543)(246) = (154623)
et (246)(1543) = (156243).

(iv) S2 est isomorphe à Z/2Z, unique groupe d’ordre 2 à isomorphisme près. En revanche, dès que n ≥ 3, le
groupe Sn n’est pas commutatif puisque (12)(23) = (123) et (23)(12) = (132) sont distincts.

Exercice 16
Soient n et p des entiers naturels non nuls. Si c = (a0, . . . , ap−1) ∈ Sn et si m ∈ Z, alors cm (ak) = a

k̃+m
où

k̃ +m est le reste de la division euclidienne de k +m par p.

Proposition (ordre d’un p-cycle)
Pour tout p ∈ N \ {0}, l’ordre d’un p-cycle est p.

Preuve. C’est immédiat. On peut le voir comme une conséquence de l’exercice précédent.

Proposition (permutations à supports disjoints)
Deux permutations dont les supports sont disjoints commutent.

Preuve. Soient s et t deux permutations d’un ensemble E. On suppose que Supp(s)∩Supp(t) = ∅. Soit x ∈ E.
Si x ∈ Supp(s), alors x /∈ Supp(t) et s(x) /∈ Supp(t) puisque s(x) ∈ Supp(s) ; ainsi, st(x) = s(t(x)) = s(x) et
ts(x) = t(s(x)) = s(x). Dans ce cas, st(x) = ts(x). De la même façon, si x ∈ Supp(t), alors st(x) = ts(x) = t(x).
Enfin, si x /∈ Supp(s) ∪ Supp(t), alors st(x) = s(t(x)) = s(x) = x et ts(x) = t(s(x)) = t(x) = x, ce qui montre
encore que st(x) = ts(x). Dans tous les cas, st(x) = ts(x) pour tout x ∈ E, ce qui montre que st = ts.

Exercice 17
Montrer que si s et t sont deux permutations à supports disjoints de Sn, alors l’ordre de st est le PPCM des
ordres de s et de t. Etendre ce résultat au produit d’un nombre quelconque de cycles à supports disjoints.

Proposition (formule de conjugaison des cycles)
Soient E un ensemble, p un entier naturel non nul, a1, . . . , ap des éléments distincts de E et σ ∈ SE. Alors,

σ (a1, . . . , ap)σ
−1 = (σ (a1) , . . . , σ (ap))

En particulier, le conjugué d’un p-cycle est un p-cycle.

Preuve. On note c = (a1, . . . , ap) et c
′ = (σ (a1) , . . . , σ (a1)). Soit x ∈ E. Si x = σ (ak) où k ∈ {1, . . . , p− 1},

alors σcσ−1 (x) = σc (ak) = σ (ak+1) = c′(x). De même, si x = σ (ap), alors σcσ
−1 (x) = σ (a1) = c′(x). Enfin,

si x = σ(y) où y ∈ E \ Supp(c), alors σcσ−1 (x)σc(y) = σ(y) = x et, puisque x n’est pas dans le support de c′,
on a également c′(x) = x. Dans tous les cas, c(x) = c′(x) : on a montré que c = c′.

Proposition (centre de Sn)
Soit n un entier naturel. Si n ≥ 3, le centre de Sn est trivial.

A noter
En abrégé, Z (Sn) = {id}{1,...,n} si n ≥ 3. Le cas n = 2 est à part puisque S2 ≃ Z/2Z est abélien : Z (S2) = S2.

Preuve. Soit σ ∈ Sn \
{
id{1,...,n}

}
. Soit alors a ∈ {1, . . . , n} tels que σ(a) ̸= a. On note b = σ(a). Puisque

n ≥ 3, soit c ∈ {1, . . . , n} \ {a, b}. Alors, σ(ac)σ−1 = (bσ(c)) ̸= (ac) puisque b /∈ {a, c}. Cela montre que σ ne
commute pas avec le cycle (ab) donc n’est pas dans Z (Sn).

Proposition (dans le groupe symétrique, tous les p-cycles sont conjugués)
Soient E un ensemble, p un entier naturel non nul, c et c′ deux p-cycles de SE. Alors, il existe σ ∈ SE tel que
c′ = σcσ−1.
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Preuve. On note c = (a1, . . . , ap) et c′ = (b1, . . . , bp). Soit σ une permutation de E qui vérifie σ (ak) = bk
pour tout k ∈ {1, . . . , p}. Il en existe puisque les ensembles E\Supp(c) et E\Supp(c′) sont équipotents : il suffit
de prolonger l’application σ ainsi définie sur Supp(c) à E tout entier en choisissant une bijection quelconque
E \ Supp(c)→ E \ Supp(c′). Alors, la formule de conjugaison des cycles montre que c′ = σcσ−1.

Deux exemples

(i) Une permutation de Sn est parfois notée en dressant la liste des images successives de 1, 2, etc. Ainsi, on

notera entre crochets

[
1 2 3 4 5
4 2 3 5 1

]
ou encore [4, 2, 3, 5, 1] la permutation s ∈ S5 qui vérifie s(1) = 4,

s(2) = 2, s(3) = 3), s(4) = 5 et s(5) = 1.
Par exemple, [6, 13, 12, 14, 4, 1, 7, 10, 2, 9, 11, 3, 8, 5] = (1, 6)(2, 13, 8, 10, 9)(3, 12)(4, 14, 5). Cette égalité se vériife
en montrant que les deux permutations de S14 écrites, l’une en donnant la suite des images, l’autre en produit
de cycles, envoient tout élément de {1, . . . , 14} sur la même image. Noter que le membre de droite est un produit
de cycles à supports disjoints.

(ii) Autre exemple dans S5 : (123)(325)(153)(1254) = (154)(23). Là encore, montrer image par image que les
deux permutations fournies sont égales. A noter : dans le membre de droite, on écrit le produit de cycles du
membre de gauche comme un produit de cycles à supports disjoints.

Proposition (décomposition en produit de cycles disjoints)
Soit n un entier naturel non nul. Toute permutation de Sn se décompose en un produit de cycles à supports
disjoints. A l’ordre près des facteurs, cette décomposition est unique.

Autrement dit, en termes plus explicites :
pour tout σ ∈ Sn, il existe m ∈ N et un ensemble {c1, . . . , cm} de cycles de Sn \ {idE} tels que

(i) ∀j, k ∈ {1 . . . ,m},
(
j ̸= k

)
=⇒

(
Supp (cj) ∩ Supp (cj) = ∅

)
;

(ii) σ = c1 . . . cm.
En outre, si σ = c1 . . . cm = c′1 . . . c

′
ℓ sont deux telles décompositions de σ en produits de cycles à supports

disjoints, alors m = ℓ et ∃s ∈ Sm, ∀k ∈ {1, . . . ,m}, c′k = cs(k).

Noter que le cas σ = idE correspond au cas où m = 0, c’est-à-dire au cas où l’ensemble des cycles qui
décomposent σ est vide.

Preuve. Opératoire, la preuve présentée ici reprend l’idée algorithmique des deux exemples qui précèdent
l’énoncé du théorème de décomposition.
Pour toute permutation σ ∈ Sn et pour tout x ∈ {1, . . . , n}, on appelle orbite de x sous σ le sous-ensemble{
σk(x), k ∈ Z

}
de {1, . . . , n}. On la notera ω(x, σ), ou simplement ω(x) ; c’est une partie de {1, . . . , n} stable

par σ au sens où ∀y ∈ ω(x), σ(y) ∈ ω(x). En particulier, grâce à cette stabilité, la restriction de σ à ω(x) définit
une permutation de ω(x), que l’on notera σω(x). En outre, σω(x) est un cycle de longueur maximale de Sω(x).

En effet, si p est le nombre d’éléments de ω(x), alors p ≥ 1, σp(x) = x et ω(x) =
{
x, σ(x), . . . , σp−1(x)

}
, ce

qui implique que σω(x) soit le p-cycle
(
x, σ(x), . . . , σp−1(x)

)
de Sω(x). On prolonge σω(x) en une permutation

de Sn en fixant tous les nombres qui ne sont pas dans ω(x) : on obtient ainsi un cycle cω(x) de Sn qui vérifie :
∀k ∈ ω(x), cω(x)(k) = σ(k) et ∀x ∈ {1, . . . , n} \ ω(x), cω(x)(k) = k.
Ainsi, pour chaque orbite ω, on a construit un cycle cω de Sn qui vérifie :{

∀x ∈ ω, cω(x) = σ(x)

∀x ∈ {1, . . . , n} \ ω, c(x) = x.

Par ailleurs, les orbites sous σ forment une partition de {1, . . . , n} — elles sont les classes de la relation
d’équivalence x ∼ y ⇔ ∃k ∈ Z, y = σk(x). Noter en passant que les orbites constituées de singleton sont
celles des points fixes de σ : pour une telle orbite ω = ω(x) = {x}, σ(x) = x et cω = id{1,...,n}.

Pour prouver l’existence de la décomposition cherchée, on montre que σ est le produit des cycles des orbites
non triviales :

σ =
∏

#ω≥2

cω.

Noter que ce produit a du sens parce que les orbites forment une partition de {1, . . . , n}, ce qui entrâıne que
les cycles cω commutent entre eux : l’ordre dans lequel on effectue ce produit est indifférent. Une fois cette
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construction faite, prouver l’égalité est élémentaire : on note τ =
∏

#ω≥2 cω et on montre que τ = σ. Soit
x ∈ {1, . . . , n}. Si σ(x) = x, alors ω(x) = {x} : x est fixé par tous les cω et donc τ(x) = x = σ(x). Si
σ(x) ̸= x, alors #ω(x) ≥ 2, cω(x)(x) = σ(x) et cω(x) = x pour tout orbite ω différente de ω(x) ; ainsi, là encore,
τ(x) = σ(x). Ainsi, σ(x) = τ(x) pour tout x ∈ {1, . . . , n}, ce qui prouve que σ = τ .

Il reste à prouver l’unicité de la décomposition. On suppose que σ = c1 . . . cm où les ck sont des cycles de
longueurs supérieures ou égales à 2 et à supports disjoints. Alors, pour tout k ∈ {1, . . . ,m}, le support de ck est
une orbite sous σ que l’on note ωk. Par construction, ck est le cycle cωk

défini plus haut, ce qui prouve l’unicité
cherchée.

Le slogan Les cycles qui décomposent une permutation sont (induits par) les restrictions à ses orbites.

Proposition (CNS pour que deux permutations soient conjuguées)

Soient n un entier naturel non nul, σ, τ ∈ Sn. Alors, σ et τ sont conjuguées si, et seulement si leurs
décompositions en produits de cycles à supports disjoints ont le même forme en le sens suivant : il existe
r ∈ N, des cycles s1, . . . sr à supports disjoints et des cycles t1, . . . tr à supports disjoints tels que :

(i) ∀k ∈ {1, . . . , r}, les cycles sk et tk ont la même longueur ;

(ii) σ = s1 . . . sr et τ = t1, . . . tr.

Preuve. Que le conjugué d’un produit s1 . . . sr ait la même forme vient de la formule de conjugaison des
cycles : si σ et τ sont conjugués, ils ont la même forme. Inversement, soient s1, . . . sr, t1, . . . tr comme dans
l’énoncé. Puisque les supports des sk sont disjoints et ceux des tk aussi, il existe une permutation π ∈ Sn

telle que tk = πskπ
−1, pour tout k ∈ {1, . . . , r} — en toute rigueur, faire une récurrence sur r. Alors,

t1, . . . tr = πs1 . . . srπ
−1.

Exercice 18
Calculer les classes de conjugaison dans S2, S3, S4, S5 et S6. Comment calculer le nombre de classes de
conjugaisons dans Sn ?

Définition (transposition) Une transposition est un 2-cycle.

Proposition (les transpositions engendrent Sn)
Soit n un entier naturel non nul. Le groupe Sn est engendré par ses transpositions.

Preuve. Il s’agit de montrer que toute permutation est un produit de transpositions. Grâce au théorème
de décomposition en produit de cycles disjoints, il suffit de montrer que tout cycle de Sn est un produit de
transpositions. Le calcul élémentaire (a1, . . . ap) = (a1a2) (a2a3) . . . (ap−1ap) le montre.

Exercice 19

(i) Les transpositions de la forme (k, k + 1) engendrent Sn.

(ii) Si n ≥ 4, les 4-cycles engendrent Sn.
[On pourra s’appuyer sur le calcul (12) = (1324)(1234)2).]

Proposition (groupe de Klein)

K = {id, (12)(34), (13)(24), (14)(23)} est un sous-groupe distingué de S4, isomorphe à Z/2Z× Z/2Z.

Ce groupe est appelé groupe de Klein� On le verra, la situation K ◁S4 est exceptionnelle.

Preuve. Pour montrer que K est un sous-groupe de S4 et qu’il est isomorphe à (Z/2Z)2, il suffit d’en faire
la table. Pour montrer qu’il est distingué dans S4, il suffit de montrer qu’il est invariant par la conjugaison des
transpositions puisque ces dernières engendrent S4. A renumérotation près, les deux calculs suivants suffisent
pour conclure : (12)(12)(34)(12) = (12)(34) et (13)(12)(34)(13) = (14)(23).

A noter
Pour montrer que K ◁ S4, on peut aussi utiliser directement la formule de conjugaison des cycles en remar-
quant que K contient tous les produits de deux transpositions à supports disjoints de S4 : si σ ∈ S4, alors
σ(12)(34)σ−1 = (σ(1)σ(2))(σ(3)σ(4)), qui est encore un produit de transpositions à supports disjoints, est
encore dans K.

�Felix Klein, 1849 – 1925. Sa contribution aux liens entre groupes et géométrie est déterminante. Lire son Programme d’Erlangen.

N. Pouyanne, UVSQ 2026, LSMA610 16



2.2 Signature d’une permutation

Proposition (existence et unicité de la signature)

Soit n un entier naturel supérieur ou égal à 2.

(i) Il existe un unique homomorphisme de groupes non trivial ε : Sn → {−1, 1}.
(ii) Si c est un p-cycle, alors ε(c) = (−1)p−1.

(iii) Soit σ ∈ Sn. Si m est le nombre d’orbites de {1, . . . , n} sous σ, alors ε(σ) = (−1)n−m.

Preuve. (i) D’abord, l’unicité. Soit ϵ : Sn → {±1} un homomorphisme de groupes. Puisque le groupe
multiplicatif {±1} est abélien, deux permutations conjuguées ont la même image par ϵ. Comme les transpositions
sont toutes conjuguées, elles ont donc toutes la même image par ϵ. Mais puisque elles engendrent Sn, si cette
image commune est 1, alors ϵ est constant. Ainsi, si ϵ n’est pas trivial, ϵ(τ) = −1 pour toute transposition τ .
A nouveau, comme les transpositions engendrent Sn, la valeur de ϵ sur les transpositions détermine la valeur
de ϵ sur toutes les permutations. Cela démontre l’unicité.
Ensuite, l’existence. Si σ ∈ Sn, on note

ε(σ) =
∏

(i,j)∈{1,...n}2, i<j

σ(j)− σ(i)
j − i

. (2)

Comme chaque terme de ce produit est symétrique en i et j, le nombre rationnel ε(σ) s’écrit aussi en sommant
sur les paires d’éléments distincts

ε(σ) =
∏

{i,j}⊆{1,...n}, i ̸=j

σ(j)− σ(i)
j − i

=

∏
{i,j}, i ̸=j

(σ(j)− σ(i))

∏
{i,j}, i ̸=j

(j − i)
.

Puisque l’application {i, j} → {σ(i), σ(j)} est une bijection de l’ensemble des parties à deux éléments de
{1, . . . , n} sur lui-même — sa réciproque s’exhibe aisément —, le numérateur et le dénominateur de cette
dernière fraction ont la même valeur absolue. On en déduit que ε(σ) ∈ {−1, 1}. Mieux encore, en revenant à la
première formulation (2) en termes de couples, on obtient la célèbre formule

ε(σ) = (−1)I(σ) (3)

où I(σ) est le nombre d’inversions de σ :

I(σ) = Card
{
(i, j) ∈ {1, . . . n}2 , i < j et σ(i) > σ(j)

}
.

Il reste à montrer que ε ainsi défini est un homomorphisme de groupes non trivial. Soient s, t ∈ Sn. Alors,

ε(st) =
∏

{i,j}, i ̸=j

s ◦ t(j)− s ◦ t(j)
j − i

=
∏

{i,j}, i ̸=j

s[t(j)]− s[t(i)]
t(j)− t(i)

×
∏

{i,j}, i ̸=j

t(j)− t(i)
j − i

= ε(s)ε(t)

la dernière égalité venant encore du fait que {i, j} 7→ {t(i), t(j)} est une bijection de l’ensemble des parties à
deux éléments de {1, . . . , n} sur lui-même. Enfin, il suffit pour conclure de montrer que ε(12) = −1 ce qui est
immédiat à partir de (3) puisque I((12)) = 1.

(ii) Tous les p-cycles ont la même signature puisqu’ils sont tous conjugués dans Sn. Or, ε(1, 2 . . . , p) =
ε ((1, 2)(2, 3) . . . (p− 1, p)) = ε ((1, 2)) ε ((2, 3)) . . . ε ((p− 1, p)) = (−1)p−1.

(iii) Soit σ ∈ Sn. On décompose σ en produit de cycles à supports disjoints, y compris les cycles de longueur 1,
triviaux, qui correspondent aux points fixes de σ : ainsi, σ = c1 . . . cm où m est le nombre d’orbites sous σ et
où chaque ck est un cycle dont on note la longueur ℓk — pour tout k ∈ {1, . . .m}, ℓk ≥ 1. Alors,

ε(σ) =

m∏
k=1

(−1)ℓk−1 = (−1)
∑m

k=1 ℓk × (−1)−m = (−1)n−m
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puisque la somme des longueurs des cycles de σ, triviaux compris, égale la somme des cardinaux des orbites,
c’est-à-dire n.

Définition (signature, permutations paires ou impaires)
On appelle ε la signature. Une permutation est dite paire si sa signature est 1, impaire sinon.

A noter
La preuve donnée ci-dessus est constructive. Elle exhibe la signature via son expression en termes de nombres
d’inversions d’une permutation.

En passant Se faire raconter l’histoire du jeu de taquin de Lloyd.

2.3 Le groupe alterné

Définition (groupe alterné)
Si E est un ensemble fini, le groupe alterné de E est le sous-groupe de SE formé par ses permutations paires.
On le note AE — cette lettre est un A gothique. Le sous-groupe des permutations paires de Sn est noté An.

A noter
An est le noyau de la signature. C’est donc un sous-groupe distingué d’indice 2 de Sn. En particulier, |An| = n!

2 .

Proposition (les 3-cycles engendrent An)
Soit n un entier naturel non nul. Le groupe An est engendré par ses 3-cycles.

Preuve. Toute permutation paire est un produit d’un nombre pair de transpositions. Or, (12)(23) = (123) et
(12)(34) = (123)(234). Ces deux calculs, grâce à la formule de conjugaison des cycles, suffit pour conclure.

Corollaire (groupe dérivé de Sn)
Pour tout n ≥ 2, D (Sn) = An.

Preuve. Si n = 2, c’est idiot. On suppose n ≥ 3. Tout commutateur est une permutation paire ; donc
D (Sn) ⊆ An. Puisque les 3-cycles engendrent An, il suffit de montrer que tout 3-cycle est un commutateur
pour obtenir l’inclusion inverse. Or, (12)(23)(12)(23) = (132). Cela suffit pour conclure.

Proposition (les 3-cycles sont conjugués dans An lorsque n ≥ 5)

On suppose que n ≥ 5. Alors, si c et c′ sont deux 3-cycles de An, il existe σ ∈ An tel que c′ = σcσ−1.

Preuve. Soit (abc) un 3-cycle de Sn. Puisque les 3-cycles sont conjugués dans Sn, soit τ ∈ Sn tel que
(abc) = τ(123)τ−1. Si τ est paire, c’est fini, σ = τ convient. Si τ est impaire, alors τ(45) est paire et σ = τ(45)
convient puisque (123) et (45) commutent.

A noter

(i) Dans le groupe abélien (et même cyclique) A3 = {1, (123), (132)} ≃ Z/3Z, les deux 3-cycles ne sont pas
conjugués.

(ii) Dans A4, les huit 3-cycles sont répartis en deux classes de conjugaison qui sont {(123), (142), (134), (243)}
et {(132), (124), (143), (234)} — pour argumenter, par exemple, conjuguer (123) par les éléments du groupe de
Klein.

Corollaire (groupe dérivé de An)
Pour tout n ≥ 5, D (An) = An.

Preuve. Comme dans le calcul de D (Sn), il suffit de montrer que tout 3-cycle est un commutateur dans An.
Soit c un 3-cycle. Puisque n ≥ 5, il est conjugué au 3-cycle c2 dans An. Soit donc s ∈ An tel que scs−1 = c2.
Alors, c = scs−1c−1.

Exercice 20 Montrer que D (A3) = (1) et que D (A4) = K (groupe de Klein).

On a la châıne de sous-groupes distingués (1)◁K ◁A4 ◁S4. Cette situation est exceptionnelle, comme le montre
le résultat suivant.

Théorème (simplicité de An lorsque n ̸= 4)

Si n ̸= 4, le groupe alterné An est simple.
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Preuve. Le groupe A2 est trivial et A3, cyclique d’ordre 3, est simple.

(i) On prouve d’abord que A5 est simple. Soit H ◁A5. Si H contient un 3-cycle, il les contient tous puisque les
3-cycles sont conjugués dans A5 ; donc H = A5 puisque les 3-cycles engendrent A5. Si H contient un élément
d’ordre 2, quitte à renuméroter, H contient (12)(34) ; en conjuguant par (13245), le groupe H contient (34)(25),
donc le produit (12)(34)(34)(25) = (125). Alors H = A5 puisqu’il contient un 3-cycle. Enfin, si H contient un
élément d’ordre 5, i.e., quitte à renuméroter, s’il contient (12345), on conjugue par (254) ce qui montre que H
contient (15324) ; donc H contient le produit (12345)(15324) = (254) et donc H = A5. puisqu’il contient un
3-cycle. On a fait le tour des cas possibles, ce qui montre que A5 est simple.

(ii) On suppose n ≥ 6. Soit H ◁ An. On suppose que H ̸= (1). Soit alors σ ∈ H et a ∈ {1, . . . , n} tels que
b = σ(a) ̸= a. Soit c ∈ {1, . . . , n} \ {a, b, σ(b)}. Soit τ = (acb) et soit ρ le commutateur ρ = τστ−1σ−1.
D’une part ρ = (τστ−1)σ−1 ∈ H. D’autre part, par la formule de conjugaison des cycles, ρ = τ(στ−1σ−1) =
(acb)(σ(a)σ(b)σ(c)). Soit E ⊆ {1, . . . , n} tel que CardE = 5 et E ⊇ {a, b, c, σ(a), σ(b), σ(c)} — un tel E existe
car b = σ(a). On termine la preuve par les deux points suivants.
1○ ρ ̸= 1 ; en effet, ρ = 1 si, et seulement si (abc) = (σ(a)σ(b)σ(c)), i.e. si, et seulement si (bca) = (bσ(b)σ(c))
ce qui n’est pas puisque c ̸= σ(b).
2○ [On veut dire correctement que ρ “appartient à H ∩ AE ◁ AE“. Puisque AE est simple et ρ ̸= 1, cela impose H ∩ AE = AE . Donc H

contient un 3-cycle. Donc H = An. On le dit correctement dans ce qui suit.] Soit π : AE → An le prolongement par l’identité
hors de E. Alors, 1 ̸= (acb)(σ(a)σ(b)σ(c)) ∈ π−1(H) ◁ AE . Par simplicité de AE , cela impose π−1(H) = AE .
Donc H contient le 3-cycle π(abc). Donc H = An.

Exercice 21 Refaire une preuve du calcul des groupes dérivés de Sn et An en utilisant la simplicité de An.

Proposition (sous-groupes normaux de Sn)

Si n ̸= 4, les seuls sous-groupes distingués de Sn sont (1), An et Sn.

Preuve. Pour n ∈ {2, 3}, c’est immédiat. On suppose n ≥ 5. Soit H ◁ Sn. Alors, H ∩ An ◁ An et donc,
puisque An est simple, H ∩An ∈ {(1),An}. Si H ∩An = An, alors H ⊇ An et donc H ∈ {An,Sn}. On suppose
que H ∩ An = (1) et que H ̸= (1). Alors, la restriction de la signature à H est un isomorphisme et H est
d’ordre 2. Soit s l’unique permutation impaire telle que H = {1, s}. Alors, si t ∈ Sn, tst

−1 est une permutation
impaire de H. Donc tst−1 = s, ce qui montre que s et t commutent. Puisque cela est vrai pour tout t ∈ Sn,
cela entrâıne que s est central. Or, le centre de Sn est trivial : nécessairement, σ = 1 et l’hypothèse H ̸= (1)
ne tient pas.

Exercice 22 Trouver les sous-groupes distingués de S4.
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3 Groupes abéliens de type fini

Définition (GATF, GALTF et GAF)
Un groupe abélien est dit de type fini — en abrégé, GATF — lorsqu’il admet une partie finie qui l’engendre.
Les groupes abéliens finis — en abrégé, GAF — en sont un cas particulier. Lorsqu’un groupe est isomorphe au
groupe additif Zr pour un r ∈ N, on dit que c’est un groupe abélien libre de type fini — en abrégé, GALTF, ou
encore un réseau.

Exemples
Si r est un entier naturel et G un GAF, alors Zr × G est un GATF. On verra que tous les GATF ont cette
forme.

A noter
Tout GATF est isomorphe au quotient d’un GALTF.

En effet, si G = ⟨g1, . . . , gn⟩, alors l’application Zn → G, (x1, . . . xn) 7→
∑n
k=1 xkgk est un homomorphisme

surjectif de groupes auquel il suffit d’appliquer le premier théorème d’isomorphisme. Son noyau est le sous-
groupe des relations de G.

