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1 Pólya urn: first steps

Let R be a 2-dimensional square matrix having integral entries and U0 a nonzero 2-dimensional
(column) vector with nonnegative integral entries:

R =

(
a b
c d

)
, U0 =

(
α
β

)
.

The Pólya urn process (Un)n∈N with replacement matrix R and initial composition vector U0 is in an
imaging way defined as follows. An urn contains red and black balls. At time 0, it contains α red
balls and β black ones. A ball is drawn uniformly at random from the urn and its colour is checked.
If the drawn ball is red, it is replaced into the urn together with a red balls and b black ones; if the
drawn ball is black, it is replaced into the urn as well, together with c red balls and d black ones. One
get in this way a new composition vector U1. The random process (Un)n∈N is recursively defined by
iterating this mechanism.

In this lecture, the following assumptions on R and U0 are made:
(i) R est balanced, i.e. a+ b = c+ d ≥ 1 ;
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(ii) R is “tenable”, i.e.
(
b, c ≥ 0

)
and

(
a ≤ −1 =⇒ a|c and a|α

)
and

(
d ≤ −1 =⇒ d|b and d|β

)
.

The balance hypothesis guarantees that the same number of balls S = a+ b = c+ d ≥ 1 is added at
any step of time. Thanks to the tenability assumption, the process can never extinguish, which means
that if a or d is negative, one can always respectively subtract −a or −d balls from the urn.

• In more rigorous terms,

(Un)n∈N =

(
U

(1)
n

U
(2)
n

)
n∈N

is the N2 \ {0}-valued discrete time Markov chain defined by the transition conditional probabilities
P

(
Un+1 = Un +

(
a
b

) ∣∣∣Un) =
U

(1)
n

U
(1)
n + U

(2)
n

;

P

(
Un+1 = Un +

(
c
d

) ∣∣∣Un) =
U

(2)
n

U
(1)
n + U

(2)
n

.

(1)

The balance assumption implies that U
(1)
n +U

(2)
n = α+β+nS for any n: at any time n, the composition

of the urn is random but the total number of balls is deterministic.

• A complete definition of the Pólya urn process as a Markov chain is given by the familyµx
y



x
y

∈N2\{0}

of probability measures on N2 \ {0} defined by:

∀
(
x
y

)
∈ N2 \ {0}, µx

y

 =
x

x+ y
δx
y

+

a
b

 +
y

x+ y
δx
y

+

c
d

,

where δP denotes the Dirac measure at P . Notice that the tenability assumption guarantees that(
x
y

)
+

(
a
b

)
and

(
x
y

)
+

(
c
d

)
belong to N2 \ {0} as soon as

(
x
y

)
does.

[Generalisation to any finite number of colour, to random replacement matrices. In the present lecture,
we will restrict ourselves to non random replacement matrices.]

Notations (spectral decomposition of R)
Thanks to the balance assumption, S is an eigenvalue of tR. By elementary considerations à la
Perron-Frobenius, the second eigenvalue m := a−c = d−b of tR is less than or equal to S. We denote

σ = m/S ≤ 1
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(note that σ may be negative).
When (b, c) 6= (0, 0), let

v1 =
S

b+ c

(
c
b

)
and v2 =

S

b+ c

(
1
−1

)
.

The vectors v1 and v2 are eigenvectors of tR, respectively associated with the eigenvalues S and m.
The dual basis (u1, u2) of linear eigenforms is given by the formulae

u1(x, y) =
1

S
(x+ y) and u2(x, y) =

1

S
(bx− cy).

These vectors and linear forms will be useful later on in the lecture.

Note that in dimension larger than 3, the matrix R is not necessarily diagonalizable, even on C. This
fact leads to some intricacy in the statement of the results but in a first approach, one can assume
that R is diagonalizable.

2 The approach in analytic combinatorics

The approach by analytic combinatorics is due to Philippe Flajolet and his co-authors Philippe Dumas,
Joaquim Gabarró, Helmut Pekari and Vincent Puyhaubert in the 2000’s. There are two founding
articles, namely [4] et [3].

The very first idea consists in coding the urn composition by a sequence (Wn)n∈N of finite words
written in the 2-letter alphabet {r, b} (r for red, b for black). The initial composition is coded by

W0 = rr . . . rbb . . . b = rαbβ.

Drawing a ball in the urn amounts to choosing a letter in the word uniformly at random. When the
chosen letter is an r, it is replaced in the world by the subword ra+1bb; when the chosen letter is a b,
it is replaced by rcbd+1. Thus, the successive drawings give rise to a sequence of random words

W0,W1,W2 . . .

Of course, at any time n, the composition vector Un can be recovered by counting the number of r’s
and the number of b’s in the word Wn.

Definition 1 (Histories of the process)

When n is a natural number, when

(
u0

v0

)
,

(
u
v

)
∈ N2 \ {0}, a history of length n leading from

(
u0

v0

)
to

(
u
v

)
is a sequence of words W0 = ru0bv0 ,W1,W2, . . . ,Wn produced in that way, for which Wn

contains exactly u letters r et v letters b.

Of course, with this coding, because of the balance hypothesis, the wordWn always contains u0+v0+nS
letters, whatever its history is. The key object of Flajolet’s method is the number of these histories:
denote by
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Hn

(
u0 u
v0 v

)

the number of histories of length n leading from

(
u0

v0

)
to

(
u
v

)
.

Exercise 1. When R =

(
0 3
2 1

)
, code and count all histories of length 2 leading from

(
2
0

)
to

(
4
4

)
.

[ One possible solution: start from W0 = r2. One can draw a tree of all possibilities: W1 ∈ {rb3r, r2b3},
then W2 ∈ {rb6r, r3b4r, rbr2b3r, rb2r2b2r, rb3rb3} or W2 ∈ {rb3rb3, r2b6, r4b4, r2br2b3, r2b2r2b2}. Amongst

the ten histories of length 2, six of them lead to

(
4
4

)
and four lead to

(
2
6

)
: starting from two red balls, the

probability that the urn contains four red balls and four black ones after two drawings is 3/5.

Beware: in the example, the configuration rb3rb3 is reached by two different histories. We count histories, not

the different word that are potentially obtained. ]

Exercise 2 (this urn is Pólya’s original one in his article published in 1930). Whenever R = SI2,
compute all numbers Hn, n ≥ 0.
[ This is elementary enumerative combinatorics. Make the picture of a path in N2 and count the histories that
follow each of these paths. For any (p, q) ∈ N2 such that p+ q = n, one gets

Hn

(
α α+ pS
β β + qS

)
=

(
n
p

)
α
(
α+ S

)
. . .
(
α+ (p− 1)S

)
β
(
β + S

)
. . .
(
β + (q − 1)S

)
= n!Sn

(
α
S + p− 1

p

)(
β
S + q − 1

q

)
;

all others Hn vanish. ]

Exercise 3. For any urn, if N = α+ β, show that the total number of histories of length n starting

from

(
α
β

)
equals N

(
N + S

)(
N + 2S

)
. . .
(
N + (n− 1)S

)
= n!Sn

(
N
S + n− 1

n

)
.

Generating series (or functions) are central tools in analytic combinatorics. In the case of 2-colour
urns, the relevant one is the trivariate generating series of histories: the variable x counts the final
number of red balls, the variable y counts the final number of black ones while the variable z counts
the length of the history. Thus, the replacement matrix R being given, denote

H

(
x, y, z

∣∣∣∣ u0

v0

)
=

∑
u,v,n∈N

Hn

(
u0 u
v0 v

)
xuyv

zn

n!
.

Exercise 4. For any urn (i.e. for any R), H

(
1, 1, z

∣∣∣∣ u0

v0

)
=

(
1

1− Sz

)u0+v0
S

.

Exercise 5. For the original urn (R = SI2),

H

(
x, y, z

∣∣∣∣ u0

v0

)
=

xu0yv0

(1− SzxS)
u0
S (1− SzyS)

v0
S

.
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[ Computations on multivariate power series, based on the formula 1
(1−X)N

=
∑
n≥0

(
N + n− 1

n

)
Xn. ]

[ Commentary on papers by P. Flajolet et al.: pointing an object amounts to make a partial derivative
on the generating series; proceeding to a replacement amounts to multiply the series by some appro-
priate monomial. Such considerations lead to the following “Basic isomorphism”, stated and proven
in [3]. ]

Theorem 1 (Flajolet, Dumas, Puyhaubert, 2006)
Let x and y be complex numberes such that xy 6= 0. Let X(t) and Y (t) be the solutions of the Cauchy
Problem (formal version or analytic version)

dX

dt
= Xa+1Y b

dY

dt
= XcY d+1

X(0) = x, Y (0) = y.

(2)

Then, for any initial composition (u0, v0), for any z in some small enough neighbour of the origin
(analytic version),

H

(
x, y, z

∣∣∣∣ u0

v0

)
= X(z)u0Y (z)v0 .

Example 1. Back to the original Pólya urn for which R = SI2: the differential system writes X ′ =
XS+1, Y ′ = Y S+1and can be solved. The solution of the Cauchy Problem is X(t) = x(1− StxS)−1/S ,
Y (t) = y(1− StyS)−1/S . Theorem 1 provides a second proof of exercice 5.

Proof of Theorem 1. Consider the following differential operator on 2-variable functions:

D = xa+1yb
∂

∂x
+ xcyd+1 ∂

∂y
.

The action of D on monomials is related to urn histories via the formula

D (xu0yv0) = u0x
a+u0yb+v0 + v0x

c+u0yd+v0

= H1

(
u0 u0 + a
v0 v0 + b

)
xa+u0yb+v0 +H1

(
u0 u0 + c
v0 v0 + d

)
xc+u0yd+v0

which can also be written

D (xu0yv0) =
∑
u,v≥0

H1

(
u0 u
v0 v

)
xuyv

where only two terms of the infinite sum are nonzero. This implies by induction that for any n ∈ N,

Dn (xu0yv0) =
∑
u,v≥0

Hn

(
u0 u
v0 v

)
xuyv. (3)
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[Notice that the Markov property of the urn process is expressed in this induction.] Besides, if (X,Y )
is a solution of the differential system X ′ = Xa+1Y b, Y ′ = XcY d+1, then

d

dt
(X(t)u0Y (t)v0) = u0X(t)a+u0Y (t)b+v0 + v0X(t)c+u0Y (t)d+v0

= D (xu0yv0)∣∣∣∣ x = X(t)
y = Y (t)

which extends to an analogous formula for the n-th derivative. Gathering these results leads succes-
sively to

H

(
X(t), Y (t), z

∣∣∣∣ u0

v0

)
=
∑
n≥0

Dn (xu0yv0)∣∣∣∣ x = X(t)
y = Y (t)

zn

n!