Exercice 23

(i) Si G est un groupe abélien, l’ensemble des éléments d’ordre fini de G est un sous-groupe de G.

(ii) L’ensemble des éléments d’ordre fini d’un groupe non abélien n’est en général pas un sous-groupe.

Définition (sous-groupe de torsion)
Si G est un groupe abélien, l’ensemble GT des éléments d’ordre fini de G est le sous-groupe de torsion de G.

Exemples

(i) Si G est un GAF, le groupe de torsion de G× Zr est GT = G.

(ii) Si G est un GALTF, il n’a pas de torsion : GT = {0}.
(iii) Tous les éléments du groupe additif Q/Z sont de torsion (d’ordre fini). Autrement dit, (Q/Z)T = Q/Z.
[On verra, une fois le théorème de structure des GATF installé, qu’un GATF est libre si, et seulement s’il est sans torsion. On voit avec

cet exemple que ce résultat tombe en défaut si on ne suppose pas le groupe abélien finiment engendré.]

3.1 Prélude à l’unicité des facteurs invariants

On commence par un lemme d’apparence technique dont on fournit une preuve combinatoire. Il constitue un
point crucial dans l’argumentaire choisi pour établir la structure des GAF et des GALTF

Lemme (régularité du produit pour les groupes finis)

Soient G, G′ et H des groupes finis. On suppose que G×H ≃ G′ ×H. Alors, G ≃ G′.

Preuve. On compte. Si L et M sont deux groupes finis, on note h(L,M) le nombre d’homomorphismes de
groupes L→M et i(L,M) le nombre d’homomorphismes injectifs de groupes L→M .

1○ Si L, G et H sont des groupes finis, alors h(L,G×H) = h(L,G)× h(L,H).

En effet, si note p1 et p2 les projections p1 : G ×H → G, (g, h) 7→ g et p2 : G ×H → H, (g, h) 7→ h ; et si on
note aussi F et G les applications définies par les formules

Hom(L,G×H) −→ Hom(L,G)×Hom(L,H)

f
F7−→ (p1 ◦ f, p2 ◦ f)

φ× ψ G←− [ (φ,ψ)

où φ× ψ est défini par φ× ψ(ℓ) = (φ(ℓ), ψ(ℓ)), alors, F et G sont des bijections réciproques l’une de l’autre.

2○ Si L et G sont deux groupes finis, alors h(L,G) =
∑
N◁L i (L/N,G).

La somme ci-dessus porte sur tous les sous-groupes distingués N de L. En effet, soit

I = {(N, i), N ◁ L, i ∈ Hom(L/N,G), i injectif}
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La propriété universelle du quotient assure que tout homomorphisme de groupes f : L → G induit un homo-
morphisme injectif f : L/ ker(f)→ G. Alors, l’application Φ définie par

Φ : Hom(L,G) −→ I
f 7−→

(
ker f, f

)
est une bijection, dont la réciproque est (N, g) 7→ pN ◦ g où pN : L → L/N est la projection canonique. Donc
h(L,G) = #I. En comptant le cardinal de I par sa première composante, on obtient la somme souhaitée.

3○ Si L, G et G′ sont deux groupes finis tels que h(L,G) = h(L,G′), alors i(L,G) = i(L,G′).

On procède par récurrence (forte) sur |L|. Si |L| = 1, il n’y a rien à démontrer. On suppose que |L| ≥ 2. Alors,
la formule 2○ fournit h(L,G) = i(L,G) +

∑
N◁L, N ̸=(0) i (L/N,G). Par récurrence, on peut remplacer G par G′

dans cette dernière somme, ce qui montre le résultat.

4○ Fin de la preuve : on se place dans les hypothèses du lemme. Alors, 1○ assure que h(G,G) = h(G,G′). En
appliquant 3○ pour L = G, on obtient alors que i(G,G) = i(G,G′). Puisque i(G,G) ≥ 1 (l’identité est une
injection G → G), on en déduit que i(G,G′) ≥ 1. Mais l’hypothèse G ×H ≃ G′ ×H assure que |G| = |G′| :
puisque ces cardinaux sont finis et égaux, tout homomorphisme injectif G→ G′ est un isomorphisme.

Exercice 24 Si on enlève l’hypothèse de finitude, la conclusion du lemme tombe en défaut.

Par exemple, si F est un corps, les F-espaces vectoriels F[X] et F × F[X] sont isomorphes puisqu’ils ont la même dimension (infinie,

dénombrable ; exercice : expliciter un tel isomorphisme). Un tel isomorphisme, en abandonnant la loi externe, est aussi un isomorphisme

entre les groupes additifs {0} × F[X] et F × F[X]. Pourtant, le groupe additif F n’est pas trivial.

3.2 GALTF, rang

Proposition (les GALTF ont un rang)

Soient n,m ≥ 1. Les groupes Zm et Zn sont isomorphes si, et seulement si m = n.

Preuve. Soit f : Zm → Zn un isomorphisme de groupes. Une récurrence immédiate montre que f est
Z-linéaire. On prolonge f à Qm par la formule f

(
1
D (x1 . . . , xm)

)
= 1

Df (x1 . . . , xm) où (x1 . . . , xm) ∈ Zm et
D ∈ Z \ {0}. D’une part, cette formule a du sens puisque, avec ces notations, 1

D (x1 . . . , xm) = 1
D′ (x

′
1 . . . , x

′
m)

implique 1
Df (x1 . . . , xm) = 1

D′ f (x
′
1 . . . , x

′
m) — en effet, si la prémice est vérifiée, alors la Z-linéarité de f assure

que D′f (x1 . . . , xm) = f (D′x1 . . . , D
′xm) = f (Dx′1 . . . , Dx

′
m) = Df (x′1 . . . , x

′
m). D’autre part, ladite formule

définit l’image de n’importe quel élément de Qm par réduction au même dénominateur (D) des coordonnées.
Une fois ce prolongement f : Qm → Qn défini, sa Q-linéarité et sa bijectivité sont immédiates — on exhibe sa
réciproque qui a la même forme. Alors, les Q-espaces vectoriels Qm et Qn étant isomorphes, ils ont la même
dimension, ce qui montre que m = n.

Exercice 25
Faire une autre preuve de cette proposition en prenant un nombre premier p (par exemple 2) et en construisant
un isomorphisme de Z/pZ-espaces vectoriels à partir d’un isomorphisme de groupes Zm → Zn — pour conclure,
on argumentera à l’aide la dimension des espaces vectoriels construits.

Définition (rang d’un GALTF)
Si G est un GALTF isomorphe à Zr, le nombre r est appelé rang de G — cette définition est rendue possible
par la proposition précédente.

Exercice 26
En passant par le corps des fractions, montrer que si A est un anneau intègre et si les anneaux Am et An sont
isomorphes, alors m = n.

Définition (base d’un GALTF)
Si G est un GALTF de rang r, une base de G est un r-uplet (v1, . . . , vr) d’éléments de G qui engendrent G et
qui sont Z-linéairement indépendants, ce qui signifie que pour tout x1, . . . xs ∈ Z, x1v1 + · · · + xsvs = 0 =⇒
x1 = · · · = xs = 0.

Exercice 27
Si G est un GALTF, un famille (v1, . . . , vr) d’éléments de G est une base de G si, et seulement si tout élément
de G s’écrit de manière unique sous la forme

∑r
k=1 xkvk où x1, . . . , xr ∈ Z.
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Définition (formes coordonnées dans une base d’un GALTF)
Avec les notations de la définition d’une base d’un GALTF, pour tout k ∈ {1, . . . , r}, la ke forme coordonnée
relative à la base (v1, . . . , vr) est l’homomorphisme de groupes v∗k : G → Z défini par v∗k(γ) = xk, pour tout
γ =

∑r
k=1 xkvk ∈ Γ.

A noter
Comme dans les affaires de dualité dans les espaces vectoriels de dimension finie, avec les notations précédentes,
les formes coordonnées sont définies par les relations v∗i (vj) = δi,j pour tous i, j — notation de Kronecker.

Définition (somme directe de sous-groupes abéliens)
Soient G un groupe abélien noté additivement, H et K des sous-groupes de G. On dit que G est somme directe
de H et K lorsque tout élément de G s’écrit, de manière unique, comme la somme d’un élément de H et d’un
élément de K. On note alors G = H ⊕K (comme une somme directe de sous-espaces vectoriels).

Exercice 28
Dans les conditions de la définition ci-dessus, G = H ⊕K si, et seulement si H ∪K engendre G et H ∩K = (0).

Théorème (théorème de la base adaptée)

Soient Γ un GALTF de rang r et G un sous-groupe de Γ. Alors :

(i) G est aussi un GALTF, de rang s inférieur ou égal à r

(ii) Il existe une base (v1, . . . , vr) de Γ et des entiers naturels a1, . . . as non nuls tels que a1|a2| . . . |as et tels que
(a1v1, . . . , asvs) soit une base de G

(iii) (unicité) si a1, . . . as et b1, . . . bs sont des suites d’entiers naturels et si (v1, . . . , vr) et (w1, . . . , wr) sont des
bases de Γ telles que a1|a2| . . . |as, b1|b2| . . . |bs, (a1v1, . . . , asvs) et (b1w1, . . . , bsws) sont des bases de G, alors
ak = bk pour tout k ∈ {1, . . . , s}.
(iv) Γ/G est isomorphe à Zr−s × (Z/a1Z)× (Z/a2Z) · · · × (Z/asZ)
(v) En particulier, [Γ : G] est fini si, et seulement si r = s. Dans ces conditions, [Γ : G] = a1a2 . . . ar.

Preuve. Soit (e1, . . . , er) une base de Γ. On note (e∗1, . . . , e
∗
r) les formes coordonnées relatives à cette base.

(i) On procède par récurrence sur r = rg Γ. L’hypothèse de récurrence au rang r est la suivante : si Γ est un
GALTF de rang r et si G est un sous-groupe de Γ, alors G est un GALTF de rang inférieur ou égal à r.

Si r = 1, on peut supposer que Γ = Z puisqu’il lui est isomorphe. Or, les sous-groupes de Z sont tous de la
forme aZ où a ∈ N. Si a = 0, aZ = {0} est un GALTF de rang 0 ; si a ≥ 1, aZ est un GALTF de rang 1.

On suppose que r ≥ 2 et on note Gr−1 = G ∩
⊕r−1

k=1 Zek. Par hypothèse de récurrence, puisque Gr−1 est un

sous-groupe du GALTF
⊕r−1

k=1 Zek, c’est un GALTF de rang inférieur ou égal à r − 1. Soit e∗r ∈ Hom(Γ,Z) la
re forme coordonnée relative à la base (e1, . . . , er). Puisque e∗r(G) est un sous-groupe de Z, soit a ∈ N tel que
e∗r(G) = aZ. Si a = 0, alors G = Gr−1 est libre, de rang inférieur ou égal à r − 1. Si a ̸= 0, soit w ∈ G tel que
e∗r(w) = a. Pour tout g ∈ G, e∗r(g) ∈ aZ, ce qui entrâıne qu’il existe c ∈ Z tel que g− cw ∈ G∩ ker (e∗r) = Gr−1.
Cela montre que G = Gr−1 ⊕ Zw, le fait que l’intersection Gr−1 ∩ Zw soit nulle étant immédiat. Or, Gr−1

est un GALTF de rang inférieur ou égal à r − 1 ; donc G est un GALTF de rang inférieur ou égal à r. On a
montré (i).

(ii) On procède par récurrence sur r = rg Γ. L’hypothèse de récurrence au rang r est la suivante : si Γ est un
GALTF de rang r et si G est un sous-GALTF de rang s, alors il existe une base (v1, . . . , vr) de Γ et des entiers
naturels non nuls a1, . . . as tels que a1|a2| . . . |as et tels que (a1v1, . . . , asvs) soit une base de G.

Si r = 1, on peut supposer que Γ = Z puisqu’il lui est isomorphe. Comme G est alors un sous-groupe de Z, soit
a ∈ N tel que G = aZ. Si a = 0, alors G = {0} est libre de rang 0. Si a ̸= 0, alors G est libre de rang 1 ; en
outre, v1 = 1 et a1 = a conviennent.
On suppose que r ≥ 2. Si G = {0}, il n’y a rien à démontrer. On suppose que G ̸= {0}. Soit donc g ∈ G, g ̸= 0.
Alors, une au moins des coordonnées de g dans la base (e1, . . . , er) est non nulle : il existe k ∈ {1, . . . , r} tel
que e∗k(g) ̸= 0. Ainsi, {f(G), f ∈ Hom(Γ,Z)} ≠ {{0}}. Soit alors a1 l’entier naturel, non nul, défini par

a1 = min {a ∈ N∗, ∃f ∈ Hom(Γ,Z) , f(G) = aZ} .

Soient alors f1 ∈ Hom(Γ,Z) tel que f1(G) = a1Z, et w1 ∈ G tel que f1 (w1) = a1. On montre alors l’assertion
suivante :

∀f ∈ Hom(Γ,Z) , a1 divise f (w1) . (4)
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En effet, si f ∈ Hom(Γ,Z), on note d = PGCD (a1, f (w1)) = PGCD (f1 (w1) , f (w1)). Soit alors b, c ∈ Z tels
que d = ba1+cf (w1) — c’est une relation de Bézout. Dans ces conditions, la forme linéaire bf1+cf ∈ Hom(Γ,Z)
vérifie d = (bf1 + cf) (w1). Par minimalité de a1, puisque w1 ∈ G, cela montre que a1 ≤ d. Comme d est un
diviseur de a1, cela entrâıne que a1 = d ce qui implique que a1 est un diviseur de f (w1) : on a montré (4).
On applique alors (4) aux formes coordonnées relatives à la base (e1, . . . , er) du GALTF Γ. il s’ensuit que toutes
les coordonnées de w1 sont divisibles par a1. Soit alors v1 ∈ Γ tel que w1 = a1v1. En particulier, puisque a1 ̸= 0
et f1 (w1) = a1 = a1f1 (v1), cela entrâıne que f1 (v1) = 1.
On est alors dans la situation suivante :
(a) Γ = ker (f1)⊕ Zv1
(b) G = (G ∩ ker (f1))⊕ a1Zv1
L’assertion (a) est garantie par la formule γ = (γ − f1(γ)v1) + f1(γ)v1 pour tout γ ∈ Γ, puisque γ − f1(γ)v1 ∈
ker (f1), le fait que l’intersection ker (f1)∩Zv1 soit nulle étant immédiat. L’assertion (b) est du même acabit en
écrivant g = (g − f1(g)v1)+ f1(g)v1 pour tout g ∈ G et en remarquant que f1(g) est un multiple de a1, puisque
f1(G) = a1Z par définition de a1.
Le groupe ker (f1) est un sous-groupe du GALTF Γ. D’après (i), c’est donc lui-même un GALTF, de rang
inférieur ou égal à r. Mais (a) impose que ce rang soit exactement r − 1. En outre, G ∩ ker (f1) est un sous-
groupe du GALTF ker (f1). Toujours d’après (i), G ∩ ker (f1) est encore un GALTF ; soit s ∈ {1, . . . , r} tel
que s − 1 = rgG ∩ ker (f1). Par hypothèse de récurrence, soient a2, . . . , as ∈ N∗ et (v2, . . . , vr) une base de
ker (f1) tels que a2| . . . |as et tels que (a2v2, . . . , asvs) soit une base de G ∩ ker (f1). Alors, (a) et (b) assurent
que (v1, . . . , vr) est une base de Γ et que (a1v1, . . . , asvs) est une base de G. Il reste à montrer que a1|a2. Pour
cela, soit f = v∗1 +v

∗
2 ∈ Hom(Γ,Z), somme des formes coordonnées v∗1 et v∗2 relatives à la base (v1, . . . , vr) de Γ.

D’une part, f (a1v1) = a1, ce qui entrâıne par minimalité de a1 que f(G) = a1Z. D’autre part, f (a2v2) = a2
ce qui implique que a2 ∈ a1Z puisque a2v2 ∈ G. On a montré (ii).

(iv) et (v) En reprenant les notations du théorème, Γ =
⊕r

k=1 Zvk etG =
⊕s

k=1 Zakvk. Alors, l’homomorphisme
de groupes

Γ −→ Z/a1Z× · · · × Z/asZ× (Zr−s)∑r
k=1 xkvk 7−→ (x1 + a1Z, . . . , xs + asZ, (xs+1 . . . , xr))

est surjectif et a pour noyau G, ce qui montre (iv) en appliquant le premier théorème d’isomorphisme. En
particulier, Γ/G est fini si, et seulement si r − s = 0. Dans ce cas, Γ/G est isomorphe au groupe produit
Z/a1Z× · · · × Z/ar qui est d’ordre a1 . . . ar.

(iii) Dans la situation du (iv), s est le rang de G et le groupe de torsion de Γ/G est isomorphe au produit
Z/a1Z × · · · × Z/asZ. Il suffit donc de montrer que si a1| . . . |as et si b1| . . . |bs, alors Z/a1Z × · · · × Z/asZ
et Z/b1Z × · · · × Z/bsZ sont isomorphes seulement si ak = bk pour tout k, ce que l’on montre par récurrence
sur s. Si s = 1, il n’y a rien à démontrer : deux groupes cycliques sont isomorphes si, et seulement s’ils ont
le même ordre. On suppose donc que que s ≥ 2 et que Z/a1Z × · · · × Z/asZ et Z/b1Z × · · · × Z/bsZ sont
isomorphes. Dans cette situation, as est l’ordre maximum d’un élément de Z/a1Z× · · ·×Z/asZ. Donc as = bs.
Le lemme de régularité du produit pour les groupes abéliens assure alors que les groupes Z/a1Z×· · ·×Z/as−1Z
et Z/b1Z × · · · × Z/bs−1Z sont isomorphes, les hypothèse de divisibilité sur les ak et les bk demeurant. On
conclut par récurrence que ak = bk, pour tout k.

Pour aller plus loin

(i) Cette preuve s’appuie sur la principalité de l’anneau Z. Le résultat du théorème de la base adaptée s’étend
au cas des sous-modules d’un module libre sur un anneau principal — un module a les mêmes axiomes que ceux
d’un espace vectoriel, hormis l’anneau des scalaires dont on ne suppose plus que c’est un corps. En particulier,
si F est un corps, le théorème de la base adaptée dans le cadre de l’anneau principal F[X] et des polynômes
d’endomorphismes est un outil parfait pour l’étude de la réduction des endomorphismes. Y trouve une réponse
complète la question des classes de similitude des endomorphismes — ou des matrices carrées.

(ii) En utilisant la division euclidienne dans Z, on peut aussi adopter un point de vue algorithmique — c’est
une adaptation de l’algorithme du pivot de Gauss – qui fournit à la fois une autre preuve du puissant théorème
de la base adaptée, mais aussi un mode de calcul effectif.
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3.3 GAF et GATF, rang et facteurs invariants

Théorème (structure des GATF)

Soit G un GATF. Il existe un unique couple d’entiers naturels (r, s) et une unique suite a1, . . . , as d’entiers
naturels tels que

(i) a1 ≥ 2 ;

(ii) a1|a2| . . . |as ;

(iii) G ≃ Zr × (Z/a1Z)× (Z/a2Z) · · · × (Z/asZ).

Preuve. Puisque G est un GATF, il admet un système générateur fini ⟨g1 . . . , gn⟩. Alors, l’application
(x1, . . . xn) 7→

∑n
k=1 xkgk est un homomorphisme surjectif de groupes f : Zn → G. Via le premier théorème

d’isomorphisme, il induit un isomorphisme entre G et le groupe Zn/ ker f , qui est le quotient d’un GALTF
par un de ses sous-groupes. On conclut avec le théorème de la base adaptée qui fournit à la fois l’existence et
l’unicité.

Définition (rang et facteurs invariants d’un GATF)
Dans la situation du théorème de structure des GATF, l’entier r est le rang de G et les nombres a1, . . . as sont
les facteurs invariants de G.

A noter

(i) Un GATF est un GAF si, et seulement s’il est de rang 0, ou encore si tous ses éléments sont d’ordres finis.

(ii) Avec les notations du théorème de structure des GATF, le sous-groupe de torsion de G est isomorphe à
Z/a1Z× · · · × Z/asZ.
(iii) Un GATF est un GALTF si, et seulement s’il n’a aucun facteur invariant ; autrement dit, lorsque s = 0,
ou encore lorsque son sous-groupe de torsion est nul.

(iv) Ainsi deux GATF sont isomorphes si, et seulement s’ils ont le même rang et les mêmes facteurs invariants.
Dans la même veine, deux GAF sont isomorphes si, et seulement s’ils ont les mêmes facteurs invariants.

Exemple
Les facteurs invariants du groupe abélien fini Z/60Z× Z/90Z× Z/150Z sont (30, 30, 900). En effet, cette suite
est croissante pour l’ordre de divisibilité, et le théorème chinois montre successivement, sachant que 60 = 22.3.5,
90 = 2.33.5 et 150 = 2.3.52, en détricotant les facteurs puis en les retricotant, que

Z/2Z× Z/45Z× Z/60Z× Z/150Z

≃ (Z/2Z)×
(
Z/32Z× Z/5Z

)
×

(
Z/22Z× Z/3Z× Z/5Z

)
×

(
Z/2Z× Z/3Z× Z/52Z

)
≃

(
Z/22Z× Z/32Z× Z/52Z

)
× (Z/2Z× Z/3Z× Z/5Z)× (Z/2Z× Z/3Z× Z/5Z)

≃ Z/30Z× Z/30Z× Z/900Z.

Exercice 29
Si a et b sont des entiers naturels non nuls, les facteurs invariants de Z/aZ×Z/bZ sont pgcd(a, b) et ppcm(a, b).

Définition (composante de p-torsion d’un groupe abélien)
Soient G un groupe abélien et p un nombre premier. La composante de p-torsion de G est son sous-groupe
G(p) :=

{
x ∈ G, ∃a ≥ 0, xp

a

= 1
}
. Autrement dit, G(p) est l’ensemble des éléments de G dont l’ordre est une

puissance de p.

Exercice 30 Soient G un groupe abélien et p un nombre premier.

(i) G(p) est un sous-groupe de G.

(ii) Si le groupe G(p) est fini, son ordre est une puissance de p.

Théorème (décomposition des GAF en composantes primaires)

Soit G un GAF.

(i) G est somme directe de ses composantes de p-torsion :

G =
⊕

p premier
p divise |G|

G(p).
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(ii) Si l’ordre de G est la puissance d’un nombre premier p, il existe une unique suite finie croissante d’entiers
naturels non nuls a1 ≤ · · · ≤ as telle que G soit isomorphe au produit

G ≃ Z/pa1Z× · · · × Z/parZ.

(iii) La décomposition de G sous la forme

G ≃
(
Z/pa(p1,1)

1 Z× · · · × Z/p
a(p1,sp1 )
1 Z

)
× · · · ×

(
Z/pa(pm,1)

m Z× · · · × Z/p
a(pm,spm )
m Z

)
.

où p1 ≤ · · · ≤ pm est une suite finie croissante de nombres premiers et où a(pk,1) ≤ · · · ≤ a(pk,spk ) est une suite

finie croissante d’entiers naturels non nuls pour chaque k ∈ {1, . . . ,m}, dont l’existence est garantie par (i) et
(ii), est unique.

Preuve. Tout est conséquence directe du théorème de décomposition des GAF en facteurs invariants, et
d’applications répétées du théorème chinois.

Définition (composantes primaires d’un GAF)
La décomposition de G selon le (iii) du théorème précédent est la décomposition de G en composantes primaires.

A noter

(i) La décomposition en composantes primaires est caractérisée par la donnée de la famille presque nulle d’entiers((
a(p,k)

)
1≤k≤sp

)
p premier

avec les conditions de monotonie sur les
(
a(p,k)

)
1≤k≤sp

énoncées dans le théorème.

(ii) Ainsi, deux GAF sont isomorphes si, et seulement s’ils ont la même décomposition en composantes primaires.

Exemple
On reprend l’exemple ci-dessus : G = Z/60Z × Z/90Z × Z/150Z. Comme dans celui-ci, on décompose chaque
facteur en composantes primaires à l’aide du théorème chinois, puis on recompose nombre premier par nombre
premier pour obtenir la décomposition en composantes primaires, qui s’écrit ici (troisième ligne)

Z/2Z× Z/45Z× Z/60Z× Z/150Z

≃ (Z/2Z)×
(
Z/32Z× Z/5Z

)
×

(
Z/22Z× Z/3Z× Z/5Z

)
×

(
Z/2Z× Z/3Z× Z/52Z

)
≃

(
Z/2Z× Z/2Z× Z/22Z

)
×

(
Z/3Z× Z/3Z× Z/32Z

)
×

(
Z/5Z× Z/5Z× Z/52Z

)
.

Ainsi, le sous-groupe de p-torsion de G est isomorphe à (Z/pZ)2 × Z/p2Z pour p ∈ {2, 3, 5}, nul pour tous les
autres nombres premiers.

Exercice 31
Déduire des théorèmes de structure des GAF le résultat suivant : soit G un groupe abélien fini dont l’ordre est
un multiple d’un nombre premier p. Alors, G contient un élément d’ordre p.
[Faire également une preuve directe de ce résultat, par récurrence sur l’ordre de G, en utilisant un groupe-quotient G/⟨x⟩ pour un x non

nul de G.]

Exercice 32
En utilisant le théorème de Bézout, faire une preuve directe du fait que tout GAF est somme directe de ses
sous-groupes de p-torsion, par récurrence sur le nombre de facteurs premiers distincts de l’ordre du groupe.

Exercice 33

(i) Soient G un groupe abélien, L un GALTF et f : G → L un homomorphisme surjectif de groupes. Montrer
qu’il existe un sous-groupe abélien libre de type fini H de G tel que G = H ⊕ ker(f).