=
∑
n≥0

dn

dtn
(X(t)u0Y (t)v0)

zn

n!
.

Thanks to Taylor Formula at the origin (analytic or formal version), one concludes by

H

(
X(t), Y (t), z

∣∣∣∣ u0

v0

)
= X(t+ z)u0Y (t+ z)v0 .

The final result follows taking the value at the origin (t = 0).

When the differential system can be solved, applying Theorem 1 leads to a close form of the H
function. When this is possible, one gets very accurate probabilistic consequences on the distribution
of the composition of the urn at finite time, or on the asymptotics of the process as well. We give
hereunder a couple of examples, essentially drawn from [4] and [3].

Remark. 1- One gets immediately from Theorem 1 that

H

(
x, y, z

∣∣∣∣ u0

v0

)
= H

(
x, y, z

∣∣∣∣ 1
0

)u0
H

(
x, y, z

∣∣∣∣ 0
1

)v0
.

This formula evokes some (combinatoric) convolution property. It has to be related to the branching
property of the continuous time corresponding urn process, that leads to a similar equation on the
Fourier transforms of large urns limit laws. See [2]. A direct link between both properties remains
an open question.

Example 2. Take the urn having

(
0 1
1 0

)
as replacement matrix.. [ Friedmann’s urn. Talk about

the propaganda campaign used by P. Flajolet. ] The Cauchy Problem writes
X ′ = XY
Y ′ = XY
X(0) = x, Y (0) = y

and can be easily solved. One finds

H

(
x, y, z

∣∣∣∣ u0

v0

)
=

(
x(x− y)

x− yez(x−y)

)u0 ( y(y − x)

y − xez(y−x)

)v0
.
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For example, when one starts with a sole red ball, the probability generating function of the number
of red balls is

E
(
xU

(1)
n

)
=

[
zn

n!

]∑
n,k

P(U (1)
n = k)xk

zn

n!
= [zn]H

(
x, 1, z

∣∣∣∣ 1
0

)
,

since the total number of histories of length n starting from one red ball is n! (see Exercise 3). Using
the explicit expression of H, one gets

E
(
xU

(1)
n

)
= [zn]

x(x− 1)

x− ez(x−1)
.

This function of the z-variable has a simple pôle at z = log x
x−1 as unique singularity. Since this function

of the x-variable is analytic at 1, singularity analysis shows that one can apply Hwang’s Quasi-power

Theorem: the mean and the variance of U
(1)
n are both asymptotically proportional to n, and the

number of red balls at time n (i.e. the random variable U
(1)
n ) satisfies a Law of Large Numbers and a

Central Limit Theorem as well (Gaussian distribution).

Exemple 3. This example is the central one in [4]. It deals with the urn process that models the leaves

of a 2-3–tree, which is an important search tree algorithm. Its replacement matrix is

(
−2 3
4 −3

)
.

Here, the Cauchy Problem writes 
X ′ = X−1Y 3

Y ′ = X4Y −2

X(0) = x, Y (0) = y.
(4)

Pose Z = X2; one gets successively Z ′ = 2Y 3 and Z ′′ = 6Z2. Multiply first the latter equation by Z ′

then integrate. This leads to show that Z is necessarily a solution of the Cauchy Problem
Z ′2 = 4Z3 − g3

Z(0) = x2

Z ′(0) = 2y3
(5)

where g3 = 4(x6 − y6). This equation is solved using the famous and beautiful theory of elliptic
functions. Quickly said, let ℘(z) = ℘(z; 0,−4) be the elliptic Weiestrass function, associated to the
(so-called) invariants g2 = 0 et g3 = −4: if one denotes

ω =
1

2
B

(
1

6
,
1

3

)
(Euler Beta function) and if Λ denotes the hexagonal lattice

Λ = ω
(
eiπ/6Z + e−iπ/6Z

)
,

then ℘ is the meromorphic function of the complex plane defined on the complementary of the lattice
Λ by

℘(z) =
1

z2
+

∑
λ∈Λ\(0)

[
1

(z + λ)2 −
1

λ2

]
.
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The function ℘ has a double pôle at any point of Λ and is Λ-periodic (such complex functions are called
doubly periodic). Modulo Λ, the zeroes of ℘ are exactly ω/3 and 2ω/3. The theory of holomorphic
functions shows that ℘ is a solution of (5). There is another way to describe this famous ℘: it is the
inverse of the elliptic integral that underpins Equation (5). More precisely, if z and w are complex
numbers one gets the equivalence

℘(z) = w ⇐⇒ z =

∫
[w,∞]

dζ

2
√
ζ3 + 1

,

where the symbol [w,∞] denotes any half-line having w as origin, and that do not contain any root
of the polynomial ζ3 + 1 (the square root denotes here the determination defined by the split plane
associated to this half-line). Note for example that the Weierstraß functions, even if they have been
defined in the 1860’s, are objects of recent interest because they give parametrizations of smooth plane
cubics that are central in modern cryptography; here, the pair (℘, ℘′) is a parametrization of the curve
Y 2 = 4X3 + 4.

Thus, the solutions of the differential system (4) can be expressed by means of elliptic functions on
the hexagonal lattice. Take for instance an urn containing initially 2 red balls and no black ones. Let
pn be the probability that all balls are black at time n. In terms of H functions, this number writes

pn =
1

n+ 1
[zn]H

(
0, 1, z

∣∣∣∣ 2
0

)
.

By solving the Cauchy Problem, one shows that

H

(
0, 1, z

∣∣∣∣ 2
0

)
= ℘

(
z − ω

3

)
.

One concludes by means of singularity analysis: check the pôles of ℘ and give an asymptotics of pn as
powers of 3/w ∼ 0, 7132.

Remarks. 1- The monomial differential system (2) has a simple first integral: if X and Y are
solutions, then 1/Xm− 1/Y m is a (locally) constant function. Writing by this means Y as a function
of X and reporting in the system, one gets the inverse abelian integrals described above. All “elliptic
urns”, i.e. all urns for which these abelian integrals are related to curves of genus 1 (elliptic curves)
are classified in [4].

2- In the case of more than 3 colours, Theorem 1 remains valid. Nevertheless, the efficiency and the
preciseness of the beautiful analytic method for urns is darkened by a theoretical obstruction: the
monomial differential system is, in general, not integrable in dimension more than 3 (this is a difficult
result of differential algebra and algebraic geometry, see final comments and note 11 in [3]).

3 The probabilistic approach

We first adopt two experimental approaches, where the effect of the famous phase transition on urns
appears. Then, the results on urns asymptotics are stated. Finally, the methods of proving these
asymptotics are evoked.
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3.1 Introduction: an experimental computational approach

3.1.1 Distributions

As a first approach, for any urn, consider the probability generating function of the number of (say)

red balls at time n, starting from the initial composition

(
u0

v0

)
:

pn

(
x

∣∣∣∣ u0

v0

)
:=
∑
u≥0

P(u0,v0)

(
U (1)
n = u

)
xu = E(u0,v0)

(
xU

(1)
n

)
.

Since the total number af balls at time n is deterministic, this probability generating function describes
the whole distribution of the urn composition at time n. This probability generating function can be
expressed by means of H functions: denote by

Hn

(
x, y

∣∣∣∣ u0

v0

)
:=

∑
u,v≥0

Hn

(
u0 u
v0 v

)
xuyv = n! [zn]H

(
x, y, z

∣∣∣∣ u0

v0

)

the generating series (it is a 2-variable polynomial) of histories of length n starting from

(
u0

v0

)
. Then,

Hn

(
1, 1

∣∣∣∣ u0

v0

)
is the total number of histories of length n starting from

(
u0

v0

)
(see Exercise 3) and

pn

(
x

∣∣∣∣ u0

v0

)
=

Hn

(
x, 1

∣∣∣∣ u0

v0

)
Hn

(
1, 1

∣∣∣∣ u0

v0

) .

Thus, it suffices to compute Hn

(
x, y

∣∣∣∣ u0

v0

)
, or even Hn

(
x, 1

∣∣∣∣ u0

v0

)
to get pn. But, as shown in the

proof of Theorem 1, the bivariate function Hn

(
x, y

∣∣∣∣ u0

v0

)
satisfies Equation (3), namely

Hn

(
x, y

∣∣∣∣ u0

v0

)
= Dn (xu0yv0) .

As a matter of consequence, by means of computer algebra, starting from the monomial xu0yv0 , it
suffices to make an iteration of the operator D to get a symbolic expression of the entire function

Hn

(
x, y

∣∣∣∣ u0

v0

)
. The probability generating function pn is then extracted by substitutions (y = 1

and x = 1). By this means, the distribution of red balls at given times can be graphically represented.
This is done below for three particular urns and initial compositions.

3.1.2 Simulations of trajectories

Another approach consists in simulating the random successive compositions of an urn. One can by this
means have a representation of trajectories of the composition vector, namely {(n,Un) , n = 0, 1, 2 . . . }
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for different random drawings. Taking only the first coordinate of Un leads to trajectories of the number
of red balls, namely {(

n,U (1)
n

)
, n = 0, 1, 2 . . .

}
.

This is done below for three particular urns and initial compositions.

3.1.3 Three urns

Consider the urn processes having respectively

I2 =

(
1 0
0 1

)
, R1 =

(
1 12
11 2

)
and R2 =

(
12 1
2 11

)

as matrix transitions. The drawings presented hereunder are made taking respectively

(
2
5

)
,

(
1
0

)
and

(
1
0

)
as initial composition. All graphics are different representations of the number of red balls

contained in the urn.

1- Very first histograms

Any picture is made for a given number n of drawings in the urn. On the x-axis, the number of red
balls in the urn after n drawings. On the y-axis, the number of histories of length n starting from the
initial composition. Points at integer abscissae are related by line segments.

n = 1 n = 2 n = 3 n = 10

Original Pólya urn I2 after n drawings with initial composition (2, 5):
number of histories with respect to the number of red balls.
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n = 1 n = 2 n = 3 n = 10

Urn R1 after n drawings with initial composition (1, 0):
number of histories with respect to the number of red balls.

n = 1 n = 2 n = 3 n = 10

Urn R2 after n drawings with initial composition (1, 0):
number of histories with respect to the number of red balls.