(ii) Soient G un GATF et GT son sous-groupe de torsion. Montrer qu’il existe un sous-groupe L de G qui soit
un GALTF et tel que G = L⊕GT .
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4 Groupes linéaires

4.1 Petit mémento sur le déterminant

Définition (polynôme déterminant, déterminant d’une matrice carrée)
Soit n un entier naturel non nul. Le déterminant à n2 indéterminées est le polynôme

det = det (X1,1, X1,2, . . . , Xn,n) =
∑
σ∈Sn

ε(σ)

n∏
k=1

Xk,σ(k) ∈ Z [X1,1, X1,2, . . . , Xn,n] .

On note souvent les n2 indéterminées sous forme matricielle, si bien que cette formule de définition devient

detM =
∑
σ∈Sn

ε(σ)

n∏
k=1

Xk,σ(k)

où la matrice n× n générique M =M (X1,1, X1,2, . . . , Xn,n), dont les coefficients sont des indéterminées, est

M =M (X1,1, X1,2, . . . , Xn,n) =


X1,1 X1,2 . . . X1,n

X2,1 X2,2 . . . X2,n

...
...

...
Xn,1 Xn,2 . . . Xn,n

 .

Si A est une matrice carrée à coefficients dans n’importe quel anneau commutatif A, le déterminant de A, noté
det(A), est l’élément de A obtenu en spécialisant le déterminant générique detM en les coefficients de A.

Exemples
Pour n = 1, det(X) = 1.

Pour n = 2, det (X1,1, X1,2, X2,1, X2,2) = det

(
X1,1 X1,2

X2,1 X2,2

)
= X1,1X2,2 −X1,2X2,1.

Pour n = 3. D’abord id, puis les deux 3-cycles, puis les trois transpositions :

det

X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

X3,1 X3,2 X3,3

 = X1,1X2,2X3,3 +X1,2X2,3X3,1 +X1,3X2,1X3,2

−X1,1X2,3X3,2 −X1,3X2,2X3,1 −X1,2X2,1X3,3

A noter

(i) En spécialisant, la formule de définition du déterminant, on obtient que det In = 1.

(ii) Le polynôme déterminant à n2 indéterminées est homogène de degré n et est composé de n! monômes sans
carrés, précédés de ±1.
(iii) La sommation peut se faire en faisant agir les permutations sur le premier indice puisque σ 7→ σ−1 est une
bijection de Sn sur lui même qui préserve la signature. Ainsi, on a aussi

det


X1,1 X1,2 . . . X1,n

X2,1 X2,2 . . . X2,n

...
...

...
Xn,1 Xn,2 . . . Xn,n

 =
∑
σ∈Sn

ε(σ)

n∏
k=1

Xσ(k),k.

Cela montre en passant que la matrice générique et sa transposée ont le même déterminant.

(iv) En spécialisant le déterminant à n2 indéterminées de façon ad hoc, on obtient la formule

det


X1,1 . . . X1,n−1 0
...

...
...

Xn−1,1 . . . Xn−1,n−1 0

0 . . . 0 1

 = det

 X1,1 . . . X1,n−1

...
...

Xn−1,1 . . . Xn−1,n−1

 (5)
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En effet, le déterminant spécialisé du membre de gauche s’écrit
∑

σ∈Sn,σ(n)=n

ε(σ)

n−1∏
k=1

Xk,σ(k) alors que le pro-

longement à {1, . . . n} par σ(n) = n induit une bijection qui préserve la signature entre Sn−1 et l’ensemble des
permutations de {1, . . . n} qui fixent n. La préservation de la signature est immédiate grâce au théorème de
décomposition des permutations en produits de cycles à supports disjoints.

Proposition (irréductibilité du déterminant)

Pour tout n ≥ 1, le déterminant à n2 indéterminées est irréductible dans Z [X1,1, X1,2, . . . , Xn,n].

Preuve. Les inversibles de Z [X1,1, X1,2, . . . , Xn,n] sont ±1, polynômes de degré 0. On suppose que det = PQ
où P,Q ∈ Z [X1,1, X1,2, . . . , Xn,n]. Il s’agit de montrer que P = ±1 ou Q = ±1. On utilise plusieurs fois le
fait que si un produit de deux polynômes est homogène, alors les deux facteurs sont également homogènes. On
commence par isoler les indéterminées de la première ligneX1,1, . . . X1,n. Comme det est homogène de degré 1 en
ces n indéterminées, P et Q sont également homogènes en X1,1, . . . X1,n ; comme la somme des degrés de P et Q
égale 1, cela force l’un des deux, disons Q, à être de degré 0 en X1,1, . . . X1,n — autrement dit, les indéterminées
X1,1, . . . X1,n n’apparaissent pas dans l’écriture de Q. Pour chaque k, on isole alors les indéterminées de la
colonne k, autrement dit X1,k, X2,k, . . . Xn,k. Là encore, det est homogène en X1,k, X2,k, . . . Xn,k, de degré 1,
ce qui impose que P et Q soient également homogènes en ces indéterminées, le degré de P ou de Q étant nul.
Comme le degré de P en X1,k égale 1, c’est Q qui est de degré 0. Cela étant vrai pour tout k ∈ {1, . . . , n},
on a montré que le degré de Q est nul en toutes les indéterminées X1,1, . . . , Xn,n. Cela signifie que Q est un
polynôme constant. Le coefficient de det en le monôme X1,1X2,2 . . . Xn,n valant 1, cela impose que Q = ±1.
On note C1, . . . Cn les colonnes de la matrice générique à n2 indéterminées, et L1, . . . , Ln ses lignes. On note
alors aussi

det = det (X1,1, X1,2, . . . , Xn,n) = det (C1, C2, . . . , Cn) = det (L1, L2, . . . , Ln) .

Proposition (le déterminant est n-linéaire alterné en ses lignes et ses colonnes)

Soit n ≥ 1.

(i) Pour toute permutation τ ∈ Sn, det
(
Cτ(1), Cτ(2), . . . , Cτ(n)

)
= ε(τ) det (C1, C2, . . . , Cn).

(ii) Pour toute permutation τ ∈ Sn, det
(
Lτ(1), Lτ(2), . . . , Lτ(n)

)
= ε(τ) det (L1, L2, . . . , Ln).

(iii) Dans Z [X1,1, X1,2, . . . , Xn,n, Y1, . . . , Yn, Z], si on note C le vecteur-colonne des indéterminées Y1, . . . , Yn,
alors

det (C1 + C,C2, . . . Cn) = det (C1, C2, . . . Cn) + det (C,C2, . . . Cn)

et det (ZC1, C2, . . . Cn) = Z det (C1, C2, . . . Cn) .

(iv) Dans Z [X1,1, X1,2, . . . , Xn,n, Y1, . . . , Yn, Z], si on note L le vecteur-ligne des indéterminées Y1, . . . , Yn, alors

det (L1 + L,L2, . . . Ln) = det (L1, L2, . . . Ln) + det (L,L2, . . . Ln)

et det (ZL1, L2, . . . Ln) = Z det (L1, L2, . . . Ln) .

(v) En particulier, dans la matrice générique, si on substitue une ligne ou une colonne à une autre, on obtient
un déterminant nul.

Preuve. On montre les assertions sur les colonnes. Celles sur les lignes s’en déduisent par transposition, ou
par un raisonnement analogue.

(i) det
(
Cτ(1), Cτ(2), . . . , Cτ(n)

)
=
∑
σ∈Sn

ε(σ)
∏n
k=1Xk,στ(k). Puisque σ 7→ στ est une bijection de Sn sur

lui-même, det
(
Cτ(1), Cτ(2), . . . , Cτ(n)

)
= ε(τ)

∑
σ∈Sn

ε(στ)
∏n
k=1Xk,στ(k) = ε(τ) det (C1, C1, . . . , CN ).

(iii) En isolant les indices de la première colonne, on obtient det =
∑
σ∈Sn

ε(σ)Xσ(1),1

∏n
k=2Xσ(k),k. Alors,

det (C1 + C,C2, . . . Cn) =
∑
σ∈Sn

ε(σ)
(
Xσ(1),1 + Yσ(1),1

)∏n
k=2Xσ(k),k et le résultat s’en suit. De la même

façon, det (ZC1, C2, . . . Cn) =
∑
σ∈Sn

ε(σ)
(
ZXσ(1),1

)∏n
k=2Xσ(k),k = Z det (C1, C2, . . . Cn).

(v) Il suffit de montrer que le déterminant d’une matrice dont les deux premières colonnes sont égales est nul. Or,
en appliquant (i) à la transposition τ = (12) dont la signature est −1, on obtient, dans Z [X1,1, X1,2, . . . , Xn,n],
que det (C1, C1, . . . , Cn) = − det (C1, C1, . . . , Cn), ce qui entrâıne que det (C1, C1, . . . , Cn) = 0.
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A noter

(i) En combinant (i) et (iii), on montre le linéarité du déterminant en chacune de ses colonnes. Idem pour les
lignes avec (ii) et (iv).

(ii) La n-linéarité ent le caractère alterné entrâınent que si on substitue une colonne à une combinaison linéaire
des autres, on ne modifie pas le déterminant. Autre formulation : si, après substitution, les colonnes d’une
matrice sont liées, alors son déterminant est nul. Idem pour les lignes, bien sûr.

(iii) Pour montrer (v), on utilise le fait que 2 ̸= 0 dans Z. Cela n’empêche pas sa spécialisation dans un
anneau de caractéristique 2, par exemple Z/2Z. En effet, le fait que l’assertion (v) soit vraie sur Z permet
de la transporter telle quelle sur n’importe quel anneau commutatif A via l’homomorphisme de caractéristique
Z→ A, 1 7→ 1A.

(iv) Après spécialisation, la proposition montre notamment que le déterminant d’une matrice à coefficients dans
n’importe quel anneau commutatif est nul dès que l’une des conditions suivantes est vérifiée (la dernière englobe
les deux autres) :
- une ligne ou une colonne est nulle ;
- deux lignes ou deux colonnes sont égales ;
- les lignes ou les colonnes sont linéairement dépendantes (exercice : cette dernière condition équivaut à la
nullité du déterminant).

(v) Ni la formule de sa définition (sommer sur les permutations) ni l’utilisation récursive des formules de
développement selon une ligne ou une colonne (voir plus bas) ne sont adaptées à un calcul algorithmique
effectif d’un déterminant. Il suffit pour s’en convaincre de calculer en fonction de n le nombre d’opérations
(multiplications et additions) que nécessite le calcul sous ces formes-là du déterminant d’une matrice générique
de taille n. En revanche, grâce à l’invariance du déterminant par transformations élémentaires sur les lignes
ou les colonnes d’une matrice, l’algorithme du pivot de Gauss est toujours une manière efficace de calculer un
déterminant.

Théorème (déterminant d’un produit)

Soient M = M (X1,1, X1,2, . . . , Xn,n) et N = N (Y1,1, Y1,2, . . . , Yn,n) deux matrices génériques dont les coeffi-
cients sont les indéterminées de Z [X1,1, X1,2, . . . , Xn,n, Y1,1, Y1,2, . . . , Yn,n]. Alors,

det(MN) = detM × detN.

Preuve. Pour tout j ∈ {1, . . . , n}, on note respectivement Cj(X) et Cj(Y ) la je colonne deM et la je colonne
de N . Par définition du produit matriciel, la je colonne de MN est MCj(Y ), produit de la matrice carrée M
par le vecteur-colonne Cj(Y ). Toujours selon la définition du produit matriciel, le produitMCj(Y ) se développe
en la somme de vecteurs-colonne MCj(Y ) =

∑n
i=1 Yi,jCi(X). On a ainsi successivement

det(MN) = det (MC1(Y ), . . . ,MCn(Y )) = det

(
n∑
i=1

Yi,1Ci(X), . . . ,

n∑
i=1

Yi,nCi(X)

)
=

∑
i1,...,in∈{1,...n}

Yi1,1 . . . Yin,n det (Ci1(X) . . . , Cin(X)) ,

la dernière égalité venant de la n-linéarité du déterminant. En utilisant le fait que deux colonnes égales annulent
le déterminant, il ne reste plus que les multi-indices de sommation contenant des ik distincts. Cela permet de
ré-écrire cette somme à l’aide de permutations :

det(MN) =
∑
σ∈Sn

Yσ(1),1 . . . Yσ(n),n det
(
Cσ(1)(X) . . . , Cσ(n)(X)

)
.

Enfin, le caractère alterné du déterminant permet de conclure :

det(MN) =
∑
σ∈Sn

Yσ(1),1 . . . Yσ(n),nε(σ) det (C1(X) . . . , Cn(X)) = det(M) det(N).

en mettant det(M) en facteur dans la dernière égalité.
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Exercice 34
Si A est un anneau commutatif et si A ∈Mn (A) est inversible dans l’anneauMn (A), alors detA est inversible

dans l’anneau A et det
(
A−1

)
= (detA)

−1
.

Pour établir le développement du déterminant d’une matrice carrée selon ses lignes ou ses colonnes, on adopte
la notation suivante.

Définition (cofacteurs)

Dans Z [X1,1, X1,2, . . . , Xn,n] où n ≥ 2, pour chaque couple d’indices (i, j) ∈ {A, . . . , n}2, on note Cofi,j le
cofacteur d’indice (i, j) qui est le polynôme

Cofi,j = (−1)i+j det



X1,1 . . . X1,j−1 X1,j+1 . . . X1,n

...
...

...
...

Xi−1,1 . . . Xi−1,j−1 Xi−1,j+1 . . . Xi−1,n

Xi+1,1 . . . Xi+1,j−1 Xi+1,j+1 . . . Xi+1,n

...
...

...
...

Xn,1 . . . Xn,j−1 Xn,j+1 . . . Xn,n


.

La matrice dont on prend le déterminant, qui est de taille (n− 1)× (n− 1), est obtenue à partir de la matrice
générique en supprimant sa ie ligne et sa je colonne.

A noter
Le cofacteur d’indice (i, j) est aussi le déterminant de la matrice

Cofi,j = det



X1,1 . . . X1,j−1 0 X1,j+1 . . . X1,n

...
...

...
...

...
Xi−1,1 . . . Xi−1,j−1 0 Xi−1,j+1 . . . Xi−1,n

0 . . . 0 1 0 . . . 0

Xi+1,1 . . . Xi+1,j−1 0 Xi+1,j+1 . . . Xi+1,n

...
...

...
...

...
Xn,1 . . . Xn,j−1 0 Xn,j+1 . . . Xn,n


. (6)

Pour montrer cela, il suffit de permuter les lignes selon le i-cycle (n, n− 1, . . . , i) et les colonnes selon le j-cycle
(n, n− 1, . . . , j) et d’utiliser la formule (5). Le facteur (−1)i+j dans la définition des cofacteurs apparâıt-il ainsi
comme une signature.

Proposition (développement du déterminant selon une ligne ou une colonne)

Soit n ≥ 2.

(i) Pour tout k ∈ {1, . . . , n}, le déterminant se développe par rapport à la ke ligne sous la forme du produit
matriciel

det (X1,1, X1,2, . . . , Xn,n) =
(
Xk,1 . . . Xk,n

)
· t
(
Cofk,1 . . . Cofk,n

)
.

(ii) Pour tout k ∈ {1, . . . , n}, le déterminant se développe par rapport à la ke colonne sous la forme du produit
matriciel

det (X1,1, X1,2, . . . , Xn,n) =
(
Cof1,k . . . Cofn,k

)
· t
(
X1,k . . . Xn,k

)
.

Preuve. Les deux formules s’obtiennent en combinant la n-linéarité et la formule (6), puisque, si (δ1, . . . , δn)
désigne la base canonique deMn,1, on a

(
Xk,1 . . . Xk,n

)
=
∑n
i=1Xk,j

tδk et idem pour les colonnes.

Exemple (déterminant de Vandermonde)
Soit n ≥ 2. Dans l’anneau de polynômes Z[X1, . . . , Xn],

V (X1, . . . Xn) = det


1 X1 X2

1 . . . Xn−1
1

1 X2 X2
2 . . . Xn−1

2
...

...
...

...
1 Xn X2

n . . . Xn−1
n

 =
∏

(i,j)∈{1,...,n}2

i<j

(Xj −Xi) .
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Pour prouver cela, on procède par récurrence sur n. Pour n = 2, c’est la formule du déterminant 2×2. Si n ≥ 2,
pour tout k ≥ 2, on remplace la colonne Ck de la matrice de Vandermonde par Ck −XnCk−1. On obtient

V (X1, . . . Xn) = det


1 X1 −Xn X1 (X1 −Xn) . . . Xn−2

1 (X1 −Xn)

1 X2 −Xn X2 (X2 −Xn) . . . Xn−2
2 (X2 −Xn)

...
...

...
...

1 Xn−1 −Xn Xn−1 (Xn−1 −Xn) . . . Xn−2
n−1 (Xn−1 −Xn)

1 0 0 . . . 0


En développant selon la dernière ligne et en utilisant la n-linéarité,

V (X1, . . . Xn) =

(
(−1)n−1

n−1∏
k=1

(Xk −Xn)

)
V (X1, . . . Xn−1) ,

ce qui permet de conclure par récurrence.

Exercice 35
Soit F un corps. Démontrer, avec le déterminant de Vandermonde, que tout polynôme de F[X] de degré d ayant
au moins d+ 1 racines distinctes dans F est nécessairement nul — cela nécessite de montrer auparavant qu’un
système linéaire homogène ayant autant d’inconnues que d’équations admet une solution non triviale (si, et)
seulement si son déterminant est nul.

Définition (comatrice)
La comatrice de la matrice générique à n2 indéterminées est la matrice de ses cofacteurs :

Com (X1,1, X1,2, . . . , Xn,n) = (Cofi,j)1≤i,j≤n .

Proposition (matrice et comatrice)

Pour tout n ≥ 1,
M × tCom = tCom×M = det(M) · In. (7)

A noter
Ces produits matriciels doivent être lus comme deux fois n2 identités poynomiales.

Preuve. Le coefficient de la ie ligne et de la je colonne deM tCom est
(
Xi,1 . . . Xi,n

)
·t
(
Cofj,1 . . . Cofj,n

)
puisque la je colonne de tCom est

t(
Cofj,1 . . . Cofj,n

)
. Lorsque i = j, ce produit égale det, c’est une redite

du développement de det = detM par rapport à la ie ligne. Lorsque i ̸= j, en substituant Li à Lj dans det, on
obtient, en développant par rapport à la je ligne, que

det (L1, . . . , Li, . . . , Li, . . . , Ln) = Li ·
t(
Cofj,1 . . . Cofj,n

)
=
(
Xi,1 . . . Xi,n

)
· t
(
Cofj,1 . . . Cofj,n

)
,

le déterminant du terme de gauche étant nul puisque deux lignes sont égales — l’une des deux lignes Li écrites
est au rang j, l’autre au rang i.

Exercice 36

(i) Si A est un anneau commutatif et si A ∈ Mn (A), alors A est inversible à droite (resp. à gauche) dans
l’anneau Mn (A) si, et seulement si detA est inversible dans l’anneau A. En particulier, A est inversible à

droite si, et seulement si A est inversible à gauche. Dans ces conditions, A−1 = (detA)
−1 × t

Com(A).

(ii) Si F est un corps et si A ∈Mn (F), alors A ∈ GL (n,F) si, et seulement si detA ̸= 0.

Théorème (Cayley-Hamilton)

Soient n ≥ 1 et M la matrice n × n générique. On note χM (X) ∈ Z [X,X1,1, X1,2, . . . , Xn,n] le polynôme
caractéristique de M , i.e. χM (X) = det (XIn −M). Alors, en notant On la matrice n× n nulle,

χM (M) = On
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A noter
Egalité entre matrices à coefficients polynomiaux, le théorème de Cayley-Hamilton doit être lu comme n2

identités polynomiales.

Preuve. Attention au raisonnement hâtif et erroné qui consiste à remplacer X par M dans χM , penser que
XIn devient alors M (c’est là l’erreur) et conclure. L’idée qui consiste à spécialiser [X=M] n’est pas stupide
du tout, mais requiert davantage d’attention. On part de (7) que l’on applique à la matrice XIn −M dont les
coefficients sont dans Z [X,X1,1, X1,2, . . . , Xn,n]. On obtient

Com (XIn −M)×
(
XIn − tM

)
= χM (X)In. (8)

On note Z[M ] le sous-anneau — commutatif — de Mn (Z [X1,1, X1,2, . . . , Xn,n]) engendré par M , qui est
l’anneau des polynômes en M à coefficients entiers. Soit alors s : Z [X,X1,1, X1,2, . . . , Xn,n] −→ Z[M ] la
substitution X 7→ M . On prolonge s aux matrices n× n à coefficients dans Z [X,X1,1, X1,2, . . . , Xn,n] et on le
note encore s. Ainsi, l’homomorphisme d’anneaux

s :Mn (Z [X,X1,1, X1,2, . . . , Xn,n]) −→ Mn (Z[M ])

envoie une matrice à coefficients polynomiaux en X,X1,1, . . . Xn,n sur une matrice dont les coefficients sont
eux-même des matrices à coefficients polynomiaux en X1,1, . . . Xn,n, en remplaçant X par M . Pour tout

k ∈ {1, . . . , n}, on note δk ∈ Mn,1 (Z) le vecteur-colonne canonique δk =
t
(0, . . . , 0, 1, 0, . . . , 0), le 1 étant placé

au rang k. Alors, si A ∈ Mn (Z[M ]), et si V est un vecteur-colonne dont les coefficients sont eux-même des
vecteurs-colonne, le produit matriciel A · V a encore du sens par les règles habituelles de calcul matriciel ; c’est
encore un vecteur-colonne à coefficients vecteurs-colonne. En particulier,

s (χM (X)In) ·

δ1...
δn

 =

χM (M)δ1
...

χM (M)δn

 . (9)

Par ailleurs, en notant Mi,j = Xi,j le coefficient de la ie ligne et de la je colonne de M ,

s
(
XIn − tM

)
·

δ1...
δn

 =

Mδ1 −
∑n
k=1Mk,1δk
...

Mδn −
∑n
k=1Mk,nδk

 =

0n
...
0n

 (10)

où 0n désigne le vecteur-colonne nul de Mn,1 (Z). Combiner (8), (9) et (10) conduit au résultat puisqu’une
matrice carrée est nulle si, et seulement son produit par tous les δk est nul.

Exercice 37
Faire une autre preuve du théorème de Cayley-Hamilton ainsi énoncé en le prouvant d’abord pour les matrices
diagonalisables à coefficients complexes, puis en utilisant le théorème de prolongement analytique pour les
polynômes à plusieurs indéterminées.

Exercice 38
Avec cette étude sur le déterminant générique, retrouver tous les résultats standard d’algèbre linéaire des
premières années d’enseignement supérieur qui font intervenir un déterminant (sur un corps), notamment ceux
qui concernent la résolution des systèmes linéaires. En voici quelques exemples.

(i) Deux matrices semblables ont le même déterminant. On définit ainsi le déterminant d’un endomorphisme
d’un espace vectoriel de dimension finie, qui est le déterminant commun à toutes les matrices qui le représentent
via le choix d’une base.
Mieux encore, deux matrices semblables ont le même polynôme caractéristique — mais la réciproque est fausse,
chercher un contre exemple le plus parlant possible. On définit ainsi le polynôme caractéristique d’un endomor-
phisme comme le polynôme caractéristique commun à toutes les matrices qui le représentent via le choix d’une
base.

(ii) Si F est un corps, une matrice carrée est inversible dansMn (F) si, et seulement si son déterminant est non
nul. Un endomorphisme d’une espace vectoriel de dimension finie est bijectif si, et seulement si son déterminant
est non nul.

N. Pouyanne, UVSQ 2026, LSMA610 31



(iii) Une base B d’un espace vectoriel V de dimension finie n étant donnée, on définit le déterminant d’une
n-uplet de vecteurs comme étant le déterminant de la matrice de leurs coordonnées dans la base B. On le note

detB (v1, . . . , vn) .

Si V est un espace vectoriel de dimension finie n, l’espace vectoriel des applications n-linéaires alternées� sur
V est une droite vectorielle. Si B est n’importe quelle base de V , l’application (v1, . . . , vn) 7→ detB (v1, . . . , vn)
est une base de cet espace ; en outre, detB (B) = 1.

Enfin, si f est un endomorphisme de V ,

detB (f (v1) , . . . , f (vn)) = det(f)× detB (v1, . . . , vn) .

(iv) Sur un corps, un système linéaire homogène admet une solution non triviale si, et seulement si son
déterminant est nul.

(v) Sur un corps F, si A ∈ GL (n,F) est une matrice inversible et si B ∈ Mn,1 (F), alors le système linéaire

AX = B admet une unique solution X =
t
(x1, . . . , xn) ∈ Mn,1 (F), dont la ke coordonnée s’écrit selon les

formules de Cramer

xk =
detAk
detA

où Ak est la matrice obtenue en remplaçant la ke colonne de A par le vecteur-colonne B.

(vi) Si r est un entier naturel non nul, les mineurs d’ordre r d’une matrice (rectangulaire) sont les déterminants
de ses sous-matrices carrées r × r. Alors, une matrice est de rang r si, et seulement si elle admet un mineur
d’ordre r non nul alors que tous ses mineurs d’ordre r + 1 sont nuls.

(vii) Sur un corps F, deux matrices carrées n×n (ou deux endomorphismes) sont semblables si, et seulement si
elles ont les mêmes les facteurs invariants dits encore invariants de similitude, qui sont des suites de polynômes
unitaires à une indéterminée qui se divisent les uns les autres, sous la forme P1|P2| . . . |Pm.
Dire que la suite P1|P2| . . . |Pm est la suite des invariants de similitude d’un endomorphisme f d’un espace
vectoriel de dimension finie V signifie que V se décompose en une somme directe V =

⊕m
k=1 Vk de sous-espaces

stables par f et que, pour chaque k, le polynôme minimal et le polynôme caractéristique de l’endomorphisme
de Vk induit par f sont tous les deux égaux à Pk. En particulier, Pm est le polynôme minimal de f et P1 . . . Pm
son polynôme caractéristique, la somme des degrés des Pk valant n.
Calculer les invariants de similitude d’une matrice A ∈ Mn (F) revient essentiellement à effectuer l’algorithme
du pivot de Gauss sur la matrice XIn−A dans l’anneau euclidien F[X], les invariants de similitudes apparaissant
alors sur la diagonale de la matrice échelonnée réduite obtenue à la fin de l’algorithme.

4.2 Transvections et dilatations

Dans toute cette section, V est un espace vectoriel de dimension finie n sur un corps F. On note End(V ) l’espace
vectoriel des applications linéaires V → V et V ∗ l’espace dual de V , qui est l’espace des formes linéaires V → F.
Un hyperplan de V en est un sous-espace de dimension n− 1. Une forme linéaire u ∈ V ∗ \ {0} est une équation
d’un hyperplan H lorsque H = keru.

Les transvections et les dilatations de V sont les endomorphismes qui ont un hyperplan de vecteurs fixes.
L’objectif principal est de montrer que les transvections engendrent le groupe spécial linéaire et que les transvec-
tions et les dilatations engendrent le groupe linéaire.

Définition (vecteur fixe)
Si f est un endomorphisme de V et si v ∈ V , on dit que v est un vecteur fixe de f lorsque f(v) = v.

A noter
L’ensemble des vecteurs fixes de V en est un sous-espace vectoriel, qui est ker (f − idV ). Autrement dit, le
sous-espace de points fixes de f est l’espace propre de f associé à la valeur propre 1.

�Attention, sur un corps de caractéristique 2, les formes multilinéaires antisymétriques sont symétriques et ne cöıncident pas
avec les formes alternées.
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Définition (transvection)
Un endomorphisme t ∈ End(V ) est une transvection de V lorsqu’il existe une base B de V pour laquelle

MatB (t) =



1 0
1 0

1 0
. . .

...
1 1

0 0 0 . . . 0 1


. (11)

A noter
Soit t une transvection qui admet la matrice (11) dans la base B = (v1, . . . , vn) de V .
Alors le sous-espace des vecteurs fixes de t est l’hyperplan H = ker (t− idV ) = Vect (v1, . . . , vn−1) et l’image de
t− idV est la droite vectorielle D = im (t− idV ) = Vect (vn−1). Cette dernière est incluse dans H. On appelle
respectivement H et D l’hyperplan de t et la droite de t.
Si (x1, . . . , xn) est le système générique des coordonnées dans B, l’hyperplan de t a pour équation xn = 0 et la
transvection s’écrit t(v) = v+ xnvn−1, pour tout v ∈ V — il suffit de vérifier cela sur les vecteurs de la base B.
Enfin, une transvection n’est pas diagonalisable.

Proposition (caractérisation des transvections)

Soient V un F-espace vectoriel de dimension finie et f ∈ End(V ). Les assertions suivantes sont équivalentes.

(i) f est une transvection

(ii) ker (f − idV ) est un hyperplan et det f = 1

(iii) ker (f − idV ) est un hyperplan et f n’est pas diagonalisable

(iv) ker (f − idV ) est un hyperplan et la droite im (f − idV ) est incluse dans ker (f − idV )

(v) il existe u ∈ V ∗ \ {0} et h ∈ keru \ {0} tels que f(v) = v + u(v)h, pour tout v ∈ V .

Preuve. (i)⇒(ii) est immédiat. (ii)⇒(iii) Si ker (f − idV ) est un hyperplan, alors 1 est une valeur propre de f
de multiplicité au moins d− 1. Puisque det f = 1, la valeur propre 1 est de multiplicité d alors que l’espace de
vecteurs fixes est de dimension d−1. Donc f n’est pas diagonalisable. (iii)⇒(iv) Puisque H = ker (f − idV ) est
un hyperplan, grâce au théorème du rang, D = im (f − idV ) est une droite vectorielle stable par f , c’est-à-dire
une droite de vecteurs propres pour f . Si elle n’était pas dans H, alors f serait diagonalisable puisque la
concaténation d’une base de H et d’une base de D formerait une base de vecteurs propres de f . (iv)⇒(v) On
note encore H = ker (f − idV ) et D = im (f − idV ) et on suppose que H est un hyperplan (ce qui implique que
D est une droite) et que D ⊆ H. Soit u ∈ V ∗ une équation de H et soit w ∈ V tel que u(w) = 1 — un tel w
existe puisque u ̸= 0. Soit alors h = f(w) − w. Comme h ∈ D, h ∈ H ; en outre, h ̸= 0 puisque f(w) ̸= w.
Alors, V = H ⊕Fw et f(v) = v+u(v)h pour tout v ∈ V puisque cette formule est vraie sur H et en w. (v)⇒(i)
Soient H = keru = ker (f − idV ) et w ∈ u−1(1). On complète h en une base (h1, . . . , hn−2, h) de H. Alors,
(h1, . . . , hn−2, h, w) est une base de V et la matrice de f dans cette base a la forme requise, puisque les hk et h
sont fixes et puisque f(w) = h+ w.

A noter

(i) L’inverse d’une transvection est encore une transvection.
En effet, du point de vue matriciel, l’inverse de la matrice (11) est de la même forme en remplaçant le 1 non
diagonal de la dernière colonne par un −1, ce qui donne encore une matrice de transvection puisqu’elle est
semblable à (11). Du point de vue géométrique, si f est une transvection de la forme (v) ci-dessus, son inverse
est la transvection v 7→ v − u(v)h.
(ii) Toute conjuguée dans GL(V ) d’une transvection est encore une transvection.
C’est une conséquence directe de la définition d’une transvection, qui dit même que deux transvections quelcon-
ques sont conjuguées dans GL.
Mieux, si g ∈ GL(V ) et si t est une transvection d’hyperplan H et de droite D ⊆ H, alors gtg−1 est une
transvection d’hyperplan g(H) et de droite g(D). Plus précisément encore, si u ∈ V ∗ \ {0} et h ∈ keru \ {0},
on note t (u, h) la transvection de V définie par la caractérisation (v), c’est-à-dire par la formule ∀v ∈ V ,
t (u, h) (v) = v + u(v)h. Avec cette notation, gt (u, h) g−1 = t

(
u ◦ g−1, g(h)

)
pour toute g ∈ GL(V ) — bien

noter que u ◦ g−1 ∈ V ∗ \ {0} et que g(h) ∈ ker
(
u ◦ g−1

)
\ {0}.
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Lemme (géométrique, pour la preuve du théorème qui suit)
On suppose que V est de dimension au moins 2.

(i) Si x, y ∈ V \ {0}, il existe τ ∈ End(V ) tel que τ soit un produit d’une ou deux transvections et τ(x) = y.

(ii) Si H et K sont deux hyperplans distincts de V et si x ∈ V \H ∪K, alors il existe une transvection τ telle
que τ(x) = x et τ(H) = K.

Preuve. (i) On suppose d’abord que x et y ne sont pas colinéaires. On pose h = y − x et on prend un
hyperplan H de V qui contienne h mais pas x, ce qui est possible puisque n = dimV ≥ 2 et {x, h} est libre.
Soit alors u une équation de H telle que u(x) = 1. Alors, τ(v) = v + u(v)h définit une transvection qui envoie
x sur y. Ensuite, si x et y sont colinéaires, soit z ∈ V \ Fx. Un tel z existe puisque dimV ≥ 2. Selon ce qui
précède, soient t1 et t2 deux transvections telles que t1(x) = z et t2(z) = y. Alors, τ = t2 ◦ t1 envoie x sur y.
(ii) H ∩ K est un sous-espace de V de dimension n − 2. Puisque x /∈ H ∩ K, l’espace Fx ⊕ (H ∩K) est
un hyperplan de V ; soit u ∈ V ∗ une équation de cet hyperplan. Soient alors h ∈ H et k ∈ K tels que
H = H ∩ K ⊕ Fh et K = H ∩ K ⊕ Fk. Puisque u(h) ̸= 0 ̸= u(k), quitte à remplacer h et k par h/u(h) et
k/u(k), on peut supposer que u(h) = u(k) = 1. Alors, la transvection τ : v 7→ v + u(v)(k − h) envoie h sur k et
fixe H ∩K : elle envoie H sur K. En outre, elle fixe x puisque x est dans son hyperplan.

Théorème (les transvections engendrent SL(V ))

Soit V un espace vectoriel de dimension finie. Alors, le groupe SL(V ) est engendré par ses transvections.

Preuve. On procède par récurrence sur n = dimF V . Si n = 1, alors SL(V ) = {idV } et il n’y a rien à
démontrer. On suppose que n ≥ 2.
Soient f ∈ SL(V ) et x ∈ V \ {0}. On cherche à montrer que f est un produit (une composée) de transvections.
En appliquant le (i) du lemme géométrique, soit τ1 un produit d’une ou deux transvections tel que τ1 (f(x)) = x.
Alors, τ1f ∈ SL(V ) et τ1f fixe x. On peut donc supposer que f fixe x. Soit H un hyperplan de V tel que
H ⊕ Fx = V . En particulier, x /∈ H ∩ f(H) puisque f−1(x) = x /∈ H. Si f(H) ̸= H, en appliquant le (i) du
lemme géométrique, soit τ2 une transvection telle que τ2 (f(H)) = H et τ2(x) = x. Alors, τ2f ∈ SL(V ), fixe x
et vérifie τ2f(H) = H — on dit que τ2f stabilise H.

Ainsi, on peut supposer que f fixe x et stabilise un hyperplan H tel que H ⊕ Fx = V .

Dans cette situation où H ⊕ Fx = V , si φ ∈ End(H), on note φ ⊕ id l’endomorphisme de V défini par
φ⊕ id(h+ξx) = φ(h)+ξx (notations évidentes, ξ ∈ F). L’ensemble des endomorphismes de V de déterminant 1,
qui fixent x et qui stabilisent H forme un sous-groupe SLH,x(V ) de SL(V ) et l’application SL(H)→ SLH,x(V ),
φ 7→ φ⊕ id est un isomorphisme de groupes dont la réciproque envoie l’endomorphisme f sur l’endomorphisme
fH ∈ End(H) induit sur H par restriction. En outre, cet isomorphisme transforme toute transvection de H
en une transvection de V . [On peut, si l’on veut, adopter un point de vue matriciel pour argumenter tous ces
derniers points.]
On revient au f ∈ SLH,x(V ) dont on cherche à montrer qu’il est produit de transvections. Par récurrence,
fH est un produit de transvections de H. Par le mécanisme décrit au paragraphe précédent, on prolonge ces
transvections en des transvections de V dont le produit égale f .

Corollaire (centre de SL)

Soit F un corps et n ∈ N \ {0}.
Le centre de SL (n,F) est le groupe des homothéties de la forme {xIn, x ∈ F, xn = 1}, isomorphe au groupe
des racines ne de l’unité dans F.

Preuve. On raisonne comme dans le calcul du centre de GL déjà fait au chapitre de généralités sur les
groupes. La première partie de la preuve est simplifiée par la formule de conjugaison des transvections : soit
f ∈ Z (SL (Fn)). Alors, f commute avec toutes les transvections de Fn. Ainsi, d’après la formule de conjugaison
(par f) des transvections, f stabilise toutes les droites de Fn. Donc f est une homothétie, comme le montre la
fin de la preuve déjà faite du calcul du centre de GL.
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Définition (dilatation)
Un endomorphisme d ∈ End(V ) est une dilatation de V lorsqu’il existe une base B de V et x ∈ F \ {0, 1} tels
que

MatB (d) = diag (1, . . . , 1, x) =


1

1
. . .

1
x

 . (12)

A noter
Soit d une dilatation qui admet la matrice diag (1, . . . , 1, x) dans la base B = (v1, . . . , vn) de V .
Alors le sous-espace des vecteurs fixes de d est l’hyperplan H = ker (d− idV ) = Vect (v1, . . . , vn−1) et l’image de
d−idV est la droite vectorielle D = im (d− idV ) = Vect (vn). Cette dernière, qui est aussi les sous-espace propre
de d associé à la valeur propre x, est un supplémentaire de H dans V : V = H ⊕D. On appelle respectivement
x, H et D le rapport, l’hyperplan et la droite de d.
Ces trois données caractérisent une dilatation : lorsque x ∈ F \ {0, 1}, H un hyperplan et D est une droite qui
n’est pas contenue dans H, on parle de la dilatation de rapport x, d’hyperplan H et de droite D. Avec les
notations de la preuve du fait que les transvections engendrent SL, la dilatation de rapport x, d’hyperplan H
et de droite D est idH ⊕x idD : vH + vD 7→ vH + xvD (notations évidentes).
Enfin, une dilatation est diagonalisable.

Proposition (caractérisation des dilatations)

Soient V un F-espace vectoriel de dimension finie et f ∈ GL(V ). Les assertions suivantes sont équivalentes.

(i) f est une dilatation

(ii) ker (f − idV ) est un hyperplan et det f ̸= 1

(iii) ker (f − idV ) est un hyperplan et f est diagonalisable

(iv) ker (f − idV ) est un hyperplan et la droite im (f − idV ) n’est pas incluse dans ker (f − idV )

(v) Il existe x ∈ F \ {0, 1}, un hyperplan H et une droite supplémentaire D telles que f = idH ⊕x idD.
Preuve. (i)⇒(ii) Si le rapport de f est x, alors det f = x. (ii)⇒(iii) Si le sous-espace des vecteurs fixes
par f est un hyperplan, son polynôme caractérisitique est (X − 1)n−1(X − det f). Si det f ̸= 1, alors f est
diagonalisable. (iii)⇒(iv) Puisque f est diagonalisable et puisque H = ker (f − idV ) est un hyperplan, soit
D = ker (f − x idV ) la droite de vecteurs propres associée à la valeur propre différente de 1, que l’on nomme x.
Alors, D ̸= H. En outre, le théorème du rang assure que im (f − idV ) est une droite. Enfin, puisque x ̸= 1, tout

vecteur v de D s’écrit v = (f−id)(v)
x−1 . Donc la droite D est incluse dans la droite im (f − idV ) : ces deux droites

sont donc égales ; elles ne sont pas dans H. (iv)⇒(v) La droite D = im (f − idV ) est stable par f : c’est une
droite propre, associée à une valeur propre x. Puisque D n’est pas incluse dans l’hyperplan H = ker (f − idV ),
alors x ̸= 1, V = H ⊕D et f = idH ⊕x idD. (v)⇒(i) C’est immédiat, voir le à noter qui suit la définition d’une
dilatation.

A noter

(i) L’inverse d’une dilatation est encore une dilatation : même hyperplan, même droite, rapports inverses l’un
de l’autre.

(ii) Toute conjuguée dans GL(V ) d’une dilatation est encore une dilatation.
Plus précisément, soient g ∈ GL(V ) et d la dilatation de rapport x, d’hyperplan H et de droite D. Alors, gdg−1

est la dilation de rapport x, d’hyperplan g(H) et de droite g(D).
Enfin, conséquence immédiate de la définition, deux dilatations sont conjuguées dans GL si, et seulement si
elles ont le même rapport.

Proposition (les transvections et les dilatations engendrent GL(V ))

Soit V un espace vectoriel de dimension finie. Alors, le groupe GL(V ) est engendré par ses transvections et ses
dilatations.

Preuve. Soit f ∈ GL(V ). Si f ∈ SL(V ), alors f est produit de transvections. Sinon, soit d n’importe quelle
dilatation de rapport det f . Alors, d−1f ∈ SL(V ) est un produit de transvections.
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Définition (homographies, groupes PGL et PSL)
Soit V un espace vectoriel de dimension finie n sur un corps F. On l’a vu, les groupes GL(V ) et SL(V ) admettent
respectivement pour centres les groupes d’homothéties Z (GL(V )) = F× idV et Z (SL(V )) = µn (F) idV , où
µn (F) désigne le groupe des racines ne de l’unité dans F. On note PGL(V ) et PSL(V ) les groupes-quotient
suivants :

PGL(V ) = GL(V )/F× idV et PSL(V ) = SL(V )/µn (F) idv .

Un élément de PGL(V ) est une homographie sur V . Un élément de PSL(V ) est une homographie spéciale sur V .
[A vrai dire, ce vocabulaire trouve tout son sens lorsqu’on considère ces objets comme les transformations de
l’espace projectif P(V ) qui est l’ensemble des droites vectorielles de V .]
Du côté des matrices, de façon analogue, on note

PGL (n,F) = GL (n,F) /F×In et PSL (n,F) = SL (n,F) /µn (F) In.

Exercice 39

(i) Montrer que GL (n,Z/2Z) = SL (n,Z/2Z) ≃ PGL (n,Z/2Z) = PSL (n,Z/2Z).
(ii) Montrer que selon que n est pair ou impair, PSL (n,R) = SL (n,R) / {±In} ou PSL (n,R) ≃ SL (n,R).

Théorème (simplicité de PSL, sauf cas sporadiques)

Soient F un corps et n ≥ 1. Alors, sauf lorsque (n,F) = (2,Z/2Z) ou (n,F) = (2,Z/3Z),

le groupe PSL (n,F) est simple.

Les deux cas sporadiques
Un fois intallée la notion d’action d’un groupe sur un ensemble, on verra que PSL (2,Z/2Z) ≃ S3 et que
PSL (2,Z/3Z) ≃ A4 dont on sait qu’ils ne sont pas simples.

Preuve. Voir liste d’exercices numéro 2 et 3.

4.3 Le groupe linéaire sur les corps finis

Théorème (corps finis)

(i) Le cardinal d’un corps fini est nécessairement la puissance d’un nombre premier.

(ii) Si p est un nombre premier et si d ∈ N∗, il existe un corps de cardinal pd, unique à isomorphisme (d’anneaux)
près.

Preuve. (i) Soient F un corps fini et p sa caractéristique. Alors p est premier puisque l’homomorphisme
d’anneaux Z→ F (1 7→ 1F) a pour noyau pZ et se factorise donc en un homomorphisme injectif i : Z/pZ→ F,
ce qui oblige Z/pZ à être intègre. En outre, Z/pZ est un corps ainsi que son image par i qui est un sous-corps
de F contenu dans tous les sous-corps de F. On appelle Fp = i (Z/pZ) le sous-corps premier de F. Dans ces
conditions, pour l’addition et la multiplication dans F, le corps F est un espace vectoriel sur Fp, de dimension
finie d puisque l’ensemble F lui-même est fini. Ainsi, en tant qu’espace vectoriel, F est isomorphe à Fdp, dont le
cardinal est pd.
On admet le (ii), /. Pour l’essentiel, retenir que le groupe multiplicatif d’un corps F à q = pd éléments est
d’ordre q − 1. Ainsi, d’après le théorème de Lagrange, tout élément de F est racine du polynôme Xq −X dont
les coefficients (±1) sont dans le sous-corps premier Fp de F. En procédant par quotients successifs de l’anneau
principal Fp[X] par les facteurs irréductibles de Xq−X, on obtient ce que l’on appelle le corps de décomposition
de Xq −X qui a les propriétés voulues par l’assertion (ii), y compris l’unicité.

Exemple Il n’y pas de corps à 3773 éléments.

Définition (“le” corps Fq)
Si q est la puissance d’un nombre premier, on note Fq la classe d’isomorphisme des corps finis à q éléments, ou
le plus souvent n’importe quel corps de cette classe.

Par exemple, on pourra noter Fp = Z/pZ lorsque p est un nombre premier, ou F4 = Z/2Z[X]/
(
X2 +X + 1

)
ou encore F27 = Z/3Z[X]/

(
X3 −X + 1

)
, même si le statut de ces signes “=” peut être lu de plusieurs façons,

dont l’ambigüıté n’est levée que par le contexte — souvent implicite — dans lequel on travaille.
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Proposition (les groupes multiplicatifs des corps finis sont cycliques)
Soit q la puissance d’un nombre premier. Alors,

(i) le groupe
(
F×
q ,×

)
est cyclique

(ii) Lorsque d|q − 1, l’unique sous-groupe d’ordre d de F×
q est l’ensemble des racines de de l’unité dans F. Si ξ

est un générateur de F×
q , cet unique sous-groupe d’ordre d est engendré par ξ

q−1
d .

Preuve. Pour tout diviseur d de q − 1, on node N(d) le nombre d’éléments d’ordre d du groupe F×
q . Il s’agit

de montrer que N(q − 1) ≥ 1 : l’existence d’un élément d’ordre q − 1 assurera que F×
q est cyclique.

Soit d un diviseur de q − 1 tel que N(d) ≥ 1. Soit alors x ∈ F×
q , d’ordre d. Le groupe engendré par x est

d’ordre d et est contenu dans l’ensemble des racines du polynôme Xd − 1 ∈ Fq[X]. Or, ces dernières sont au
plus au nombre de d. Donc le groupe engendré par x est exactement l’ensemble des racines de de l’unité de F.
En outre, il contient φ(d) générateurs, comme tous les groupes cycliques d’ordre d. Donc N(d) = φ(d).

On a montré que pour tout diviseur de q − 1, N(d) ∈ {0, φ(d)}. Comme tout élément de F×
q a pour ordre un

diviseur de q − 1, on a l’égalité q − 1 =
∑
d|q−1N(d). Par ailleurs, q − 1 =

∑
d|q−1 φ(d). Ces trois conditions

entrâınent que N(d) = φ(d), pour tout diviseur d de q − 1. En particulier, N(q − 1) = φ(q − 1) ≥ 1.

Proposition (cardinaux des groupes linéaires sur des corps finis)
Soient q la puissance d’un nombre premier et n ≥ 1. Alors,

(i) |GL (n,Fq)| = (qn − 1) (qn − q)
(
qn − q2

)
. . .
(
qn − qn−1

)
(ii) |SL (n,Fq)| = (qn − 1) (qn − q)

(
qn − q2

)
. . .
(
qn − qn−2

)
qn−1

(iii) |PGL (n,Fq)| = |SL (n,Fq)|
(iv) |Z (SL (n,Fq))| = pgcd(n, q − 1)

(v) |PSL (n,Fq)| = |SL(n,Fq)|
pgcd(n,q−1)

Preuve. (i) On considère GL (n,Fq) comme le groupe des automorphismes linéaires de Fnq . Soit C =
(e1, . . . , en) la base canonique de Fnq . Choisir un élément de GL (n,Fq) revient à choisir une base de Fnq .
En effet, l’image de C par un élément de GL (n,Fq) est une base de Fnq et toute base de Fnq est l’image de C par
un unique élément de GL (n,Fq). Il suffit donc de compter le nombre de bases de Fnq .
Or, en notant qu’un sous-espace vectoriel de diùension d de Fnq a qd éléments (il est isomorphe à Fdq), fabriquer
une base (v1, . . . , vn) de Fnq consiste successivement à :
- choisir v1 parmi les vecteurs non nuls : qn − 1 choix possibles ;
- choisir v2 dans Fnq \Vect (v1) : qn − q choix possible ;
- choisir v3 dans Fnq \Vect (v1, v2) : qn − q2 choix possible ;
- etc jusqu’au vecteur vn qu’il faut choisir hors de l’hyperplan Vect (v1, . . . , vn−1).

(ii) L’homomorphisme de groupes det : GL (n,Fq) → F×
q a pour noyau SL (n,Fq). En outre, il est surjectif

puisque tout x ∈ F×
q est l’image par det de la matrice de dilatation diag(1, . . . , 1, x). Le premier théorème

d’isomorphisme montre alors que det induit un isomorphisme de groupes GL (n,Fq) / SL (n,Fq) ≃ F×
q , ce qui

implique en particulier que |GL (n,Fq)| = |SL (n,Fq)| ×
∣∣F×
q

∣∣. Cela prouve le résultat.

(iii) Le centre de SL (n,Fq) est isomorphe au groupe des racines ne de l’unité dans Fq. On montre que ce groupe
est d’ordre d = pgcd(n, q − 1). Or, le groupe F×

q est cyclique d’ordre q − 1. Il a donc un unique sous-groupe
d’ordre d qui est exactement le groupe des racines de de l’unité dans Fq.

A noter
Plus encore que le résultat lui-même, ce qu’il importe de retenir de l’énoncé précédent, c’est que le calcul de
l’ordre de GL revient à calculer le nombre de bases de Fnq et comment on mène ce calcul.

Exemple
L’ordre du groupe simple PSL (2,F5) est 60. On a déjà rencontré un autre groupe simple d’ordre 60, savoir A5.
On montrera que ces deux groupes sont isomorphes et, mieux encore, que tout groupe simple d’ordre 60 est
isomorphe à A5.
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4.4 Le groupe orthogonal euclidien

Dans tout ce chapitre, le corps de base est R.

En bref
Un espace vectoriel réel de dimension finie est dit euclidien lorsqu’on le munit d’un produit scalaire ⟨·|·⟩ —
c’est-à-dire d’une forme bilinéaire symétrique définie positive. La norme associée à un produit scalaire est
définie par ∥v∥ =

√
⟨v|v⟩.