2- Very first trajectories

For a given urn, we draw three different trajectories, corresponding to three random sequences of
drawings in the urn. On the x-axis, the number of drawings (discrete time); the maximal number of
drawings is successively N = 100, 1000, 50000. On the y-axis, the number of red balls in the urn.
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N = 100 N = 1000 N = 50000

Red balls in three sequences of N drawings in an original Pólya urn I2, initial composition (2, 5)

N = 100 N = 1000 N = 50000

Red balls in three sequences of N drawings in an urn R1, initial composition (1, 0)

N = 100 N = 1000 N = 50000

Red balls in three sequences of N drawings in an urn R2, initial composition (1, 0)
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3.2 Asymptotics of the composition vector, phase transition, figures

The composition vector Un of a Pólya urn process has different asymptotics régimes when n tends
to infinity, depending on the spectral decomposition of the replacement matrix R. In this section,
we state, comment and illustrate these asymptotic results. All of them can be extended in higher
dimension (any finite number of colours). Methods of proofs are introduced in Section 3.3.

Take a two-colour Pólya urn with replacement matrix R =

(
a b
c d

)
and initial composition vector

U0 =

(
α
β

)
. We adopt the notations of Section 1, especially the balance S = a+ b = c+ d, the second

eigenvalue m = a− c = d− b, the tR-eigenvectors v1, v2 and, above all, the ratio

σ = m/S.

The original Pólya urn holds a particular place; its asymptotics is described in Theorem 2. The famous
phase transition occurs at σ = 1/2. When σ ≤ 1/2, the urn is said small and its composition vector
satisfies a central limit theorem as stated in Theorem 3. When σ ∈]1

2 , 1[, the urn is said large and the
centered composition vector admits, after a suitable normalisation, an almost sure random limit; this
result is made precise in Theorem 4.

Theorem 2 (Pólya original urn)
Suppose that the urn is Pólya’s original one, i.e. that R = I2. Then, as n tends to infinity,

Un
Sn
−→
n→∞

D

almost surely and in any Lp, p ≥ 1, where D is a Dirichlet distributed 2-dimensional random vector

with parameter

(
α

S
,
β

S

)
.

If u and v are two positive real numbers, a 2-dimensional Dirichlet distribution with parameter (u, v)
is the measure on the simplex Σ =

{
(x, y) ∈ [0, 1]2, x+ y = 1

}
that admits the function

(x, y) 7→ Γ(u+ v)

Γ(u)Γ(v)
xu−1yv−1

as density with regard to Lebesgue measure on Σ. In other words, if D is a Dirichlet distributed
2-dimensional random vector with parameter (u, v), then for any continuous function f on Σ,

E (f(D)) =
Γ(u+ v)

Γ(u)Γ(v)

∫ 1

0
f(x, 1− x)xu−1 (1− x)v−1 dx.

In particular, if D = (X,Y ), then the marginals X and Y are (mutually dependent) Beta distributed
random variables, X having parameter (u, v) and Y having parameter (v, u).

Firstly, the convergence is almost sure, which means that, with probability 1, a sequence of random
drawings leads to the convergence of the vector Un/Sn to some vector in the simplex Σ. Secondly,
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the limit D is random, which means that two different sequences of random drawings converge with
probability 1 to two different vectors of Σ.
This almost sure random limit can be visualised on the above simulations: any trajectory gives rise
to a (trembled) line, but the three slopes are different. We give hereunder new figures, where three
normalised trajectories are represented, showing three different limits: on the x-axis, the number n of

drawings up to N = 100, 1000 or 50000. On the y-axis, the normalised number of red balls 1
nU

(1)
n .

N = 100 N = 1000 N = 50000
1
nU

(1)
n in three sequences of N drawings in an original Pólya urn I2, initial composition (2, 5)

One can also visualise the Beta distributed limit of the normalised number of red balls. Hereunder,
the figure on the left represent the (exact) distribution of the normalised number of red balls in the

urn after n = 200 drawings. On the x-axis, 1
n

(
U

(1)
n −EU

(1)
n

)
. On the y-axis, the probability; it has

been computed from the probability generating function pn introduced above. The figure on the right
represents the graph of the density of the centered Beta distribution with parameter (2, 5), namely
the function x 7→ 1

B(2,5) (x− µ)1 (1− x+ µ)4 where µ = B(3, 5)/B(2, 5) = 2/7 is the expectation.

n = 200

Normalised distribution of the number of red balls

in an original Pólya urn I2, initial composition (2, 5)

Density of a centered

Beta (2, 5) distribution
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Theorem 3 (Small urns)
Suppose that the urn is small, which means that σ < 1/2. Then as n tends to infinity,

(i)
Un
n

converges to v1, almost surely and in any Lp, p ≥ 1;

(ii) assume further that R is not triangular, i.e. that bc 6= 0. Then,
Un − nv1√

n
converges in distribution

to a centered gaussian vector with covariance matrix

1

1− 2σ

bcm2

(b+ c)2

(
1 −1
−1 1

)
.