Le carré de la norme q : v 7→ ∥v∥2 est une forme quadratique définie positive. Le produit scalaire, qui se retrouve
à partir de la norme avec les formules standard ⟨v|w⟩ = 1

2 (q(v + w)− q(v)− q(w)) = 1
4 (q(v + w)− q(v − w)),

est la forme polaire de la forme quadratique q. Ainsi, les données d’un produit scalaire ou d’une forme quadra-
tique définie positive sont équivalentes.
Une base orthonormée d’un espace euclidien en est une base (v1, . . . , vn) formée de vecteurs unitaires et
deux à deux orthogonaux : ⟨vi|vj⟩ = δi,j (Kronecker). Il en existe toujours, comme l’assure l’algorithme
d’orthonormalisation de Gram-Schmidt.
SiW est un sous-espace vectoriel d’un espace euclidien V , son orthogonal est l’ensemble des vecteurs orthogonaux
à tous les vecteurs de W ; on le note W⊥ = {v ∈ V, ∀w ∈W, ⟨v|w⟩ = 0}. C’est un sous-espace supplémentaire
de W : on a toujours W ⊕W⊥ = V .
Si W est un sous-espace vectoriel d’un espace euclidien V et si v ∈ V se décompose en v = w+w′ où w ∈W et
w′ ∈ W⊥, alors le vecteur w est le projeté orthogonal de v sur W . L’application pW : v 7→ w est la projection
orthogonale sur W ; elle est évidemment linéaire. Si (v1, . . . , vd) est une base orthonormée de W , le projeté
orthogonal de v ∈ V sur W est le vecteur

pW (v) =

d∑
k=1

⟨vk|v⟩ vk.

En complétant la base (v1, . . . , vd) en une base orthonormée de V — c’est possible en combinant le théorème
de la base incomplète et l’algorithme de Gram-Schmidt —, on obtient que ∥pW (v)∥ ≤ ∥v∥.
Définition (isométrie, matrice orthogonale)
Soit V un espace euclidien. Un endomorphisme f ∈ End(V ) est une isométrie de V lorsque f conserve la norme,
c’est-à-dire lorsque ∥f(v)∥ = ∥v∥, pour tout v ∈ V . On note O(V ) l’ensemble des isométries de V .
Une matrice M ∈ Mn(R) est orthogonale lorsque M tM = In. On note O(n) l’ensemble des matrices orthogo-
nales n× n.
Exercice 40

(i) f est une isométrie si, et seulement si elle conserve le produit scalaire, c’est-à-dire si, et seulement si
⟨f(v)|w⟩ = ⟨v|w⟩, pour tous v, w ∈ V . Autre point de vue : si f est un endomorphisme, les assertions suivantes
sont équivalentes :
(a) f est une isométrie ;
(b) f transforme toute base orthonormée en une base orthonormée ;
(c) il existe une base orthonormée que f transforme en une base orthonormée.

(ii) Soit M ∈Mn(R). Les quatre assertions suivantes sont équivalentes :
(a) M est une matrice orthogonale
(b) tMM = In
(c) les vecteurs-colonne de M forment une base orthonormée deMn,1(R) pour le produit scalaire standard sur
Mn,1(R), défini par ⟨X|Y ⟩ = tXY
(d) les vecteurs-ligne de M forment une base orthonormée de M1,n(R) pour le produit scalaire standard sur
M1,n(R), défini par ⟨X|Y ⟩ = XtY .

(iii) Si f est une isométrie de V et si W est un sous-espace vectoriel de V stable par f , alors W⊥ est un
sous-espace de V stable par f qui vérifie W ⊕W⊥ = V . En outre, les endomorphismes de W et de W⊥ induits
par f sont aussi des isométries.
[C’est cette propriété de stabilité de l’orthogonal qui rend très facile la réduction des isométries ou des matrices orthogonales.]

(iv) Si f est une isométrie et si M est sa matrice (orthogonale) dans une base orthonormée, changer de base
orthonormée revient à conjuguer la matrice de f par une matrice orthogonale. Autrement dit, les matrices de
changement de bases orthonormées sont les matrices orthogonales.
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(v) Muni de la composition des applications, O(V ) est un sous-groupe de GL(V ). Muni de la multiplication mat-
ricielle, O(n) est un sous-groupe de GL(n,R). Le choix d’une base orthonormée B de V induit un isomorphisme
de groupes (non canonique : si on change de base, on change d’isomorphisme)

O(V )
∼−→ O(n)

f 7−→ MatB(f).

(vi) Si ψ est une isométrie ou une matrice orthogonale, alors detψ ∈ {−1, 1}. L’ensemble des isométries de
déterminant 1 est un sous-groupe distingué de O(V ). L’ensemble des matrices orthogonales de déterminant 1
est un sous-groupe distingué de O(n).

(vii) Si λ est une valeur propre réelle d’une isométrie, alors λ ∈ {−1, 1}. Toute valeur propre complexe d’une
isométrie est de module 1 (dans le cadre des matrices et des vecteurs-colonne, on pourra remarquer que si
MX = λX, alors MX = λX puisque M est une matrice réelle).

Vocabulaire
Le groupe O(V ) est le groupe orthogonal de V . Le groupe O(n) est le groupe orthogonal en dimension n — ou
groupe orthogonal tout court, la dimension n étant sous-entendue lorsque le contexte le permet. Une rotation
de V est une isométrie dont le déterminant vaut 1 ; on dit aussi que c’est une isométrie positive. Une matrice de
rotation est une matrice orthogonale de déterminant 1 ; on dit aussi que c’est une matrice orthogonale positive.

Notation
On note SO(V ) le groupe des rotations de V et SO(n) le groupe des matrices de rotations en dimension n. On
note SO pour groupe spécial orthogonal.

A noter
Comme le déterminant est un homomorphisme surjectif de groupes O(V )→ {−1, 1} dont le noyau est SO(V ),

[O(V ) : SO(V )] = 2 et [O(n) : SO(n)] = 2.

Notation
Pour tout θ ∈ R, on note Rθ et Sθ les matrices orthogonales

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2) et Sθ =

(
cos θ sin θ
sin θ − cos θ

)
∈ O(2) \ SO(2).

Exercice 41

(i) Pour tous s, t ∈ R, RsRt = Rs+t, SsSt = Rs−t, RsSt = Ss+t et SsRt = Rs−t.

(ii) Pour tout θ ∈ R, le polynôme caractéristique de Rθ est X2 − 2X cos θ + 1 =
(
X − eiθ

) (
X − e−iθ

)
. En

particulier, Rθ est diagonalisable (sur R) si, et seulement si Rθ = ±I2.
(iii) Pour tout θ ∈ R, Sθ est diagonalisable, semblable à diag(1,−1), et vérifie S2

θ = I2.

Proposition (classification des isométries en dimension 2)

(i) Pour tout R ∈ SO(2), il existe θ ∈ R tel que R = Rθ.

(ii) Pour tout S ∈ O(2) \ SO(2), il existe θ ∈ R tel que S = Sθ.

Preuve. Soit

(
a c
b d

)
∈ O(2). Alors a2 + b2 = 1. Soit� alors θ ∈ R tel que

(
a
b

)
=

(
cos θ
sin θ

)
. Comme le

vecteur-colonne

(
c
d

)
est unitaire et orthogonal à

(
a
b

)
, nécessairement,

(
c
d

)
= ±

(
− sin θ
cos θ

)
. On conclut selon

que le déterminant de

(
a c
b d

)
vaut 1 ou −1.

Proposition (le groupe O(2))

(i) Le groupe SO(2) est abélien, isomorphe au groupe multiplicatif S1 des nombres complexes de module 1.

(ii) Pour tout S ∈ O(2) \ SO(2), la paire {SO(2), S · SO(2)} est une partition de O(2).

�L’existence d’un tel θ résulte des propriétés élémentaires de l’exponentielle. Voir par exemple les quatre premières pages du
livre de W. Rudin : Real and complex analysis, ou sa traduction française si on préfère.
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[On a noté S · SO(2) = {SR, R ∈ SO(2)}.]

Preuve. Que SO(2) soit abélien résulte de la formule d’addition des angles RsRt = Rs+t. Cette formule
montre que l’application θ 7→ Rθ est un homomorphisme de groupes (R,+) → (SO(2),×), surjectif d’après la
classification des isométries en dimension 2. Son noyau est 2πZ, c’est encore une propriété des fonctions sinus
et cosinus, elle-même héritée des propriétés de l’exponentielle. Le premier théorème d’isomorphisme induit
alors un isomorphisme de groupes R/2πZ → SO(2). Par ailleurs, l’exponentielle R → S1, θ 7→ eiθ induit aussi
un isomorphisme de groupes R/2πZ → S1. La partition indiquée de O(2) est celle de ses classes modulo son
sous-groupe distingué SO(2).

A noter

(i) L’isomorphisme de groupes de la preuve entre S1 et SO(2) est l’application suivante, bien définie grâce au
raisonnement tenu :

S1 ∼−→ SO(2)

eiθ 7−→ Rθ.

La structure de groupe commune sur S1 ou sur SO(2) contient toutes le formules trigonométriques d’addition.

(ii) Lorsque n ≥ 3, le groupe SO(n) n’est pas abélien : la commutativité de SO(2) est une situation exception-
nelle. On peut la voir comme étant responsable de l’existence des angles orientés de vecteurs en dimension 2,
notion qui disparâıt en dimension supérieure.

Proposition (classification des isométries en dimension quelconque)
Soit V un espace euclidien de dimension n ≥ 2 et f une isométrie de V . Il existe une base orthonormale de V
dans laquelle la matrice de f s’écrit par blocs sous la forme

Ir
−Is

Rθ1
Rθ2

. . .

Rθt


avec r, s, t ∈ N, θ1, . . . , θt ∈ R.

Preuve. On procède par récurrence sur n. Pour n ≥ 2, c’est fait. On suppose que n ≥ 3. Si 1 ou −1 est
valeur propre de f , puisque le supplémentaire orthogonal W⊥ du sous-espace stable non nul W = ker (f ± idV )
est aussi stable par f , il suffit de mettre bout à bout des bases orthonormales de W et, par récurrence, de W⊥

pour obtenir la base cherchée. Si ni 1 ni −1 n’est valeur propre de f , alors toutes les valeurs propres de f
sont des nombres complexes non réels (de module 1). Là encore, il suffit de trouver un plan de V stable par
f pour pouvoir appliquer l’hypothèse de récurrence à son supplémentaire orthogonal et conclure. On se place
dans un cadre matriciel : soit M ∈ O(n) la matrice de f dans une base orthonormée quelconque ; ses valeurs
propres sont des nombres complexes non réels. Puisque C est algébriquement clos, de telles valeurs propres
existent. Soient ζ ∈ S1 \ {−1, 1} et X ∈ Mn,1 (C) tels que MX = ζX et X ̸= 0. Comme ζ n’est pas reélle,
X /∈Mn,1 (R). PuisqueM est une matrice réelle, il en résulte queMX = ζ ·X, où X désigne le vecteur-colonne
dont les coordonnées sont les conjuguées des coordonnées de X. Alors, les vecteurs X +X et X −X ont des
coordonnées réelles et sont linéairement indépendants : ils engendrent un plan vectoriel deMn,1 (R), stable par
M . C’est ce que l’on cherchait.

Définition (réflexions et renversements)
Une isométrie est une réflexion lorsque sous sous-espace des vecteurs fixes est un hyperplan. L’hyperplan
ker (f − idV ) est appelé hyperplan de la réflexion. Une isométrie f d’un espace euclidien de dimension n est un
renversement lorsque dimker (f − idV ) = n− 2 et dimker (f + idV ) = 2.

Autrement dit, les réflexions et les renversements sont les isométries qui admettent respectivement pour matrices
par blocs, dans une base orthonormée convenable,(

In−1

−1

)
et

(
In−2

−I2

)
.
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A noter

(i) Les renversements sont des isométries positives. Les réflexions sont des isométries négatives. En dimension 2
et en dimension 2 seulement, la réciproque est vraie : toute isométrie négative est une réflexion.

(ii) Si f est une réflexion ou un renversement de V , alors f est une involution : f2 = idV .

Exercice 42
Dans le groupe orthogonal, toute conjuguée d’une réflexion est une réflexion et toute conjuguée d’un renverse-
ment est un renversement.
Plus précisément, si s ∈ O(V ) est la réflexion d’hyperplan H et si g ∈ O(V ), alors gsg−1 est la réflexion
d’hyperplan g(H). De même, si r est le renversement dont l’espace des points fixes est le sous-espace W de
codimension 2, alors grg−1 est le renversement dont l’espace des points fixes est g(W ).

Proposition (centres de O et de SO)

(i) Pour tout n ≥ 2, le centre de O(n) est {−In, In}.
(ii) Pour tout n ≥ 3, le centre de SO(n) est {−In, In} ou {In}, selon que n est respectivement pair ou impair.

Preuve. (i) Soit V un espace euclidien de dimension n. Soit f une isométrie du centre de O(V ). Si s est
n’importe quelle réflexion dont la droite des points fixes est D, alors fsf−1 est encore une réflexion dont la
droite des points fixes est f(D). Comme fsf−1 = s puisque f est central, on en déduit que f(D) = D. On
a montré que f stabilise toutes les droites vectorielles de V , ce qui entrâıne que f est une homothétie, comme
dans le calcul du centre de GL(V ). Or, les seules homothéties de O(V ) sont ± idV .
(ii) Soit V un espace euclidien de dimension n. Soit f une isométrie du centre de SO(V ). Si r est n’importe
quel renversement dont le plan des points fixes est P , alors frf−1 est encore un renversement dont le plan des
points fixes est f(P ). Comme frf−1 = r puisque f est central, on en déduit que f(P ) = P . On a montré que
f stabilise tous les plans vectoriels de V . Or, puisque n ≥ 3, toute droite est intersection de deux plans. Donc
f stabilise toutes les droites : c’est une homothétie.

Exercice 43
Montrer que l’application {−I3, I3} × SO(3)

∼−→ O(3), (εI3,M) 7−→ εM est un isomorphisme de groupes.
Montrer que cet exemple se généralise à des isomorphismes de groupes O(2n + 1) ≃ {±1} × SO(2n + 1), pour
tout n ∈ N, mais que les groupes O(2n) et {±1} × SO(2n) ne sont jamais isomorphes (on pourra considérer
leurs centres).

Proposition (les réflexions engendrent le groupe orthogonal)

Soit V un espace euclidien de dimension n. Alors, toute isométrie de V est produit d’au plus n réflexions.

Preuve. Soit f ∈ O(V ). On note Fix(f) = ker (f − idV ) le sous-espace des vecteurs fixes de f . On montre
par récurrence (forte) sur codimFix(f) = n−dimFix(f) que f est produit d’au plus codimFix(f) réflexions, ce
qui est plus fort que le résultat annoncé. Si codimFix(f) = 0, alors f = idV est produit de 0 réflexions (l’énoncé
de la proposition suggère cette convention de façon implicite, l’ajouter s’il faut pour lever l’ambigüıté). On
suppose que codimFix(f) ≥ 1. Soient alors x ∈ Fix(f)⊥ \ {0} et y = f(x). Puisque x /∈ Fix(f), x− y ̸= 0. En
outre, puisque f est une isométrie, ∥x∥2 = ∥y∥2, ce qui entrâıne que x−y⊥x+y. Soit r la réflexion d’hyperplan
H = Vect(x − y)⊥. Alors, x + y ∈ Fix(r) et x − y ∈ H⊥. Ainsi, Fix(f) ⊆ Vect(x − y)⊥ = H = Fix(r). Cela
entrâıne immédiatement que Fix(f) ⊆ Fix(rf). Or, r(y) = x comme le montrent les égalités r(x + y) = x + y
et r(x − y) = −x + y. Ainsi, x ∈ Fix(rf) \ Fix(f). Il en résulte que codimFix(rf) < codimFix(f). Par
récurrence, rf est produit d’au plus codimFix(rf) réflexions, ce qui entrâıne que f est produit d’au plus
codimFix(rf) + 1 ≤ codimFix(f) réflexions, puisque les réflexions sont des involutions.

Exercice 44
Faire une autre preuve du même résultat en adoptant un point de vue matriciel et en utilisant le théorème de
classification des isométries en dimension quelconque. On pourra aussi s’appuyer sur les formules de multipli-
cation entre les Rθ et les Sθ établies dans l’exercice qui suit leurs définitions.

Proposition (les renversements engendrent SO en dimension ≥ 3)

Soit V un espace euclidien de dimension n ≥ 3. Alors, toute rotation de V est produit d’au plus n renverse-
ments.

Preuve. Soit f ∈ SO(V ).
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On commence par le cas n = 3. Dans ce cas, f est produit d’au plus 3 réflexions. Comme f est positive, à
moins d’être égale à l’identité, f est produit de 2 réflexions f = r1r2. En remarquant que, en dimension 3, si r
est une réflexion, alors −r est un renversement, l’égalité f = (−r1) (−r2) permet de conclure.

On suppose n ≥ 4. Comme f est produit d’un nombre pair de réflexions, il suffit de montrer que tout produit
de 2 réflexions est un produit de 2 renversements. Soient dont r1 et r2 deux réflexions, d’hyperplans respectifs
H1 et H2. Alors, (H1 ∩H2)

⊥
est de dimension 1 ou 2. Puisque n ≥ 3, soit W , sous-espace de dimension 3

de V contenant (H1 ∩H2)
⊥
. Alors, W⊥ est contenu dans H1 ∩H2, ce qui implique que W⊥ est constitué de

vecteurs fixes de r1r2. Donc W est un espace de dimension 3, stable par r1r2. Alors, en notant encore r1 et r2
les endomorphismes de W induits par r1 et r2, il existe deux renversements s1 et s2 de W tels que r1r2 = s1s2,
comme l’assure l’étude préalable de la dimension 3. En prolongeant s1 et s2 à V = W ⊕W⊥ par l’identité
sur W⊥, on obtient encore des renversements s1 et s2 qui vérifient l’égalité r1r2 = s1s2 : on a écrit r1r2 comme
un produit de deux renversements.

Définition (groupes projectifs orthogonaux)
On note PO(V ) = O(V )/ {−1, 1} et PSO(V ) = SO(V )/Z (SO(V )) le groupe projectif orthogonal et le groupe pro-
jectif spécial orthogonal de V . De même, si n ≥ 2, on note PO(n) = O(n)/ {±In} et PSO(n) = SO(n)/Z (SO(n)).

Là encore, ces quotients sont pris à leur pleine mesure lorsqu’on les considère comme des transformations de la
droite projective P(V ). Bien sûr, lorsque n est impair, PSO(n) = SO(n) puisque les centres sont alors triviaux.

Théorème (simplicité des groupes projectifs spéciaux orthogonaux)

(i) Le groupe SO(3) est simple.

(ii) PSO(4) ≃ SO(3)× SO(3) n’est pas simple.

(iii) Pour n ≥ 5, le groupe PSO(n) est simple.

Preuve. Voir Perrin page 150. Le cas exceptionnel de PSO(4) est à relier à la géométrie euclidienne de R3 et
à l’étude du corps gauche des quaternions de Hamilton H (R).

4.5 Un tout petit peu sur le groupe modulaire

Proposition (matrices inversibles sur Z)
Soit n ≥ 1. Une matrice de M ∈Mn (Z) est inversible dansMn (Z) si, et seulement si det(M) ∈ {−1, 1}.
Preuve. On utilise la formule M × tComM = tComM ×M = det(M)In. Puisque les coefficients de la
comatrice générique sont des polynômes à coefficients entiers, Com(M) ∈ Mn (Z). Si det(M) = ±1, alors M
admet ±tComM pour inverse dansMn (Z). Inversement, siM est inversible dansMn (Z), il existeN ∈Mn (Z)
tel que MN = In. Alors, det(M) det(N) = 1 ce qui impose que det(M) soit inversible dans Z.

Définition (groupes linéaires sur Z)
On note GL (n,Z) le groupe des matrices inversibles deMn (Z), c’est-à-dire le groupe des matrices à coefficients
entiers dont le déterminant vaut ±1. On note SL (n,Z) son sous-groupe des matrices de déterminant 1.

A noter
Puisque c’est le noyau du déterminant, SL (n,Z) ◁GL (n,Z).

Notations
On notera S et T les éléments suivants du groupe SL (2,Z) :

S =

(
0 1
−1 0

)
et T =

(
1 1
0 1

)
Exercice 45 Dans le groupe SL (2,Z), S est d’ordre 4 et T d’ordre infini.

Proposition (centre de SL (2,Z))
Le centre de SL (n,Z) est {±I2}.
Preuve. Si M est dans le centre de SL (n,Z), alors M commute avec S et T . Donc M = ±I2, comme le
montre un calcul élémentaire.

Définition (groupe modulaire)
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On appelle groupe modulaire le groupe PSL (2,Z) = SL (2,Z) / {−I2, I2}. On note s et t les classes respectives
de S et T dans le quotient SL (2,Z) / {−I2, I2}.
Exercice 46 Dans le groupe modulaire, s est d’ordre 2 et t est d’ordre infini.

Théorème (s et t engendrent le groupe modulaire)

(i) Le groupe SL (2,Z) est engendré par S et T .

(ii) Le groupe modulaire est engendré par s et t.

Preuve. Il suffit de montrer (i). On note G le sous-groupe de SL (2,Z) engendré par S et T . Soit M =(
a c
b d

)
∈ SL (2,Z). Il s’agit de montrer que M ∈ G. On regarde d’abord l’effet de la multiplication à gauche de

M par S, S3 et T q, où q ∈ Z :

T qM =

(
a+ bq c+ dq
b d

)
, SM =

(
b d
−a −c

)
et S3M =

(
−b −d
a c

)
Si b = 0, alors M = T c ∈ G ou M = S2T−c ∈ G, selon le signe commun de a = d = ±1 ; donc M ∈ G. Si
a = 0, on se ramène au cas b = 0 en remplaçant M par SM , ce qui montre que M ∈ G.
On suppose ainsi que ab ̸= 0. La relation detM = 1, qui est une relation de Bézout entre a et b, montre que
ces derniers sont premiers entre eux. On adapte l’algorithme d’Euclide appliqué à a et b de la façon suivante :
On procède à la suite de divisions euclidiennes

a = bq0 + r0 où q0 ∈ Z et 0 ≤ r0 ≤ |b| − 1

−b = r0q1 + r1 où q1 ∈ Z et 0 ≤ r1 ≤ r0 − 1

−r0 = r1q2 + r2 où q2 ∈ Z et 0 ≤ r2 ≤ r1 − 1

−r1 = r2q3 + r3 où q3 ∈ Z et 0 ≤ r3 ≤ r2 − 1

...

−rm−2 = rm−1qm + rm où qm ∈ Z et 0 ≤ rm ≤ rm−1 − 1

−rm−1 = rmqm+1 + 1 où qm+1 ∈ Z

où rm est le dernier reste strictement supérieur à 1. Transposé en termes matriciels, en notant ⋆ un nombre
entier dont on n’a pas besoin d’expliciter la valeur en fonction des données, cela s’écrit successivement T−q0M =(
r0 ⋆
b ⋆

)
, S3T−q0M =

(
−b ⋆
r0 ⋆

)
, S3T−q1S3T−q0M =

(
−r0 ⋆
r1 ⋆

)
, S3T−q2S3T−q1S3T−q0M =

(
−r1 ⋆
r2 ⋆

)
, jusqu’à la

dernière ligne qui montre qu’il existe h ∈ G tel que hM =

(
−rm ⋆
1 ⋆

)
. La dernière opération T rmhM =

(
0 ⋆
1 ⋆

)
ramène l’affaire au cas où a = 0 et permet de conclure qu’il existe g ∈ G tel que gM ∈ G. La multiplication à
gauche par g−1 montre alors que M ∈ G.
Exercice 47

(i) On note T ′ = STS−1 et t′ = sts. Calculer T ′, calculer l’ordre de t′ et montrer que le groupe modulaire est
engendré par t et t′.

(ii) On note U = TS et u = ts. Calculer U , calculer l’ordre de u et montrer que le groupe modulaire est
engendré par t et u.
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5 Action d’un groupe sur un ensemble

5.1 Généralités, premiers exemples

C’est au travers de la notion d’action d’un groupe sur un ensemble que la structure de groupe prend tout son
sens et montre son efficacité opératoire. Il faut mentionner à cet endroit l’œuvre de Felix Klein�, synthétisée
dans son Programme d’Erlangen, qui donne une définition définitive à la géométrie en mathématiques : étudier
la géométrie d’un objet, c’est le considérer comme subissant l’action d’un groupe, que l’on regarde ainsi comme
un groupe de transformations de l’objet lui-même.
Ainsi, par exemple, l’objet R3, n’a pas la même géométrie selon le groupe de transformations (ici “naturelles”)
qu’on s’autorise. Faire de la topologie, c’est faire agir le groupe des homéomorphismes de R3 sur lui-même.
Faire du calcul différentiel, c’est faire agir le groupe des difféomorphismes de R3 sur lui-même. Faire de la
géométrie vectorielle (ou affine en ajoutant les translations), c’est faire agir le groupe GL

(
R3
)
. Faire de la

géométrie (vectorielle) euclidienne, c’est faire agir le groupe O
(
R3
)
, etc.

Définition (action à gauche)
Soient G un groupe et X un ensemble non vide. Une action à gauche de G sur X est un homomorphisme de
groupes φ : G→ SX . On dit aussi opération à gauche.

A noter
Une action φ comme ci-dessus étant donnée, on note le plus souvent g ·x = φ(g)(x), pour tous g ∈ G et x ∈ X —
parfois, on enlève le point et on note simplement gx. Avec ces notations, le fait que φ soit un homomorphisme
de groupes implique immédiatement que{

∀x ∈ X, 1G · x = x

∀g, g′ ∈ G, ∀x ∈ X, g · (g′ · x) = (gg′) · x.
(13)

Inversement, toute application G×X → X notée (g, x) 7→ g · x et qui vérifie les deux axiomes (13) définit une
action de G sur X via l’application G→ SX , g 7→ g·, où g· est l’application X → X, x 7→ g · x.
Exercice 48
Ecrire tous les détails de ce qu’affirme le à noter ci-dessus. En particulier, s’assurer de bien comprendre la
nécessité d’ajouter l’axiome 1 · x = x pour obtenir une équivalence.