[ When σ = 1/2, one says also that the urn is small. In this case, assertion (i) holds as well whereas, when R

is not triangular, assertion (ii) must be replaced by: Un−nv1√
n logn

converges in distribution to a centered Gaussian

vector with covariance matrix 1
4bc

(
1 −1
−1 1

)
. ]

Here, the convergence of Un/n is almost sure again, but the limit is deterministic: with probability 1,
a sequence of random drawings leads to the convergence of the vector Un/n, but the limit is now
always the same one (namely, v1). This phenomenon can be visualised on the trajectories for the
urn R1: the three asymptotic slopes are identical. When the normalised trajectories are drawn, one
gets the following pictures. Here again, on the x-axis, the number n of drawings up to N = 100, 1000

or 50000; on the y-axis, the normalised number of red balls 1
nU

(1)
n .

N = 100 N = 1000 N = 50000

1
nU

(1)
n in three sequences of N drawings in a small urn R1, initial composition (1, 0)

The convergence in distribution stated in (ii) is of a radically different nature. It means that the
distribution at finite time n converges to some given distribution when n tends to infinity. The limit
distribution is here normal. As before, for the R1-urn, with the help of the probability generating

function, the (exact) distribution of the number 1√
n

(
U

(1)
n −EU

(1)
n

)
is drawn on the leftside figure for

n = 600. On the right, the graph of the density of the centered normal distribution with variance
1

1−2σ
bcm2

(b+c)2
= 5200

529 .
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n = 600

Normalised distribution of the number of red balls

in an small urn R1, initial composition (1, 0)

Density of a centered normal

distribution with variance 5200
529

The difference with almost sure convergence can be visualised on the following trajectory graphs.
Even if the distribution at time n converges to a normal distribution, for a given sequence of random

drawings, the number 1√
n

(
U

(1)
n −EU

(1)
n

)
does not converge to a real number. The trajectory is

erratic and looks like a brownian motion. On the figure hereunder, two different trajectories of the
(completely) normalised number of red balls in a R1-urn. On the x-axis, the number n of drawings;

on the y-axis, 1√
n

(
U

(1)
n − nv(1)

1

)
, where v

(1)
1 is v1 first coordinate.

N = 100 N = 1000 N = 50000

1√
n

(
U

(1)
n − nv(1)

1

)
in two sequences of N drawings in a small urn R1, initial composition (1, 0)

Theorem 4 (Large urns)
Suppose that the urn is large, which means that 1/2 < σ < 1. Then as n tends to infinity,

(i)
Un
n

converges to v1, almost surely and in any Lp, p ≥ 1;
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(ii)
Un − nv1

nσ
converges almost surely and in any Lp, p ≥ 1 to Wv2 where v2 is the (deterministic)

eigenvector of tR defined in Section 1 and W is a real-valued random variable which admits a density
and is supported by the whole real line. Besides, with the notations of Section 1,

EW =
Γ
(
α+β
S

)
Γ
(
α+β
S + σ

) bα− cβ
S

.

Assertion (i) is the same one as in the case of small urns. We make the same simulations as before for
the urn R2. The convergence to the (same) limit is visibly much slower, due to the second order term
which grows like nσ with σ ' 0.77 (instead of

√
n for small urns). This second order term was already

seeable on the trajectories of the number of red balls: the three slopes do not look not as similar as in
the case of the small urn R1 (but they really tend to a same one as N tends to infinity). Hereunder,
again, on the x-axis, the number n of drawings up to N = 100, 1000 or 50000; on the y-axis, the

normalised number of red balls 1
nU

(1)
n .

N = 100 N = 1000 N = 50000

1
nU

(1)
n in three sequences of N drawings in a large urn R2, initial composition (1, 0)

Almost sure convergence implies convergence in distribution. In particular, by formal computation
of the probability generating function of red balls, the shape of W ’s density can be approached as
already done (Beta function for the original Pólya urn, Gauss function for a small urn). The Fourier
transform of W can be expressed in terms of the inverse of some suitable abelian integral (see [2]).
Despite of this, very few is known about its density. The figure hereunder shows the graph of the

density of W −EW , approached by the (exact) distribution of 1
nσ

(
U

(1)
n −EU

(1)
n

)
for n = 40, 120 and

800.
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n = 40 n = 120 n = 800

Normalised distribution of the number of red balls

in a large urn R2 after n drawings, initial composition (1, 0)

A remarkable fact: the distribution W depends on the initial composition of the urn, which does not
happen for small urns. The graphs hereunder illustrate this property, representing W −EW ’s density
for the large urn R2 starting with respectively (1, 0), (1, 1) and (2, 1) as initial composition vector.

(α, β) = (1, 0) (α, β) = (1, 1) (α, β) = (2, 1)

Normalised distribution of the number of red balls in a large urn R2

after 500 drawings, initial composition (α, β)

The last illustration concerns the second term order which has a random asymptotics. Two normalised
trajectories of the number of red balls in an R2-urn up to time N = 100, 1000 and 50000 are plot-

ted. The convergence of 1
nσ

(
U

(1)
n − nv(1)

1

)
is here almost sure: for (almost) any sequence of random

drawings in the large urn, this random variable converges to a (random) limit. The situation is very
different from the small urn case, where a given trajectory do not give rise to the convergence of the
second order normalised number of red balls. Here again, on the x-axis, the number n of drawings up

to N ; on the y-axis, the second order normalised number of red balls 1
nσ

(
U

(1)
n − nv(1)

1

)
. Here again,

v
(1)
1 denotes v1 first coordinate
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N = 100 N = 1000 N = 50000

1
nσ

(
U

(1)
n − nv(1)

1

)
in three sequences of N drawings in a large urn R2, initial composition (1, 0)

3.3 Hint of proof

All the proofs of these asymptotic results rely on martingale theory.
Historically, the first approach was made in the 70’s by Athreya and Karlin who considered the
composition vector process of an urn as a multitype branching process. They first embed the urn
process into continuous time and make its study as a continuous-time branching process [1]. In
his seminal article [5], Janson adapts the method in a complete study of an urn process under an
irreducibility assumption. A direct discrete time approach based on moments is made in [6]. The
arguments presented hereunder rely essentially on this latter approach.