Définition (action à droite)
Une action à droite d’un groupe G sur un ensemble X est une application X ×G→ G qui vérifie :{

∀x ∈ X, x · 1G = x

∀g, g′ ∈ G, ∀x ∈ X, (x · g) g′ = x · (gg′) .

Exercice 49

(i) Montrer que la donnée d’une action à droite est équivalente à la donnée d’une application ψ : G→ SX qui
vérifie : ψ(gg′) = ψ(g′)ψ(g), pour tous g, g′ ∈ G.
(ii) Si φ est une action à droite de G sur X, on obtient une action à gauche de G sur X en posant ψ(g) = φ

(
g−1

)
.

A noter
Dans ce cours, lorsqu’on parle d’action d’un groupe sur un ensemble sans spécifier s’il s’agit d’une action à
droite ou à gauche, c’est d’une action à gauche qu’il s’agit.

Exemples

(i) Si X est un ensemble et n un entier naturel, on note Pn(X) l’ensemble des parties de cardinal n de X. Le
groupe SX agit sur Pn(X) par son action naturelle, définie par

∀σ ∈ SX , ∀Y ∈ Pn(X), σ · Y = σ(Y ).

En effet, si σ ∈ SX et si Y ∈ Pn(X), alors σ(Y ) est encore dans Pn(X) puisque σ est une bijection X → X.
Les axiomes d’action à gauche sont immédiatement vérifiés.

�Felix Klein, 1849 – 1925
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(ii) Soit V un espace vectoriel. Pour tout entier naturel d, on note Gd(V ) l’ensemble des sous-espaces vectoriels
de dimension d de V . Le groupe GL(V ) agit sur Gd(V ) par son action naturelle, définie par

∀g ∈ GL(V ), ∀W ∈ Gd(V ), g ·W = g(W ).

En effet, si g ∈ GL(V ) et si W ∈ Gd(V ), alors g(W ) est encore dans Gd(V ) puisque g est une application linéaire
bijective. Les axiomes d’action à gauche sont immédiatement vérifiés.

(iii) Si G est un groupe, G agit sur lui-même par translation à gauche : il s’agit de l’opération

G×G −→ G
(g, h) 7−→ g · h = gh.

Elle est aussi décrite par l’homorphisme de groupes φ : G→ SG, défini par ∀g, h ∈ G, φ(g)(h) = gh. Noter que
sa sœur, l’action à droite par translation définie par (g, h) 7→ hg est une action à droite.

(iv) Si G est un groupe, G agit sur lui-même par conjugaison : il s’agit de l’opération

G×G −→ G
(g, h) 7−→ g · h = ghg−1.

Elle est aussi décrite encore par l’homorphisme de groupes φ : G → Aut(G) ⊆ SG, défini par ∀g, h ∈ G,
φ(g)(h) = ghg−1. Pour tout g ∈ G, la bijection φ(g) est l’automorphisme intérieur h 7→ ghg−1 déjà rencontré.
Là encore, sa sœur qu’est la conjugaison dans l’autre sens (h, g) 7→ g−1hg définit une action à droite.

(v) Le groupe SL(2,R) agit sur le demi-plan de Poincaré

H = {z ∈ C, ℑ(z) > 0}

par homographies. Il s’agit de l’action définie par

∀
(
a b
c d

)
, ∀z ∈ H,

(
a b
c d

)
· z = az + b

cz + d
.

Il s’agit de vérifier que si M ∈ SL(2,R) et si z ∈ H, le nombre complexe M · z ainsi défini est bien dans H, ce
qui est garanti par le calcul

ℑ
(
az + b

cz + d

)
= ℑ

(
(az + b) (cz + d)

|cz + d|2

)
= ℑ

(
adz + bcz

|cz + d|2

)
=

ℑ(z)
|cz + d|2

,

la dernière égalité venant du fait que le déterminant de la matrice égale 1. Enfin, les axiomes de l’action à
gauche sont immédiatement vérifiées par un calcul élémentaire qui revient à simplifier la fraction

a′ az+bcz+d + b′

c′ az+bcz+d + d′
=

(a′a+ b′c) z + (a′b+ b′d)

(c′a+ d′c) z + (c′b+ d′d)
.

(vi) D’autre exemples en vrac d’actions naturelles :
- Le groupe O(2) agit sur le cercle unité {v, ∥v∥ = 1}, le groupe O(3) agit sur la sphère unité
- Le groupe des isométries du plan qui préservent un polygone régulier agit sur l’ensemble des milieux des arêtes
- Le groupe des isométries de l’espace qui préservent un cube agit sur ses quatre diagonales

(vii) Soit X un espace topologique — par exemple, un espace métrique. On note Aut(X) le groupe des
homéomorphismes X → X pour la composition des applications. Un lacet tracé sur X est une application
continue ℓ : [0, 1]→ X qui vérifie ℓ(0) = ℓ(1). Le groupe Aut(X) agit sur l’ensemble L(X) des lacets tracés sur
X par l’action Aut(X)× L(X)→ L(X), (f, ℓ) 7→ f ◦ ℓ.
Définitions (orbite, stabilisateur)
Soit G un groupe agissant sur un ensemble X. Pour tout x ∈ X, l’orbite de x sous l’action de G , notée G · x
ou Gx est la partie de X

Gx = {gx, g ∈ G}
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et le stabilisateur ou encore le groupe d’isotropie de x sous l’action de G est le sous-groupe de G, noté Gx ou
Stab(x), défini par

Gx = {g ∈ G, gx = x} .
Exercice 50 Montrer que Gx est bien un sous-groupe de G.

Exemples

(i) Soit c un p-cycle de ∈ Sn. On fait agir le groupe cyclique ⟨c⟩ sur l’ensemble {1, . . . , n} par son action
naturelle. Si x ∈ {1, . . . , n}, l’orbite de x sous ⟨c⟩ est le support de c.
De même, si σ ∈ Sn est une permutation quelconque et si x ∈ {1, . . . , n}, l’orbite de x sous l’action naturelle de
⟨σ⟩ est le support du cycle qui contient x (dans son support) dans la décomposition de σ en produit de cycles
à supports disjoints.

(ii) Si n ≥ 2, on fait encore agir le groupe Sn sur {1, . . . , n} par son action naturelle. Si x ∈ {1, . . . , n}, le
stabilisateur de x est le sous-groupe des permutations de {1, . . . , n} qui fixent x. Il est isomorphe à Sn−1. En
effet, si on note x = {1, . . . , n} \ {x}, alors l’application

Sx
Φ−→ Stab(x)

s 7−→
{
y 7→ s(y) si y ̸= x
x 7→ x.

est un isomorphisme de groupes ; en outre, les groupes Sx et Sn−1 sont isomorphes puisque l’ensemble x a
pour cardinal n− 1. Noter que pour prouver que Φ est une bijection, on peut exhiber sa réciproque de la façon
suivante. Si t ∈ Stab(x), alors t stabilise aussi le complémentaire x de x ; autrement dit, t (x) ⊆ x — cette
inclusion est à vrai dire une égalité, par considération sur les cardinaux finis. En particulier, la restriction de t
à x induit une permutation x que l’on note tx. La réciproque de Φ est l’application Stab(x)→ Sx, t 7→ tx.

(iii) Soit V un espace vectoriel. On note G1(V ) l’ensemble des droites de V . On fait agir GL(V ) sur G1(V )
par son action naturelle. Si D ∈ G1(V ), le stabilisateur de D est l’ensemble des applications linéaires bijectives
V → V pour lesquelles D est une droite de vecteurs propres.

(iv) Soit C = [−1, 1]3 le cube de l’espace euclidien standard R3. L’ensemble O (C) =
{
f ∈ O

(
R3
)
, f (C) ⊆ C

}
est un sous-groupe de O

(
R3
)
— c’est lui-même un stabilisateur pour une certaine action de O

(
R3
)
; exercice :

laquelle ? On fait agir le groupe O (C) sur l’ensemble des point de C par son action naturelle (f, x) 7→ f(x).
Alors, l’orbite d’un sommet de C par cette action est l’ensemble de tous les sommets de C. Pour voir cela, il
suffit de considérer l’action des rotations de O (C) dont les axes passent par les centres des faces.
Proposition (les orbites forment une partition)

Soit G un groupe agissant sur un ensemble X. La relation binaire sur X définie par : x ∼ y ⇐⇒ ∃g ∈ G, y = gx
est une relation d’équivalence. Ses classes sont les orbites sous l’action de G.

Preuve. C’est immédiat, conséquence directe des axiomes de l’action.

Proposition (les stabilisateurs de deux points d’une même orbite sont conjugués)

Soit G un groupe agissant sur un ensemble X. Pour tous x ∈ X et g ∈ G, les groupes d’isotropie de x et de gx
sont conjugués. Plus précisément,

Ggx = gGxg
−1.

Preuve. Si h ∈ Gx, alors ghg−1 · gx = ghx = gx. Ainsi, gGxg
−1 ⊆ Ggx. En conjuguant par g−1, cela entrâıne

que Gx ⊆ g−1Ggxg. On applique cette dernière formule en remplaçant x par gx et g par g−1 ; on obtient
Ggx ⊆ gGxg−1, ce qui achève de montrer l’égalité cherchée.

Définitions (actions transitives, fidèles)
Soit G un groupe agissant sur un ensemble X. On dit que l’action est transitive, ou que G agit transitivement
lorsqu’elle n’a qu’une seule orbite. Autrement dit, lorsque ∀x, y ∈ X, ∃g ∈ G, y = gx.
On dit que l’action est fidèle, ou que G agit fidèlement lorsque seul 1G fixe tous les élements deX. Autrement dit,
l’action G→ SX est fidèle lorsqu’elle est injective, ou encore lorsque ∀g ∈ G,

(
∀x ∈ X, gx = x

)
=⇒

(
g = 1G

)
.

Exemples

(i) L’action naturelle de GL(V ) sur les droites de V est transitive, mais pas fidèle — sauf si le corps de base est
Z/2Z.
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(ii) Si p ∈ {1, . . . , n}, l’action naturelle de Sn sur les parties à p éléments de {1, . . . , n} est transitive et fidèle.

(iii) L’action de S3 par conjugaison sur ses sous-groupes n’est pas transitive, mais elle est fidèle.

(iv) Si φ : G → SX est une action de G sur X, elle induit, par propriété universelle du quotient, une action
fidèle φ : G/ ker(φ)→ SX du groupe-quotient G/ ker(φ) sur X.

Par exemple, l’action naturelle de GL(V ) sur les droites de V (exemple (i)) induit une action fidèle et transitive
de PGL(V ) sur les droites de V .

Définitions (partie stable ou fixe ; stabilisateur et fixateur d’une partie)
Soient G un ensemble agissant sur un ensemble X, et Y une partie de X.

(i) On dit que Y est stable sous l’action de G lorsque ∀g ∈ G, ∀y ∈ Y , g · y ∈ Y . On dit que Y est fixe sous
l’action de G lorsque ∀g ∈ G, ∀y ∈ Y , g · y = y.

(ii) Le stabilisateur de Y est le sous-groupe des éléments de G qui stabilisent Y , au sens restreint où la partie
et son image son égales ; on le note (encore) Stab(Y ). Le fixateur de Y est le sous-groupe des éléments de G
qui fixent tous les éléments de Y ; on le note Fix(Y ). Ainsi, en notant g · Y = {g · y, y ∈ Y } pour tout g ∈ G,

Stab(Y ) = {g ∈ G, g · Y = Y } et Fix(Y ) = {g ∈ G, ∀y ∈ Y, g · y = y} .

Exercice 51

(i) S’assurer que Stab(Y ) et Fix(Y ) sont bien des sous-groupes de G.

(ii) Montrer que dans le cas général, {g ∈ G, g · Y ⊆ Y } n’est pas un sous-groupe de G, mais que c’est le cas si
Y est une partie finie de X.

Exemple
On considère l’action naturelle de GL(V ) sur un espace vectoriel V . Soient D une droite de V et g ∈ GL(V ).
Dire que D est stable par g (ou par le groupe ⟨g⟩) signifie que D est une droite propre de g. Dire que D est fixe
par g signifie que D est une droite propre de g associée à la valeur propre 1.

Définitions (normalisateur, centralisateur)
Soient G un groupe et H un sous-groupe de G. Le normalisateur et le centralisateur de H sont les sous-groupes
de G, notés respectivement NormG(H) et ZG(H), définis par

NormG(H) =
{
g ∈ G, gHg−1 = H

}
et ZG(H) = {g ∈ G, ∀h ∈ H, gh = hg} .

Exercice 52

(i) Montrer que si H est un groupe fini, NormG(H) =
{
g ∈ G, gHg−1 ⊆ H

}
.

(ii) Montrer, dans les conditions de la définition, que H ◁ NormG(H) et que NormG(H) est le plus grand
sous-groupe de G dans lequel H est distingué.

(iii) ZG(G) est le centre de G.

5.2 L’équation aux classes

Proposition (le cardinal d’une orbite est l’indice du stabilisateur)

Soit G un groupe agissant sur un ensemble X. Alors, pour tout x ∈ X, Card (G · x) = [G : Gx]

Preuve. Soit x ∈ X. L’application G→ X, g 7→ gx a pour image l’orbite de x et est constante sur les classes
à gauche modulo Gx. Mieux, ses fibres non vides sont exactement lesdites classes à gauche. Par propriété
universelle du quotient pour les applications, elle induit une bijection entre l’ensemble quotient (G/Gx)g et
l’orbite de x.

A noter

(i) C’est une égalité entre cardinaux que l’on peut aussi écrire sous la forme

|G| = |Gx| × Card (G · x) .

Dans le cas où G est un groupe fini, cette formule dit notamment que les cardinaux des orbites sont finis et
divisent l’ordre de G.
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(ii) En particulier, lorsque l’action est transitive, il n’y a qu’une seule orbite ω, les groupes d’isotropie sont tous
conjugués au même groupe Gω, et |G| = |Gω| × Card(ω).

Proposition (partition en orbites)

Soit G un groupe agissant sur un ensemble fini X. On note R un système de représentants des orbites, c’est-
à-dire une partie de X qui contient un élément de chaque orbite et un seul. Alors,

Card(X) =
∑
x∈R

[G : Gx]

Preuve. Les orbites forment une partition de X. La somme de leurs cardinaux est donc le cardinal de X. On
conclut avec la proposition précédente.

Notation (ensemble des points fixes)
Soit G un groupe agissant sur un ensemble X. On note XG l’ensemble des élément de X qui sont fixés par G.
Si g ∈ G, on note aussi Xg l’ensemble des points fixes par g. Ainsi,

Xg = {x ∈ X, gx = x} et XG = {x ∈ X, ∀g ∈ G, gx = x} =
⋂
g∈G

Xg;

Proposition (formule de Burnside, nombres d’orbites)

Soit G un groupe fini agissant sur un ensemble fini X. On note Ω l’ensemble des orbites de l’action. Pour tout
g ∈ G on note aussi Xg l’ensemble des éléments de X fixes par g. Alors,

Card (Ω) =
1

|G|
∑
g∈G

Card (Xg)

Preuve. Soit I = {(g, x) ∈ G×X, gx = x}. On compte le cardinal de I de deux façons, d’abord selon les g,
puis selon les x. Pour chaque g ∈ G, le nombre de couples (g, x) qui sont dans I est le nombre de points
fixes de g. Cela montre, d’une part, que Card (I) est la somme de la formule. D’autre part, pour chaque
x ∈ X, le nombre de couples (g, x) qui sont dans I est l’ordre du groupe d’isotropie Gx, ce qui montre que
Card I =

∑
x∈X |Gx|. Or, les groupes d’isotropie de deux points d’une même orbite ω sont conjugués ; ils ont

donc le même ordre, qui est |G|/Card(ω). En regroupant les termes de la somme précédente en orbites, on
obtient que Card (I) =

∑
ω∈Ω Card(ω)× |G|/Card(ω) = Card (Ω)× |G|.

Définition (p-groupe)
Soit p un nombre premier. Un p-groupe est un groupe fini dont l’ordre est une puissance de p.

Proposition (action d’un p-groupe)

Soient X un ensemble fini, p un nombre premier et G un p-groupe. On note XG l’ensemble des points fixes de
l’action. Alors, Card(X) ≡ Card

(
XG
)
[p].

Preuve. On écrit la formule de partition de X en orbites : Card(X) =
∑
x∈R[G : Gx] où R est un système de

représentants des orbites. Puisque G est un p-groupe, tous les indices [G : Gx] sont divisible par p, à l’exception
des orbites réduites à un singleton, qui sont exactement les éléments de XG.

Proposition (le centre d’un p-groupe est non trivial)

Soient p un nombre premier et G un p-groupe. Alors, le centre de G n’est pas réduit au sous-groupe trivial {1}.
Preuve. On fait agir G par conjugaison sur lui-même. Un élement de G est fixe pour l’action si, et seulement
s’il est dans le centre de G ; autrement dit, avec les notations de la proposition précédente, GG = Z(G). Ainsi,
ladite proposition affirme que |Z(G)| = |G| [p]. Or, G est un p-groupe ; donc p divise |Z(G)|. Comme Z(G)
contient 1G, son ordre n’est pas nul ; donc |Z(G)| est un multiple non nul de p : le centre est non trivial.

Exemple (groupe quaternionique H8)
Le groupe H8 est le groupe d’ordre 8 dont les éléments sont notés {±1,±i,±j,±k}, soumis à la table de loi
donnée par la règle habituelle des signes et par les relations

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.
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On donne aussi une représentation de H8 comme sous-groupe de SL(2,C) engendré par les matrices :

H8 =

〈(
i 0
0 −i

)
,

(
0 −1
1 0

)〉
.

Le groupe H8 est un 2-groupe dont le centre est {−1, 1}, comme on le vérifie immédiatement à partir de la table
de la loi de H8. On peut aussi le représenter par les matrices de SL (4,Z) suivantes :

H8 =

〈
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ,


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


〉
.

Noter que les signes “=” des lignes précédentes sont à prendre au sens des isomorphismes de groupes. Le
mot représentation a une signification précise en mathématiques, qui ne sera pas développée ici. Pour une
introduction lumineuse, voir par exemple le livre de Jean-Pierre Serre Représentation linéaire des groupes finis.

Proposition (un théorème de Cauchy)

Soient G un groupe fini et p un nombre premier divisant l’ordre de G. Alors, G contient un élément d’ordre p.

Preuve. On note n l’ordre de G — noter que n ̸= 1 puisque p divise n. Soit

I = {(g1, g2 . . . , gp) ∈ Gp, g1g2 . . . gp = 1} .

Puisqu’un choix arbitraire de g1, . . . , gp−1 conduit à un unique élément de I en posant gp = g−1
p−1 . . . g

−1
1 , le

cardinal de I est np−1. En particulier, ce nombre est un multiple de p. Soient c ∈ Sp le p-cycle (1, 2, . . . , p),
et C le sous-groupe cyclique d’ordre p de Sp que c engendre. On fait agir C sur les éléments de I par l’action
naturelle σ · (g1, g2 . . . , gp) =

(
gσ(1), gσ(2) . . . , gσ(p)

)
— que cela définisse une action est élémentaire. Les points

fixes de cette action sont les (g, g, . . . , g) pour lesquels g ∈ G vérifie gp = 1, c’est-à-dire pour lesquels g = 1 ou
g est d’ordre p, puisque p est un nombre premier. Or, C est un p-groupe. Donc le nombre de points fixes de
l’action égale #I modulo p. Comme le cardinal de I est un multiple de p, c’est vrai aussi du nombre de points
fixes de l’action. Or, ce nombre est non nul puisque (1, . . . , 1) est un point fixe. Il y donc au moins p points
fixes de l’action, et en particulier au moins p− 1 éléments d’ordre p dans G.

Exercice 53 Montrer que tous les sous-groupes de H8 sont distingués.

Exemple — paradigmatique au sens où l’action d’un groupe sur un ensemble renseigne sur le
groupe lui-même

On notre SO (C) le groupe positif du cube, qui est le groupe des rotations de l’espace euclidien de dimension 3
qui stabilisent un cube — disons le cube C = [0, 1]3 déjà rencontré, tous les cubes sont semblables et ont donc
des groupes conjugués. Le groupe G = SO (C) agit naturellement sur les six centres des faces du cube — ces
centres sont les points d’intersection du bord du cube et de sa sphère inscrite, qui sont toutes les deux stabilisées
par le groupe. En considérant les rotations d’angles multiples de π/2 et dont les axes passent par les centres des
faces, on montre que cette action est transitive. Enfin, si c est le centre d’une face et si Gc est le stabilisateur
de c, alors tout élément de Gc est une rotation dont l’axe passe par c et qui agit sur les sommets de la face
— pour des raisons de distance maximale, par exemple. Cela montre que Gc est le groupe cyclique d’ordre 4
engendré par n’importe laquelle des deux rotations d’ordre 4 et d’axe c. En appliquant la formule de partition
en orbites, cela montre que l’ordre de SO (C) est 6× 4 = 24.

On note O (C) le groupe total du cube, qui est le groupe de toutes les isométries qui le stabilisent. La symétrie
centrale −I3 est une isométrie négative qui stabilise le cube. Ainsi, le déterminant O (C)→ {−1, 1} est surjectif
et son noyau est d’ordre 24. Cela montre que O (C) est d’ordre 48.

Exercice : une fois l’ordre de SO (C) et de O (C) connus, faire la liste de toutes ces isométries. Pour cela,
considérer celles qui se conçoivent aisément, les compter, et se rendre compte qu’on les connâıt toutes.

Pour aller plus loin : en faisant agir le groupe positif du cube sur les quatre diagonales, on montre que

SO (C) ≃ S4 et O (C) ≃ S4 × Z/2Z.
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5.3 Produits semi-directs de groupes

Définition (suite exacte d’homomorphismes de groupes)

Soient i : N → G et p : G→ Q deux homomorphismes de groupes. On dit que la suite

1 −→ N
i−→ G

p−→ Q −→ 1 (14)

est exacte lorsque 1○ i est injectif 2○ p est surjectif 3○ im(i) = ker(p). Lorsque les groupes sont abéliens, on
remplace souvent les 1 par des 0.

Autrement dit, la suite (14) est exacte si, et seulement si N ◁ G et Q ≃ G/N .

Exemples

(i) Soient G et H deux groupes. On note comme d’habitude G×H leur produit direct. Soient i1 : G→ G×H
l’injection g 7→ (g, 1) et p2 : G×H → H la second projection (g, h) 7→ h. Alors, i et p sont des homomorphismes
de groupes et la suite

1 −→ G
i1−→ G×H p2−→ H −→ 1

est exacte.

(ii) Le déterminant induit la suite exacte

1 −→ SO(3)
i−→ O(3)

det−→ {−1, 1} −→ 1

où i est l’inclusion.

(iii) Si n ≥ 2, la signature ε induit la suite exacte

1 −→ An
i−→ Sn

ε−→ {−1, 1} −→ 1

où i est l’inclusion. En remplaçant le groupe multiplicatif {−1, 1} par sa version additive Z/2Z qui lui est
isomorphe, cette suite exactee s’écrit aussi 1→ An → Sn → Z/2Z→ 1.

(iv) Si V est un espace vectoriel de dimension finie sur un corps F, le déterminant induit la suite exacte

1 −→ SL(V )
i−→ GL(V )

det−→ F× −→ 1

où i est (encore) l’inclusion. Pour s’assurer de la surjectivité du déterminant, prendre une version matricielle
de cette suite exacte et considérer les matrices diag(λ, 1, . . . , 1).

(v) La projection canonique Z→ Z/2Z annule 4Z, si bien qu’elle induit un homomorphisme surjectif de groupes
p : Z/4Z → Z/2Z, x + 4Z 7→ x + 2Z. Par ailleurs, la multiplication par 2 induit un homomorphisme de
groupes Z→ Z/4Z, x 7→ 2x+4Z dont le noyau est 2Z ; elle induit donc un homomorphisme injectif de groupes
m : Z/2Z→ Z/4Z.
On considère l’homomorphisme de groupes f : Z/2Z×Z/4Z→ Z/2Z×Z/2Z, (x, y) 7→ (x, p(y)). Il est surjectif
et son noyau est le sous-groupe de Z/2Z×Z/4Z engendré par (0, 2). Autrement dit, f fournit une suite exacte

0 −→ Z/2Z i−→ Z/2Z× Z/4Z f−→ (Z/2Z)2 −→ 0

où i(x) = (0,m(x)) — attention à la notation additive qui invite à remplacer les 1 extrémaux habituels des
suites exactes par des 0. En résumé, en omettant de différencier les classes par des notations une fois que l’on
s’est bien assuré du sens des objets, les deux flèches centrales de la suite sont x 7→ (0, 2x) et (x, y) 7→ (x, y).

Cette suite exacte n’est pas scindée car Z/2Z × Z/4Z contient un unique sous-groupe isomorphe à (Z/2Z)2 et
la restriction de f à ce dernier n’est pas un isomorphisme puisque son image est Z/2Z× {0}.
Définition (produit semi-direct défini par une action par automorphismes)

Soient Q et N deux groupes, et φ : Q→ Aut(N) un homomorphisme de groupes — autrement dit, une action
de Q sur N par automorphismes. Le produit semi-direct de N et Q induit par φ est la loi de groupe définie sur
le produit cartésien N ×Q par

(n, q) · (n′, q′) = (n · φ(q) (n′) , q · q′) . (15)

On note N ×φQ ou simplement N × Q cette loi de groupe sur le produit cartésien N ×Q. L’inverse de (n, q)
est
(
φ
(
q−1
) (
n−1

)
, q−1

)
.
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Exercice 54

(i) Vérifier que cela définit bien une loi de groupe sur N ×Q pour laquelle N ◁ N ×φQ.