The vector-valued Markov process (Un)n∈N is defined by the probability transitions (1) and the initial

composition vector U0 =

(
α
β

)
. In particular, if f : R2 → V is any function that takes its value in any

real vector space V , the conditional expectation of Un+1 writes

E
(
f (Un+1)

∣∣∣Un) =
U

(1)
n

nS + α+ β
f

(
Un +

(
a
b

))
+

U
(2)
n

nS + α+ β
f

(
Un +

(
c
d

))
.

Thanks to the deterministic relation U
(1)
n +U

(2)
n = nS+α+β, this formula can be written the following

way:

E
(
f (Un+1)

∣∣∣Un) =

(
Id +

Φ

nS + α+ β

)
(f) (Un) (6)

where Φ denotes the operator defined, for any function f as above and any vector v =

(
v(1)

v(2)

)
∈ R2,

by

Φ (f) (v) = v(1)

[
f

(
v +

(
a
b

))
− f (v)

]
+ v(2)

[
f

(
v +

(
c
d

))
− f (v)

]
. (7)

A first consequence is the expectation of f (Un), obtained by recursion from Formula (6): if f : R2 → V
is any function,

Ef (Un) = γn,α+β (Φ) (f) (U0) (8)
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where γn,τ is the real polynomial defined by

γn,τ (X) =
n−1∏
k=0

(
1 +

X

kS + τ

)
(τ is a non zero real number; if n = 0, this empty product equals 1). Notice that, thanks to Stirling
Formula, when z is any complex number, one gets the asymptotics

γn,τ (z) =
Γ
(
τ
S

)
Γ
(
τ+z
S

)n z
S

(
1 +O

(
1

n

))
(9)

where Γ denotes Euler Gamma function. Formulae (6) and (8) are basic tools for the present proof.
When f 6= 0 is an eigenvector of Φ related to the eigenvalue λ, i.e. when Φ (f) = λf , then
γn,τ (Φ) (f)(v) = γn,τ (λ) × f(v) so that Formula (9) gives immediately the asymptotics of Ef (Un)
when n tends to infinity. With this elementary remark, one can evaluate the asymptotic joint moments
of Un’s coordinates, leading to the proof of Theorem 4. Theorem 2 can also be proven with such tools.
Classically, the proof of the small irreducible case (Theorem 3) is made by embedding the process into
continuous time, and coming back to discrete time using some suitable random stopping-time. See [5]
for a complete proof.

Exercise 6.
6.1- (Linear functions)
Show that if V is a real vector space and if f : R2 → V is linear, then

Φ(f) = f ◦A

where A : R2 → R2 is defined by A(v) = A

(
v(1)

v(2)

)
:= tR

(
v(1)

v(2)

)
=

(
a c
b d

)(
v(1)

v(2)

)
.

6.2- (Vector-valued martingale)

Denote τ := α + β. Show that the process
(
γn,τ

(
tR
)−1

(Un)
)
n

is a martingale (with regard to the

natural filtration) as soon as it is defined, i.e. as soon as all matrices I2 + 1
kS+τR, k ∈ N are invertible.

Show that this martingale is not defined if, and only if m ≤ −1 and S divides m+ α+ β.

[Apply 6.1- to f = Id. This leads to E
(
Un+1

∣∣Un) =
(
I2 + 1

nS+τA
)

(Un). This implies all the answers, because

A is diagonalizable, with eigenvalues S and m. For the martingale assertion, one can also refer to Brigitte

Chauvin’s course Random trees and probability, Proposition 3.7, where a similar argument is given.]

6.3- (Expectation)
Let u1 and u2 be the eigenforms defined in Section 1. Verify (or remember!) that u1 ◦ A = Su1 and
u2 ◦A = mu2. Show that for any n ∈ N,

Eu1 (Un) = n+
τ

S

and, when n tends to infinity,

Eu2 (Un) =
Γ
(
τ
S

)
Γ
(
τ
S + σ

) bα− cβ
S

nσ
(

1 +O

(
1

n

))
.
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When R 6= SI2, using that v = u1(v)v1 + u2(v)v2 for any vector v ∈ R2, show that, when n tends to
infinity,

EUn ∼ nv1

[An induction using 6.1- leads to Eu1 (Un) = γn,τ (S) × u1 (U0) = nS+τ
τ × τ

S . For u2, apply Formula (9) to

Eu2 (Un) = γn,τ (m) × u2 (U0) with a O-remainder. The third assertion is obtained by addition of asymptotic

developments.]

6.4- (Real-valued projected martingales)
Show that (

u1 (Un)

nS + τ

)
n

is an almost surely bounded (thus convergent) martingale and compute its expectation. Show that(
u2 (Un)

γn,τ (m)

)
n

is a martingale as well, as soon as m ≥ 0 or m+ τ is not a multiple of S.