(ii) Avec les notations de la définition, l’injection i1 : N → N×φQ, n 7→ (n, 1) et la projection p2 : N×φQ→ Q,
(n, q) 7→ q induisent la suite exacte

1 −→ N
i1−→ N ×φQ

p2−→ Q −→ 1. (16)

A noter
Une lecture possible de la définition du produit semi-direct (15) : la loi de groupe sur N ×Q n’est pas celle du
produit direct qui se fait coordonnée par coordonnée, mais le produit sur la première coordonnée est “tordu”
par l’action.

Proposition (une suite exacte scindée est un produit semi-direct)

Soit
1 −→ N

i−→ G
p−→ Q −→ 1

une suite exacte de groupes. Les assertions suivantes sont équivalentes.

(i) Il existe un homomorphisme de groupes s : Q→ G tel que p ◦ s = idQ.

1 N
i

G
p

Q

s

1

(ii) Il existe un sous-groupe Q′ de G tel que la restriction de p à Q′ soit un isomorphisme de groupes Q′ ∼−→ Q.

(iii) Il existe un sous-groupe distingué N ′ de G, un isomorphisme de groupes I : N ′ ∼−→ N , un sous-groupe Q′

de G et un isomorphisme de groupes P : Q′ ∼−→ Q tels que l’application

π : N ′ ×ψ Q′ ∼−→ G

(n, q) 7−→ nq

soit un isomorphisme de groupes pour l’action ψ de Q′ sur N ′ définie par ψ(q)(n) = qnq−1, et tels que le
diagramme suivant soit commutatif

1 N
i

G
p

Q 1

I π P

1 N ′ i1 N ′ ×ψ Q′ p2
Q′ 1

(iv) Il existe une action de Q sur N par automorphismes φ : Q → Aut(N) et un isomorphisme de groupes
f : N ×φ Q

∼−→ G tels que le diagramme suivant soit commutatif

1 N
i

G
p

Q 1

idN f idQ

1 N
i1 N ×φ Q

p2
Q 1

A noter
Dire que le diagramme est commutatif signifie que les applications composées symbolisées par des suites de
flèches du diagramme ne dépendent pas du chemin choisi entre deux groupes du diagramme. Par exemple, dans
ce dernier diagramme, f ◦ i1 = i ◦ idN = i.

Preuve. (i)⇒(ii) Soit Q′ = im(s), sous-groupe de G. Alors, la restriction de p à Q′ est un isomorphisme entre
Q′ et Q, dont la réciproque est s.
(ii)⇒(iii) On note P : Q′ → Q la restriction de p à Q′ et s = P−1 sa réciproque. On note aussi N ′ = i(N)
et I : N ′ → N la réciproque de l’isomorphisme i : N → N ′. Puisque la suite est exacte, N ′ = ker p est un
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sous-groupe distingué de G ce qui entrâıne que ψ, définie comme dans l’énoncé, est bien une action sur N . Pour
l’action ψ, la loi de groupe de N ′ ×ψ Q′ s’écrit (n, q) · (n′, q′) =

(
nqn′q−1, qq′

)
. Il en résulte immédiatement

que π est un homomorphisme de groupes. Soit alors ρ : G → N ′ × ψ Q
′ l’application définie par ρ(g) =(

g · (s ◦ p(g))−1
, s ◦ p(g)

)
, pour tout g ∈ G. D’une part, la définition de s assure que s ◦ p(g) ∈ Q′. D’autre

part, g · (s ◦ p(g))−1 ∈ ker p = N ′. Enfin, soit g ∈ G ; on note ρ (g) = (n, q) ∈ N ′×Q′. En particulier, g = nq, si
bien que π ◦ ρ(g) = g : on a montré que π ◦ ρ = idG. Inversement, si (n, q) ∈ N ′ ×Q′, alors ρ ◦ π(n, q) = ρ(nq).

Comme q ∈ Q′, s◦p(nq) = s◦p(q) = q, et (nq) (s ◦ p(nq))−1
= nqq−1 = n, ce qui montre que ρ◦π(n, q) = (n, q).

On a montré que π et ρ sont des bijections réciproques l’une de l’autre. Que le diagramme commute résulte
immédiatement des définitions de I, i1, π, p2 et P .
(iii)⇒(iv) Dans la situation de (iii), soient I : N ′ ∼−→ N et P : Q′ ∼−→ Q deux isomorphismes de groupes.
Puisque le diagramme commute, la réciproque de I est i : N

∼−→ N ′ et P est la restriction de p à Q′ ; on note
s : Q

∼−→ Q′ la réciproque de P . On définit alors une action φ : Q → Aut(N) de Q sur N par la formule
φ(q)(n) = I [ψ (s(q)) (i(n))] = I

[
s(q)i(n)s(q)−1

]
. Alors, i × s : N ×φ Q → N ′ ×ψ Q′, (n, q) 7→ (i(n), s(q)) est

un homomorphisme de groupes, comme le montre un calcul élémentaire, évidemment bijectif. Puisque π est
un isomorphisme, la composée f = π ◦ (i × s) : N ×φ Q → G, (n, q) 7→ i(n)s(q) est aussi un isomorphisme de
groupes. Que le diagramme commute résulte immédiatement des définitions de f et de s.

Définition (suite exacte scindée, section)
Dans la situation de la proposition, on dit que la suite exacte est scindée et que l’homomorphisme s : Q → G
est une section (de la suite, ou de p). On appelle aussi parfois section le sous-groupe Q′ = s(Q) de G lui-même.

A noter

(i) Une lecture opératoire de la proposition est la suivante : lorsqu’on a un suite exacte 1→ N → G→ Q→ 1,
le groupe G est isomorphe à un produit semi-direct N ×φ Q si, et seulement si la suite est scindée, i.e. si, et
seulement si elle admet une section.

(ii) La version (iii) d’un suite exacte scindée est celle du produit semi-direct interne : N ′ et Q′ sont des sous-
groupes de G, N ′ est distingué dans G et tout élément de G s’écrit de manière unique sous la forme nq où
n ∈ N ′ et q ∈ Q′. En outre, le produit de deux éléments de G ainsi décomposés se lit au travers de l’action par
conjugaison de Q sur N , via la formule nq · n′q′ = n

(
qn′q′−1

)
· qq′.

Autrement dit, si G possède deux sous-groupes N ′ et Q′ tels que
1○ N ′ ◁ G
2○ N ′ ∩Q′ = {1}
3○ G = N ′Q′,
alors G est un produit semi-direct (interne) G ≃ N ′ × Q′.

(iii) La version (iii) d’un suite exacte scindée est celle du produit semi-direct externe : les groupes N et Q ne
sont pas des sous-groupes de G, mais Q agit sur N par automorphismes et le produit semi-direct qui résulte de
cette action est isomorphe à G.

Exemples
On reprend les exemples ci-dessus.

(i) Le groupe O(3) contient des matrices d’isométries négatives, comme par exemple D = diag(−1, 1, 1), mais
aussi −I3. Une telle matrice engendre un sous-groupe d’ordre 2 de O(3), et la restriction du déterminant à ce
sous-groupe est un isomorphisme.

On choisit d’abord la section ⟨D⟩. Elle scinde la suite exacte 1 −→ SO(3) −→ O(3)
det−→ {−1, 1} −→ 1, ce qui

montre qu’on a un produit semi-direct
O(3) ≃ SO(3)× Z/2Z.

On choisit ensuite la section ⟨−I3⟩ du déterminant. Cette fois, puisque −I3 est dans le centre de O(3), le (iii)
de la proposition montre que l’action ψ de ⟨−I3⟩ sur SO(3), qui est la conjugaison, est triviale. Ainsi, le produit
semi-direct pour cette action est un produit direct, et on a aussi un isomorphisme

O(3) ≃ SO(3)× Z/2Z.

(ii) Lorsque n ≥ 2, le groupe symétrique Sn contient des permutations négatives d’ordre 2 — par exemple, les
transpositions. Chacune d’elle fournit une section de la suite exacte 1 → An → Sn → Z/2Z → 1 qui est donc
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scindée. On a un produit semi-direct
Sn ≃ An × Z/2Z.

Noter que si n ≥ 5, les seuls sous-groupes distingués de Sn sont {1}, An et Sn. En particulier, Sn ne contient
pas de sous-groupe distingué d’ordre 2. Cela montre qu’il n’y a pas d’isomorphisme entre Sn et le produit
direct An × Z/2Z. Exercice : montrer que cela vaut aussi pour n = 3 ou 4.

(iii) Si n ≥ 1 et si F est un corps, les matrices diagonales {diag(x, 1, . . . , 1), x ∈ F×} forment un sous-groupe
de GL (n,F) qui fournit une section du déterminant. Ainsi, la suite 1 → SL (n,F) → GL (n,F) → F× → 1 est
scindée. On a un produit semi-direct

GL (n,F) ≃ SL (n,F)× F×.

5.4 Théorèmes de Sylow

Définition (p-Sylow d’un groupe fini)
Soient G un groupe fini et p un nombre premier. Un p-sous-groupe de Sylow� de G est un p-sous-groupe S de
G dont l’indice n’est pas divisible par p. On dit parfois simplement un p-Sylow.

Autrement dit, si |G| = paq où a ≥ 0 et où p ne divise pas q, un sous-groupe S de G est un p-Sylow de G si, et
seulement si |S| = pa.

Exemples

(i) Si G est un p-groupe, il a un unique p-Sylow qui est G lui-même.

(ii) Si G est un groupe abélien fini et si p est un nombre premier, G admet un unique p-Sylow qui est sa
composante de p-torsion.

(iii) Soient p un nombre premier et n un entier naturel non nul. On note Sn,p le sous-groupe de GL (n,Fp)
formé des matrices triangulaires supérieures avec des 1 sur la diagonale : si δ désigne le symbole de Kronecker,

Sn,p = {M ∈ GL (n,Fp) , ∀j, k ∈ {1, . . . , n} , j ≥ k =⇒Mj,k = δj,k} .

Autrement dit, Sn,p est formé des matrices de GL (n,Fp) de la forme

1

1

⋆ ⋆

⋆
0

0 0




Que Sn,p soit un sous-groupe de GL (n,Fp) est immédiat. Puisque les n(n − 1)/2 coefficients au dessus de la
diagonale sont librement choisis dans Fp, l’ordre de Sn,p est pn(n−1)/2. Par ailleurs, l’ordre de GL (n,Fp) est

(pn − 1) (pn − p)
(
pn − p2

)
. . .
(
pn − pn−1

)
= p

n(n−1)
2 q

où q est un entier premier avec p — on a vu ce calcul, il suffit de compter les bases de Fnp . Cela montre que
Sn,p est un p-Sylow de GL (n,Fp).

Exercice 55 Le conjugué d’un p-Sylow est toujours un p-Sylow.

Théorème (premier théorème de Sylow)

Si G est un groupe fini et si p est un nombre premier, alors G contient au moins un p-Sylow.

Preuve. On note n = |G|.
Le premier geste consiste à voir G comme un sous-groupe d’un groupe de permutations — ce résultat est parfois
évoqué sous le nom de théorème de Cayley. Pour cela, on fait agir G sur lui-même par translation à gauche.
Cela fournit l’homomorphisme de groupes φ : G → SG, g 7→ tg où tg est la permutation de G définie par
tg(h) = gh, pour tout h ∈ G. Le noyau de φ est trivial (l’action est fidèle), si bien que G est isomorphe à son
image par φ qui est un sous-groupe de SG.

�Ludwig Sylow, 1832–1918.
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On suppose ainsi que G est un sous-groupe de Sn. Le deuxième geste consiste à voir à son tour Sn comme un
sous-groupe de GL (n,Fp), ou plutôt de GL

(
Fnp
)
. Si σ ∈ Sn, on note fσ ∈ GL

(
Fnp
)
l’endomorphisme de Fnp qui

permute sa base canonique (v1, . . . , vn) via σ : il est défini par

∀k ∈ {1, . . . , n} , f (vk) = vσ(k).

Un calcul élémentaire montre que l’application f : Sn → GL
(
Fnp
)
, σ 7→ fσ est un homomorphisme injectif

de groupes. Ainsi, G, qui est un sous-groupe de Sn, est isomorphe à son image par f qui est elle-même un
sous-groupe de GL

(
Fnp
)
.

On suppose ainsi que G est un sous-groupe de GL (n,Fp). On conclut alors avec le lemme suivant, appliqué à
G = GL (n,Fp), qui contient le p-Sylow Sn,p de l’exemple ci-dessus.

Lemme
Soient G un groupe fini, p un nombre premier, S un p-Sylow de G et G un sous-groupe de G. Alors, il existe
h ∈ G tel que hSh−1 ∩G soit un p-Sylow de G.

Preuve. On fait agir G sur l’ensemble (G/S)g des classes à gauche de G modulo S, par translation à gauche.
Si g ∈ G et si hS ∈ (G/S)g, l’action s’écrit g · hS = (gh)S — que ce soit une action à gauche a déjà été vu :
c’est la restriction à G de l’action de G sur (G/S)g par translation à gauche. Si h ∈ G, le groupe d’isotropie de

hS pour cette action est GhS = {g ∈ G, ghS = hS} = hSh−1 ∩G. C’est un p-sous-groupe de G puisque c’est
à la fois un sous-groupe de G et un sous-groupe du p-groupe hSh−1. Il suffit ainsi de trouver h ∈ G tel que p
ne divise pas l’indice [G : GhS ], puisque dans ces conditions, GhS = hSh−1 ∩G sera un p-Sylow de G. On écrit
l’équation aux classes :

[G : S] =
∑
h∈R

[G : GhS ]

où R ⊆ (G/S)g désigne un système de représentant des orbites. Puisque S est un p-Sylow de G, le nombre
[G : S] n’est pas un multiple de p. Par conséquent, l’un au moins des termes de la somme n’est pas un multiple
de p : soit h ∈ R tel que p ne divise pas [G : GhS ]. Alors, GhS = hSh−1 ∩G est un p-Sylow de G.

A noter

(i) Ce que montre le lemme, ce n’est pas que l’intersection d’un p-Sylow S avec un sous-groupe G est un p-Sylow
de G, mais que l’intersection de G et d’un certain conjugué de S — qui est encore un p-Sylow — est un p-Sylow
de G.

(ii) Le premier théorème de Sylow montre l’existence de p-Sylow dans n’importe quel groupe fini. Ces p-
Sylow sont évidemment des p-sous-groupes maximaux (pour l’inclusion). Un autre point de vue est parfois pris
pour introduire les p-Sylow en les définissant comme étant les p-sous-groupes maximaux dont l’existence est
immédiate, le premier théorème de Sylow consistant alors à montrer que ce sont les p-sous-groupes dont p ne
divise pas l’indice.

Théorème (deuxième théorème de Sylow)

Soient G est un groupe fini et p un nombre premier. Alors,

(i) tout p-sous-groupe de G est contenu dans un p-Sylow de G ;

(ii) tous les p-Sylow de G sont conjugués.

Preuve. Soit H un p-sous-groupe de G. Soit aussi S un p-Sylow de G — on sait qu’il en existe grâce au
premier théorème de Sylow. On applique le lemme à cette situation : soit g ∈ G tel que gSg−1 ∩ H soit un
p-Sylow de H. Comme H est un p-groupe, il est son unique p-Sylow ; autrement dit, gSg−1 ∩ H = H. En
particulier, H est contenu dans le p-Sylow gSg−1, ce qui démontre (i). Si en outre H est lui-même un p-Sylow,
alors H = gSg−1, ce qui montre que tout p-Sylow est conjugué à S : (ii) est démontré.

A noter
En particulier, le fait que les p-Sylow soient tous conjugués entrâıne le résultat suivant. Soient G un groupe, p
un nombre premier et S un p-Sylow de G. Alors

S ◁ G⇐⇒ S est l′unique p−Sylow de G.

Théorème (troisième théorème de Sylow)
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Soient G est un groupe fini et p un nombre premier. On note sp le nombre de p-Sylow de G. Alors,

sp divise |G| et sp ≡ 1 [p].

Preuve. Soient S l’ensemble des p-Sylow de G et S ∈ S. Alors, sp = CardS.
1○ On fait agir G sur S par conjugaison. Le deuxième théorème de Sylow assure que l’action est transitive.
Autrement dit, l’action admet S tout entier pour unique orbite. L’équation aux classes montre alors que sp||G|.
2○ On fait agir cette fois S sur S par conjugaison. Comme S est un p-groupe, l’ensemble SS des points fixes de
cette action vérifie sp ≡ Card

(
SS
)
[p] — voir la proposition Action d’un p-groupe, page 48. Bien sûr, S ∈ SS .

On montre que SS = {S}, ce qui permet de conclure. Pour tout T ∈ S, on note NormG(T ) le normalisateur de
T dans G, assavoir NormG(T ) =

{
g ∈ G, gTg−1 = T

}
. Alors, pour tout T ∈ S, le sous-groupe T de NormG(T )

en est l’unique p-Sylow, puisque c’en est un p-Sylow distingué. Si en outre T ∈ SS , alors S est aussi un p-Sylow
de NormG(T ), ce qui impose que S = T . On a montré que S est l’unique point fixe de l’action.

Exemples d’application

(i) Il n’y a pas de groupe simple d’ordre 91.
En effet, soit G un groupe d’ordre 91. Alors, le nombre de 7-Sylow de G vérifie s7|13 et sp ≡ 1 [7], ce qui impose
que s7 = 1. Comme le conjugué d’un 7-Sylow est encore un 7-Sylow, on en déduit que l’unique 7-Sylow de G
en est un sous-groupe distingué propre : G n’est pas simple.

(ii) L’unique 3-Sylow de S3 est A3 = ⟨(123)⟩. En revanche, S3 contient trois 2-Sylow qui sont les sous-groupes
engendrés par une transposition.

Exercice 56 Compter et décrire tous les Sylow de A4, S4, A5, S5.

Une application classique, rapidement

Proposition Tout groupe simple d’ordre 60 est isomorphe à A5.

Une preuve : soit G un groupe simple d’ordre 60. Le nombre de ses 5-Sylow est 1 ou 6 ; c’est 6 puisque G
est simple. L’action de G sur ses 5-Sylow par conjugaison fournit un homomorphisme φ : G → S6, injectif
puisque l’action sur les 5-Sylow est transitive. En passant aux groupes dérivés, on obtient que φ(D(G)) est un
sous-groupe de D (S6) = A6. Mais comme G est simple, D(G) = G. Donc l’image de φ est incluse dans A6.
Ainsi, G est isomorphe à un sous-groupe simple d’indice 6 de A6.
Or, tout sous-groupe H simple d’indice 6 de A6 est isomorphe à A5.
En effet, on fait agir H sur les six classes à gauche de A6 modulo H par translation à gauche : h ·(σH) = (hσ)H.
Cela fournit un homomorphisme de groupes ψ : H → S6, injectif puisque H est simple et puisque l’action n’est
pas triviale — si elle était triviale, H serait un sous-groupe distingué propre de A6 alors que ce dernier est
simple. Le groupe d’isotropie HH de la classe H contient H. Donc ψ(H), qui est isomorphe à H, est contenu
dans HH . Or HH est le fixateur dans S(A6/H)g

≃ S6 d’un point de {1, . . . , 6} — savoir H — : il est isomorphe
à S5. On a la situation suivante : H est un sous-groupe d’indice 2 de HH ≃ S5. Donc H est isomorphe à A5.

Exercice 57 Démontrer le théorème de Cauchy page 49 à l’aide de la théorie de Sylow.
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6 Polynômes symétriques

Dans tout le chapitre, les anneaux considérés sont commutatifs et unitaires.

6.1 Théorème des polynômes symétriques

Définition (action naturelle du groupe symétrique sur un anneau de polynôme)
Soient n un entier naturel non nul et A un anneau. Pour toute σ ∈ Sn et pour tout P ∈ A [X1, . . . , Xn], on
note σ · P ou simplement σP le polynôme

σ · P (X1, . . . , Xn) = P
(
Xσ(1), . . . , Xσ(n)

)
.

On voit immédiatement que cela définit une action (à gauche) de Sn sur A [X1, . . . , Xn], qui vérifie en outre
σ · (P +Q) = (σ · P ) + (σ ·Q) et σ · (P ×Q) = (σ · P )× (σ ·Q), pour tous P,Q ∈ A [X1, . . . , Xn].

Définition (polynôme symétrique)
Soient n un entier naturel non nul et A un anneau. Un polynôme P de A [X1, . . . , Xn] est dit symétrique
lorsqu’il est invariant par toutes les permutations, c’est-à-dire lorsque σ · P = P , pour tout σ ∈ Sn. On note

A [X1, . . . , Xn]
Sn

le sous-anneau des polynômes symétriques de A [X1, . . . , Xn].

Exercice 58

(i) Vérifier que les polynômes symétriques forment bien un sous-anneau de l’anneau de tous les polynômes.

(ii) Un polynôme est symétrique si, et seulement s’il est invariant par toute transposition.

Exemples

(i) Pour tout n ∈ N∗ et pour tout p ∈ N, le polynôme de Newton

Sp = Sp (X1, . . . , Xn) =

n∑
k=1

Xp
k

est (évidemment) symétrique.

(ii) Dans Z [X,Y, Z], les polynômes S1 = X + Y + Z, σ2 = XY + XZ + Y Z et S2 = X2 + Y 2 + Z2 sont
symétriques et sont reliés par la relation S2

1 = S2 + 2σ2.

Définition (polynômes symétriques élémentaires)
Soit n ≥ 1. Pour tout p ∈ {0, . . . , n}, on note σp ∈ Z [X1, . . . , Xn] le p

e polynôme symétrique élémentaire à n
indéterminées, défini par le développement polynomial dans Z [X1, . . . , Xn, T ] suivant :

n∏
k=1

(1 + TXk) =

n∑
p=0

σp (X1, . . . , Xn)T
p (17)

A noter

(i) En particulier, σ0 (X1, . . . , Xn) = 1, σ1 est la somme σ1 (X1, . . . , Xn) = X1 + · · · +Xn et σn est le produit
σn (X1, . . . , Xn) = X1X2 . . . Xn.

(ii) En faisant agir une permutation σ ∈ Sn sur les membres de droite et de gauche de (17) dans l’anneau
Z[T ] [X1, . . . , Xn], on vérifie que les σk sont bien des polynômes symétriques.

(iii) Une conséquence immédiate de (17) est la relation entre racines et coefficients d’un polynôme

n∏
k=1

(T −Xk) =

n∑
p=0

(−1)pσn−p (X1, . . . , Xn)T
p.

Si on donne ce nom à cette identité polynomiale, c’est parce que si A est un anneau intègre et si P =∑n
k=0 pkT

k ∈ A[T ] est un polynôme unitaire de degré n admettant pour racines x1, . . . , xn ∈ A, alors les
racines et les coefficients de P sont liés par les relations

∀k ∈ {1, . . . n} , σk (x1, . . . , xn) pn = (−1)n−kpk.
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Ainsi, les coefficients d’un polynômes sont des polynômes explicites en ses racines. Noter en passant que la
démarche inverse qui consiste à exprimer les racines d’un polynôme en fonction de ses coefficients est autrement
plus épineuse. C’est la question de la résolution des équations polynomiales. Par exemple, la question de la
résolubilité des équations polynomiales “par radicaux” trouve une réponse dans le magnifique cadre de la théorie
de Galois.

(iv) On peut aussi écrire les σk par une formule close, obtenue en développant (17). Cette formule est la
suivante :

σp (X1, . . . , Xn) =
∑

i1,...,ip∈{1,...,n}
i1<i2<···<ip

p∏
k=1

Xik

= X1X2 . . . Xp +X1X2 . . . Xp+1 + · · ·+Xn−p+1Xn−p+2 . . . Xn

C’est le polynôme homogène de degré p, somme de tous les monômes de degré p sans carré. Par exemple,
σ3 (X1, X2, X3, X4) = X1X2X3 +X1X2X4 +X1X3X4 +X2X3X4.

Exercice 59 Montrer que le nombre de monômes de σp (X1, . . . , Xn) est le coefficient du binôme
(
n
p

)
.

Exemple
Le polynôme de Z [X1, X2, X3, X4]

P = X2
1X2X3 +X2

1X2X4 +X2
1X3X4

+X2
2X3X4 +X2

2X3X1 +X2
2X4X1

+X2
3X4X1 +X2

3X4X2 +X2
3X1X2

+X2
4X1X2 +X2

4X1X3 +X2
4X2X3

est symétrique, comme on le vérifie immédiatement en voyant qu’il est invariant par les six transpositions de S4.
Un calcul élémentaire montre que, pour ces quatre indéterminées, σ1σ3 = P +4σ4, ce qui permet d’exprimer P
comme un polynôme en les σk, selon la formule P = σ1σ3 − 4σ4.

Avant d’aborder la question des anneaux de polynômes invariants par le groupe symétrique ou par le groupe
alterné, on prouve un lemme élémentaire dans les anneaux de polynômes généraux, qui sera bien utile pour
prouver les théorèmes qui suivent.

Lemme
Soient n un entier naturel non nul, A un anneau commutatif unitaire et P ∈ A [X1, . . . , Xn].

(i) Si P (X1, . . . , Xn−1, 0) = 0, alors Xn divise P .

(ii) Si X1P = 0, alors P = 0.

(iii) Si X1P ̸= 0, alors P ̸= 0 et deg (X1P ) = 1 + degP .

(iv) Si X1, X2, . . . , Xk divisent P , alors le produit X1X2, . . . Xk divise P , pour tout k ∈ {1, . . . , n}.
(v) Si (X1 −X2)P = 0, alors P = 0.

(vi) Si X1 −X2 et X1 −X3 divisent P , alors (X1 −X2) (X1 −X3) divise P .

(vii) Si X1 −X2 et X3 −X4 divisent P , alors (X1 −X2) (X3 −X4) divise P .

Preuve. Tous ces résultats sont immédiats si A est factoriel, puisqu’alors, A [X1, . . . , Xn] l’est aussi, en vertu
du théorème de transfert de Gauss. Ils restent cependant valides dans le cas général. (i) On fait la division
euclidienne de P dans A [X1, . . . , Xn−1] [Xn] par le polynôme unitaire Xn, puis on spécialise Xn = 0. (ii)
et (iii) On considère l’égalité X1P = 0 dans l’anneau A [X2, . . . , Xn] [X1]. Vue ainsi, les résultats de (ii) et
(iii) sont immédiats : la multiplication par X1 n’est qu’un décalage des coefficients. (iv) En procédant par
récurrence sur k (et n), il suffit de montrer le résultat pour k = 2. On suppose que X1 et X2 divisent P .
Soit Q ∈ A [X1, . . . , Xn] tel que P = X2Q. On fait la division euclidienne de Q dans A [X2, . . . , Xn] [X1] par
le polynôme unitaire X1. Soient R ∈ A [X1, . . . , Xn] et S ∈ A [X2, . . . , Xn] tels que Q = X1R + S. Alors,
P = X1X2R + X2S. En spécialisant X1 = 0, on obtient que X2S = 0, et donc, en utilisant (ii), que S = 0.
(v) Il suffit de le montrer pour n = 2, quitte à remplacer A [X3, . . . , Xn] par A. On explicite les coefficients
de P (X,Y ) =

∑
p,q≥0 ap,qX

pY q, on écrit l’égalité XP = Y P , on obtient des formules de récurrence sur les
ap,q qui aboutissent directement au résultat. (vi) D’abord, P = (X1 −X3)Q1 (X1, X2, . . . , Xn). Ensuite,
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par division euclidienne de Q1 dans A [X2, . . . , Xn] [X1] par le polynôme unitaire X1 − X2, on obtient P =
(X1 −X3) (X1 −X2)Q (X1, X2, . . . , Xn) + (X1 −X3)R (X2, . . . , Xn), ce qui implique en spécialisant X1 = X2

que (X2 −X3)R (X2, . . . , Xn) = 0. En appliquant (v), on conclut que R = 0 et ainsi que (X1 −X2) (X1 −X3)
divise P . (vii) D’abord, P = (X3 −X4)Q1 (X1, X2, . . . , Xn). Ensuite, par division euclidienne de Q1 dans
A [X2, . . . , Xn] [X1] par le polynôme unitaireX1−X2, on obtient P = (X3 −X4) (X1 −X2)Q (X1, X2, . . . , Xn)+
(X3 −X4)R (X2, . . . , Xn), ce qui implique en spécialisant X1 = X2 que (X3 −X4)R (X2, . . . , Xn) = 0. En ap-
pliquant (v), on conclut que R = 0 et ainsi que (X1 −X2) (X3 −X4) divise P .

Théorème (théorème des polynômes symétriques, version 1)

Soient n un entier naturel non nul et A un anneau commutatif unitaire. Alors, pour tout P ∈ A [X1, . . . , Xn]
Sn ,

il existe un unique Q ∈ A [X1, . . . , Xn] tel que

P (X1, . . . , Xn) = Q (σ1, . . . , σn) .

Preuve. Dans toute la preuve, si k ∈ {0, . . . , n}, on notera (σk)0 le polynôme spécialisé

(σk)0 (X1, . . . , Xn−1) = σk (X1, . . . , Xn−1, 0) .

— on vérifie immédiatement que (σ1)0 est aussi le k
e polynôme symétrique élémentaire en les n−1 indéterminées

X1, . . . , Xn−1.

1○ On commence par l’existence. On procède par récurrence sur n. Si n = 1, il n’y a rien à démontrer puisque
σ1 = X1. On suppose que n ≥ 2 et que tout polynôme symétrique à n − 1 indéterminées est un polynôme en
les polynômes symétriques élémentaires en lesdites n − 1 indéterminées. On montre par récurrence sur d que
tout polynôme symétrique non nul de degré d de A [X1, . . . , Xn] est un polynôme en σ1, . . . , σn. Si d = 0, il
n’y a rien à faire. On suppose que d ≥ 1 et que P est un polynôme symétrique de degré d de A [X1, . . . , Xn].
Alors, P (X1, . . . , Xn−1, 0) est un polynôme symétrique (de degré d) de A [X1, . . . , Xn−1]. Par hypothèse de
récurrence, soit Q1 ∈ A [X1, . . . , Xn−1] tel que P (X1, . . . , Xn−1, 0) = Q1 ((σ1)0 , . . . , (σn−1)0). On pose alors

P1 = P (X1, . . . , Xn)−Q1 (σ1, . . . , σn−1) ∈ A [X1, . . . , Xn]
Sn . Puisque P1 (X1, . . . , Xn−1, 0) = 0, le (i) du lemme

montre que Xn|P1. Puisque P1 est symétrique, cela entrâıne que tous les Xk divisent P . Ainsi, selon le (iv) du
lemme, σn divise P . Soit donc P2 ∈ A [X1, . . . , Xn] tel que P1 = σnP2. L’application n fois du (ii) du lemme
précédent montre alors que P2 est également symétrique. Si P1 = 0, on a montré que P = Q1 (σ1, . . . , σn−1)
et c’est fini. Si P1 ̸= 0, alors deg (P1) ≤ d puisque deg (Q1 (σ1, . . . , σn−1)) = deg (Q1 ((σ1)0 , . . . , (σn−1)0)).
Alors, l’application n fois du (iii) du lemme précédent montre que deg (P2) ≤ d − n. On applique l’hypothèse
de récurrence à P2 : soit Q2 ∈ A [X1, . . . , Xn] tel que P2 = Q2 (σ1, . . . , σn). Alors, on a montré que P s’écrit
P = Q1 (σ1, . . . , σn−1) + σnQ2 (σ1, . . . , σn) qui est de la forme voulue.

2○ Unicité. Il suffit de montrer que ∀P ∈ A [X1, . . . , Xn], P (σ1, . . . , σn) = 0 ⇒ P = 0. On procède par
récurrence sur n. Si n ≥ 1, il n’y a rien à démontrer puisque P (σ1) = P . On suppose que n ≥ 2. On
suppose, par l’absurde, qu’il existe P ̸= 0 tel que P (σ1, . . . , σn) = 0. Soit P un tel polynôme, de degré
minimal. On ordonne P = P0 + XnP1 + · · · + Xd

nPd où Pk ∈ A [X1, . . . , Xn−1] pour tout k. On substitue
X1 = σ1, . . . , Xn = σn et on spécialise Xn = 0. On obtient 0 = P0

(
(σ1)0 , . . . , (σ1)n−1

)
. Par récurrence, cela

entrâıne que P0 = 0 et donc queXn divise P . Soit donc Q ∈ A [X1, . . . , Xn] tel que P = XnQ. D’après le lemme,
deg(Q) = deg(P )− 1. En outre, σnQ (σ1, . . . , σn) = 0. Le (ii) du lemme assure alors que Q (σ1, . . . , σn) = 0, ce
qui contredit le caractère minimal du degré de P .

Définition (indépendance algébrique, transcendance)
Soient B un anneau, A un sous-anneau de B, n un entier naturel non nul et b1, . . . , bn ∈ B. On dit que b1, . . . , bn
sont algébriquement indépendants sur A, ou que la famille {b1, . . . , bn} est algébriquement libre lorsque

∀P ∈ A [X1, . . . , Xn] , P (b1, . . . , bn) = 0 =⇒ P = 0.

Sinon, les bk sont algébriquement dépendants sur A, ou encore la famille {b1, . . . , bn} est algébriquement liée. Si
b ∈ B, on dit que b est algébrique sur A lorsque {b} est algébriquement liée. Sinon, on dit que b est transcendant
sur A.
Exemples

(i) Dans C, tout élément est algébrique sur R.
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(ii) Si z ∈ C, z est algébrique sur Q si, et seulement si le Q-espace vectoriel Q[z] est de dimension finie.

(iii) Dans les conditions de la définition, b1, . . . , bn sont algébriquement indépendants si, et seulement si le sous-
anneau A [b1, . . . , bn] de B engendré par A∪{b1, . . . , bn} est isomorphe à l’anneau de polynômes A∪[X1, . . . , Xn].

Notation
Dans les conditions de la définition des polynômes symétriques, on note A [σ1, . . . , σn] le sous-anneau de
A [X1, . . . , Xn] engendré par A ∪ {σ1, . . . , σn}. Le théorème de caractérisation des sous-anneaux engendrés
assure que

A [σ1, . . . , σn] = {P (σ1, . . . , σn) , P ∈ A [X1, . . . , Xn]} .

Théorème (théorème des polynômes symétriques, version 2)

Soient n un entier naturel non nul et A un anneau commutatif unitaire.

(i) A [X1, . . . , Xn]
Sn = A [σ1, . . . , σn].

(ii) σ1, . . . , σn sont algébriquement indépendants sur A [X1, . . . , Xn].

Preuve. C’est une paraphrase de l’existence et de l’unicité de la version 1.

A noter
Dans les conditions du théorème des polynômes symétriques, on a la situation suivante :

A [X1, . . . , Xn]
Sn = A [σ1, . . . , σn] ≃ A [X1, . . . , Xn] .

6.2 Polynômes antisymétriques, polynômes invariants par le groupe alterné

Définition (polynôme invariant sous l’action du groupe alterné)
Soient n un entier naturel non nul et A un anneau. Un polynôme P de A [X1, . . . , Xn] est dit invariant sous
l’action du groupe alterné lorsque σ · P = P , pour tout σ ∈ An. On note

A [X1, . . . , Xn]
An

le sous-anneau de A [X1, . . . , Xn] formé des polynômes invariants sous l’action du groupe alterné.

Exercice 60 A [X1, . . . , Xn]
An est bien un sous-anneau de A [X1, . . . , Xn]. Il contient A [X1, . . . , Xn]

Sn .

Exemple
Pour tout entier naturel non nul n, soit

V = V (X1, . . . Xn) =
∏

(i,j)∈{1,...,n}2

i<j

(Xj −Xi)

le polynôme de Vandermonde. Son expression déterminantale montre immédiatement que pour tout σ ∈ Sn,
σ · V = ε(σ)V , où ε désigne la signature. En particulier, V ∈ Z [X1, . . . , Xn]

An . L’action de Sn sur V montre
aussi que V 2 est un polynôme symétrique.

En deux indéterminées, V (X,Y )2 = (X − Y )2 = (X + Y )2 − 4(XY )2 = σ2
1 − 2σ2. Relier cette formule avec

le discriminant du polynôme (T −X) (T − Y ), qui est précisément V 2. En d’autres termes, on dit que le
discriminant du polynôme T 2 − aT + b est a2 − 4b.

Définition (discriminant)
Soit n un entier naturel non nul. Le discriminant à n indéterminées est le polynôme symétrique

∆ (X1, . . . , Xn) = V (X1, . . . Xn)
2
= (−1)

n(n−1)
2

∏
(i,j)∈{1,...,n}2

i ̸=j

(Xi −Xj) .

En appliquant le théorème des spolynômes symétriques, on note δ l’unique polynôme à n indéterminées tel que

∆ (X1, . . . , Xn) = δ (σ1 (X1, . . . , Xn) , . . . , σn (X1, . . . , Xn)) .

Définition (polynôme antisymétrique)
Soient n un entier naturel non nul et A un anneau. Un polynôme P de A [X1, . . . , Xn] est dit antisymétrique
lorsque σ · P = ε(σ)P , pour toute σ ∈ Sn.
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Proposition (structure des polynômes antisymétriques)
Soient n un entier naturel non nul, A un anneau commutatif unitaire dont la caractéristique est nulle ou impaire.
Alors, les polynômes antisymétriques sont les polynômes de la forme V Q où Q ∈ A [X1, . . . , Xn] est un polynôme
symétrique.

Preuve. On suppose n ≥ 2, sans quoi il n’y a rien à faire. Que ces polynômes soient antisymétriques est
évident. Inversement, soit P un polynôme antisymétrique. On fait la division euclidienne de P dans l’anneau
A [X2, . . . , Xn] [X1] par le polynôme unitaire X1 −X2 : soient Q ∈ A [X1, . . . , Xn] et R ∈ A [X2, . . . , Xn] tels
que P = (X1 −X2)Q + R. En spécialisant, X1 = X2, on obtient que R = P (X2, X2, . . . , Xn). Or, puisque P
est antisymétrique, (12) · P = −P ce qui, en spécialisant X1 = X2 assure que 2P (X2, X2, . . . , Xn) = 0. Ainsi,
2R = 0. Comme la caractéristique de A est nulle ou impaire, cela implique que R = 0. On a montré que
X1 −X2 divise P . De la même façon, tous les Xi −Xj , i ̸= j divisent P . En faisant une récurrence qui utilise
(vi) et (vii) du lemme précédent, on conclut que V divise P . Soit ainsi Q ∈ A [X1, . . . , Xn] tel que P = V Q.
Il reste à montrer que Q est symétrique. Si τ ∈ Sn une transposition. On fait agir τ sur les polynômes de
l’égalité P = V Q. On obtient −P = −V × τ ·Q, ce qui entrâıne que V (Q− τ ·Q) = 0. Par application répétée
(récurrence) du (v) du lemme, on conclut que Q− τ ·Q = 0 ce qui prouve que Q est symétrique.

Théorème (théorème des polynômes invariants par le groupe alterné)

Soient n un entier naturel non nul et A un anneau commutatif unitaire dans lequel le nombre 2 est inversible.

(i) A [X1, . . . , Xn]
An = A [σ1, . . . , σn, V ].

(ii) Plus précisément, tout élément de A [X1, . . . , Xn]
An s’écrit de manière unique sous la forme P +QV où P

et Q sont des polynômes symétriques.

(iii) L’anneau A [X1, . . . , Xn]
An est isomorphe à l’anneau- quotient

A [X1, . . . , Xn]
An ≃ A [X1, . . . , Xn, T ] /

(
T 2 − δ (X1, . . . Xn)

)
.

Preuve. Grâce au théorème des polynômes symétriques, (i) découle de (ii). On montre (ii).
1○ Unicité. Si n = 1, il n’y a rien à faire. On suppose n ≥ 2 et que P +QV = 0 où P et Q sont symétriques.
On fait agir la transposition (12) sur cette égalité. On obtient P −QV = 0, ce qui entrâıne immédiatement que
2P = 0 et 2QV = 0. Puisque la caractéristique de A est nulle ou impaire, cela impose que P = 0 et QV = 0,
ce qui implique Q = 0 par applications répétées (récurrence) des points (vi) et (vii) du lemme. On a montré
l’unicité.
2○ Existence. Soit A ∈ A [X1, . . . , Xn]

An . On note P = A + (12) · A et Q′ = A − (12) · A. On montre
successivement que P ′ est symétrique, que Q′ est antisymétrique. En particulier, grâce au théorème de structure
des polynômes antisymétriques, il en résulte que Q′ = V Q où Q est symétrique. Comme 2 est inversible, puisque
A = 1

2P + 1
2QV , le résultat s’en trouve démontré.

Le groupe Sn est engendré par son sous-groupe An et par la transposition (12) — plus précisément, on a la
partition Sn = An ∪ (12)An. Si σ ∈ An, puisque An ◁ Sn, il existe τ ∈ An tel que σ(12) = (12)τ ; ainsi,
σ ·P ′ = σ ·A+(12)τ ·A = P ′ puisque A est invariant par σ et par τ . Par ailleurs, (12) ·P ′ = (12) ·A+A = P ′ :
on a montré que P ′ est symétrique. De même, σ ·Q′ = Q′ et (12)Q′ = −Q′, ce qui suffit à prouver que Q′ est
antisymétrique.
(iii) Soit s : A [X1, . . . , Xn, T ] → A [X1, . . . , Xn]

An la spécialisation P 7→ P (σ1, . . . , σn, V ). Sa surjectivité est
garantie par (i). Son noyau contient T 2 − δ par définition du discriminant. Inversement, soit P ∈ ker s. On
fait la division euclidienne de P par le polynôme unitaire T 2 − δ dans l’anneau A [X1, . . . , Xn] [T ] : soient
Q ∈ A [X1, . . . , Xn, T ] et R,S ∈ A [X1, . . . , Xn] tels que P =

(
T 2 − δ

)
Q + RT + S. En spécialisant via s, il

vient R (σ1, . . . , σn)V (X1, . . . , Xn) + R (σ1, . . . , σn) = 0. L’unicité du (ii) et l’indépendance algébrique des σk
entrâınent alors que R = S = 0. On a montré que le noyau de s est l’idéal engendré par T 2 − δ. On conclut
avec le premier théorème d’isomorphisme pour les anneaux.

A noter

(i) Dans Z/4Z[X,Y ], on a l’égalité 2σ1 + 2V = 2(X + Y ) + 2(Y −X) = 0 alors que 2(X + Y ) est symétrique
et non nul. L’unicité tombe en défaut sur cet anneau de caractéristique 4.

(ii) Si la caractéristique de A est nulle sans que 2 ne soit inversible, l’unicité subsiste.
En revanche, l’existence tombe en défaut. Par exemple, le polynôme A = X2Y + Y 2Z + Z2X est invariant
par le groupe A3. Sa décomposition sur Q s’écrit A = P + V Q où Q = 1

2 et où P = 1
2 (A+ (12)A) =
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1
2

(
X2Y + Y 2Z + Z2X +XY 2 + Y Z2 + ZX2

)
. Le polynôme A ∈ Z[X,Y, Z]A3 n’a pas de décomposition sous

la forme P + V Q où P,Q ∈ Z[X,Y, Z]S3 .

(iii) Sur un corps (ou plus généralement sur un anneau factoriel) de caractéristique différente de 2, les arguments
des preuves sont simplifiés par la factorialité de A [X1, . . . , Xn].

6.3 Séries formelles et formules de Newton

Définition (série formelle)
Soit A un anneau. Une série formelle à coefficents dans A est une suite (indexée par N) d’éléments de A. Si
(an)n∈N est une série formelle, on note

(an)n∈N =
∑
n≥0

anX
n.

Les an sont les coefficients de la série formelle
∑
anX

n. L’ensemble des séries formelles à coefficients dans A
est noté

A[[X]].

On définit sur l’ensemble des séries formelles deux lois de composition interne notées additivement et multiplica-
tivement par les formules suivantes, qui miment l’addition et la multiplication des développements à l’origine
des fonctions holomorphes (ou analytiques) : si A =

∑
anX

n et B =
∑
bnX

n, on définit

A+B =
∑
n≥0

(an + bn)X
n et AB =

∑
n≥0

( ∑
p+q=n

apbq

)
Xn

où l’addition et la multiplication utilisées dans ces formules sont celles de l’anneau A.
Exercice 61 Ces sommes sont bien définies : ces formules ont un sens.

Proposition (anneau des séries formelles)

Soit A un anneau (commutatif unitaire).

(i) L’addition et la multiplication ainsi définies confèrent à A[[X]] une structure d’anneau commutatif unitaire.
Son zéro est la série formelle, notée 0, dont tous les coefficients sont nuls. Son unité est la série formelle, notée
0, dont tous les coefficients sont nuls à l’exception du premier qui est l’unité de A.
(ii) Si A est intègre, alors A[[X]] est aussi intègre.

Preuve. Exercice.

A noter

(i) Les opérations dans l’anneau A[[X]] se comportent comme si la notation
∑

était une somme de série entière
convergente. Autrement dit, les règles de calcul dans A[[X]] sont celles des séries entières convergentes.

(ii) On vérifie immédiatement que l’anneau des polynômes A[X] est un sous-anneau de A[[X]].

Exercice 62 (Substitution dans une série formelle)
Soient A un anneau et Q ∈ A[[X]] une série formelle dont le terme constant est nul. Alors, l’application

A[[X]] 7−→ A[[X]]

A =
∑
n≥0

anX
n 7−→ A ◦Q =

∑
n≥0

anQ
n

est bien définie et est un homomorphisme d’anneaux. C’est la substitution de Q à l’indéterminée.

Exemple Dans Z[[X]], le polynôme 1−X est inversible et son inverse est

(1−X)−1 =
∑
n≥0

Xn.
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Proposition (inverser les séries formelles à valuation non nulle)

Soit A un anneau et Q ∈ A[[X]]. On suppose que le coefficient constant de Q est nul. Alors, 1−Q est inversible
dans A[[X]] et

(1−Q)
−1

=
1

1−Q
=
∑
n≥0

Qn.

Preuve. Une fois le sens de la série formelle
∑
n≥0Q

n assuré, il suffit de substituer Q à X dans la formule

(1−X)
(∑

n≥0X
n
)
= 1.

Corollaire (développement des fractions rationnelles en séries formelles)

Soient F un corps et F ∈ F(X). On suppose que 0 n’est pas un pôle de F ( i.e. on suppose que X ne divise pas le
dénominateur de F ). Alors, F “est” une série formelle dans le sens suivant : il existe une unique SF ∈ F[[X]]
telle que, pour tous N,D ∈ F[X],

F =
N

D
=⇒ DSF = N.

Preuve. Puisque 0 n’est pas un pôle de F , soient A,B ∈ F[X] tels que F = A
B et B(0) ̸= 0. Alors,

B = B(0)(1 − Q) où Q ∈ F[X] vérifie Q(0) = 0. Dans ces conditions, la série formelle B est inversible et son
inverse est B−1 = 1

B(0)

∑
n≥0Q

n. Alors, SF = AB−1 est l’unique série formelle qui convienne.

Notation Si n ∈ N∗ et si k ∈ N, dans Z [X1, . . . , Xn], on note Sk =
∑n
i=1X

k
i la ke somme de Newton. Si

0 ≤ k ≤ n, on note σk le ke polynôme symétrique élémentaire ; si k ≥ n+ 1, on note aussi σk = 0.

Proposition (formules de Newton)

Soient n un entier naturel non nul. Alors, pour tout k ∈ N, dans l’anneau Z [X1, . . . , Xn],∑
(p,q)∈N2

p+q=k

(−1)qσqSp+1 = (−1)k(k + 1)σk+1.

Preuve. Dans l’anneau de séries formelles Z [X1, . . . , Xn] [[T ]], soit

F =

n∏
k=1

(1− TXk) =
∑
ℓ≥0

(−1)ℓσℓ (X1, . . . , Xn)T
ℓ.

On calcule la dérivée logarithmique S = F ′/F ∈ Q (X1, . . . , Xn, T ) de F à partir de sa forme produit :

S =
F ′

F
=

n∑
k=1

−Xk

1− TXk
= −

n∑
k=1

Xk

∑
ℓ≥0

T ℓXℓ
k = −

∑
ℓ≥0

Sℓ+1T
ℓ.

Alors, les formules de l’énoncé sont les égalités terme à terme des coefficients de la série FS = F ′ : écrire∑
ℓ≥0

(−1)ℓσℓ (X1, . . . , Xn)T
ℓ

−∑
ℓ≥0

Sℓ+1T
ℓ

 =
∑
ℓ≥0

(−1)ℓ+1σℓ+1 (X1, . . . , Xn)T
ℓ,

développer le produit, identifier les coefficients de T k.
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A noter
Avec des pointillés, ces formules s’écrivent

S1 = σ1

S2 − σ1S1 = −2σ2
S3 − σ1S2 + σ2S1 = 3σ3

S4 − σ1S3 + σ2S2 − σ3S1 = −4σ4
...

Sn−1 − σ1Sn−2 + σ2Sn−3 − · · ·+ (−1)n−1σn−1S1 = (−1)n−1nσn

Sn − σ1Sn−1 + σ2Sn−2 − · · ·+ (−1)nσnS1 = 0

Sn+1 − σ1Sn + σ2Sn−1 − · · ·+ (−1)n+1σn+1S1 = 0

...

Elles fournissent un système triangulaire (infini) qui permet de calculer les sommes de Newton en fonction des
polynômes symétriques élémentaires. Ainsi, S2 = σ2

1−2σ2, S3 = σ3
1−3σ1σ2+3σ3, S4 = σ4

1−4σ2
1σ2+4σ1σ3+2σ2

2 ,
etc.

Exercice 63

(i) Calculer S3 = X3 + Y 3 et S4 = X4 + Y 4 en fonction de X + Y et XY dans Z[X,Y ].

(ii) Calculer S4 = X4 + Y 4 + Z4 et S5 = X5 + Y 5 + Z5 en fonction de X + Y + Z, XY +XZ + Y Z et XY Z
dans Z[X,Y, Z].

Exercice 64
Montrer que le déterminant du système linéaire, obtenu à partir des formules de Newton, dont les inconnues
sont les Sk, 1 ≤ k ≤ n et les paramètres les σk, 1 ≤ k ≤ n, a pour déterminant 1. Montrer que le déterminant
du système linéaire dont les inconnues sont les σk, 1 ≤ k ≤ n et les paramètres les Sk, 1 ≤ k ≤ n, a pour
déterminant n!.

Proposition (les sommes de Newton forment une base algébrique des polynômes symétriques)

Soient n un entier naturel non nul, F un corps de caractéristique nulle, et S1, . . . , Sn les n premières sommes
de Newton dans F [X1, . . . , Xn]. Alors,

F [X1, . . . , Xn]
Sn = F [S1, . . . , Sn]

et S1, . . . , Sn sont algébriquement indépendants.

Preuve. Grâce au théorème des polynômes symétriques, il suffit de montrer que F [S1, . . . , Sn] = F [σ1, . . . , σn].
Les formules de Newton et l’exercice précédent fournissent la clef de l’argumentation.

A noter

(i) S’assurer de bien comprendre à quel endroit l’hypothèse sur le corps intervient.

(ii) Plus précisément,

Z [S1, . . . , Sn] ⊊ Z [X1, . . . , Xn]
Sn = Z [σ1, . . . , σn] ⊊ Q [σ1, . . . , σn] = Q [S1, . . . , Sn] = Q [X1, . . . , Xn]

Sn .
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