[Using 6.1- again, one gets E
(
u1 (Un+1)

∣∣Un) =
(

1 + S
nS+τ

)
× u1 (Un), so that E

(
u1(Un+1)
(n+1)S+τ

∣∣Un) = u1(Un)
nS+τ ,

proving the martingale property. Same argument from E
(
u2 (Un+1)

∣∣Un) =
(

1 + m
nS+τ

)
× u2 (Un). ]

6.5- (Second moments)
Denote by P and Q the 2-variable polynomials defined by

P (x, y) = u1(x, y)

(
u1(x, y) + 1

)
and Q(x, y) =

(
u1(x, y) + σ

)
u2(x, y).

Show that Φ(P ) = 2SP and Φ(Q) = (S +m)Q and prove the asymptotics when n tends to infinity

EP (Un) = n2

(
1 +O

(
1

n

))
and

EQ (Un) =
Γ
(
τ
S

)
Γ
(
τ
S + σ

) bα− cβ
S

n1+σ

(
1 +O

(
1

n

))
(if one feels depressed, one can just show that Q (Un) ∈ O

(
n1+σ

)
, :-)).

Suppose that σ 6= 1/2 and denote

R = u2
2 −

bcσ2

1− 2σ
u1 + (b− c)σu2.

Using (7), show that, in this case, Φ (R) = 2mR and that, when n tends to infinity,

ER (Un) =
Γ
(
τ
S

)
Γ
(
τ
S + 2σ

)R (α, β)n2σ

(
1 +O

(
1

n

))
.
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Show that (1, u1, u2, P,Q,R) is a basis of the vector space R2[x, y] of polynomials of degree less than
or equal to 2. Write x2, xy and y2 in this basis and compute the asymptotics of the co-moment matrix
E
[
Un

tUn
]

and of the covariance matrix E
[
(Un −EUn) t (Un −EUn)

]
(one has to discuss whether

σ < 1/2 or σ > 1/2).

Check what happens when σ = 1/2 and do the same job using T = u2
2 + 2b−m

2 u2 instead of R.

[One gets Φ(P ), Φ(Q) and Φ(R) by simple computation. Since Φ(P ) = 2SP , EP (Un) = γn,τ (2S)×P (U0) and

the required asymptotics for EP (Un) is obtained thanks to Formula (9). Idem for EQ (Un) and ER (Un). The

remainder of the exercise is completely left to the reader.]

6.6- (For large urns, the second projected martingale is square-bounded)
Suppose that σ > 1/2. Expressing u2

2 as a function of R, u1 and u2, show that the martingale(
u2(Un)
γn,τ (m)

)
n

is bounded in L2, thus convergent.

[u22 = R+ bcσ2

1−2σu1 − (b− c)σu2, so that Eu22 (Un) = c1n
2σ (1 +O(1/n)) + c2n+ c3n

σ (1 +O(1/n)) where c1, c2
and c3 are constants. Since σ > 1/2, the principal term is the one in n2σ, proving that the martingale is square

bounded (use Formula (9) again to get the asymptotics of γn,τ (m)2). ]

Exercise 7 (triangular urn).

Assume that b = 0, so that R =

(
S 0

S −m m

)
. Assume also that the initial number of black balls is

non zero, i.e. that β 6= 0 (and check that β = 0 leads to a degenerate process). Let as above u1 be

the linear form u1(x, y) =
x+ y

S
but let here u2 be the linear form

u2(x, y) =
y

S
.

For any p ∈ N∗, let also Ap and Bp be the bivariate polynomials

Ap = u1 (u1 + 1) . . . (u1 + p− 1) =
Γ (u1 + p)

Γ (u1)

and

Bp = u2

(
u2 + σ

)
. . .

(
u2 + (p− 1)σ

)
=

Γ (u2 + pσ)

Γ (u2)
.

Show that Φ (Ap) = pSAp (as always, even if R is not triangular) and that Φ (Bp) = pmBp for any
p ≥ 1. Deduce from this that, when n tends to infinity,

EBp (Un) =
Γ
(
τ
S

)
Γ
(
τ
S + pσ

) Γ
(
β
S + pσ

)
Γ
(
β
S

) npσ
(

1 +O

(
1

n

))
.

• Assume that m ≥ 1.
Using the inversion formula

up2 =

p∑
k=1

(−σ)p−k
{
p
k

}
Bk,
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show that, for any p ≥ 1,

lim
n→∞

E

(
u2 (Un)

nσ

)p
=

Γ
(
τ
S

)
Γ
(
τ
S + pσ

) Γ
(
β
S + pσ

)
Γ
(
β
S

) . (10)

so that the number of black balls U
(2)
n = Su2 (Un) converges in law to a random variable having the

right side of Equality (10) as p-th moment (to make a complete proof of that fact, one has to check
that a distribution having such a p-th moment is determined by its moments, which can be done by
computing the asymptotics of (10) as p tends to infinity with the help of Stirling Formula). This law
can be related to stable laws or to Mittag-Leffler ones.

• Assume that m = 0. Show that the process is deterministic (degenerate case).

• Assume that m ≤ −1. Show that the number of black balls tends almost surely to zero (degenerate
case again).
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