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Abstract Consider a balanced nontriangular two-color Pólya–Eggenberger urn
process, assumed to be large, which means that the ratio σ of the replacement matrix
eigenvalues satisfies 1/2 < σ < 1. The composition vector of both discrete-time and
continuous-time models admits a drift which is carried by the principal direction of the
replacement matrix. In the second principal direction, this random vector admits also
an almost sure asymptotics and a real-valued limit random variable arises, named W DT

in discrete time and W CT in continuous time. The paper deals with the distributions of
both W . Appearing as martingale limits, known to be nonnormal, these laws remain up
to now rather mysterious. Exploiting the underlying tree structure of the urn process,
we show that W DT and W CT are the unique solutions of two distributional systems
in some suitable spaces of integrable probability measures. These systems are natural
extensions of distributional equations that already appeared in famous algorithmical
problems like Quicksort analysis. Existence and unicity of the solutions of the systems
are obtained by means of contracting smoothing transforms. Via the equation systems,
we find upper bounds for the moments of W DT and W CT and we show that the laws
of W DT and W CT are moment determined. We also prove that W DT is supported by
the whole real line, its exponential moment generating series has an infinite radius of
convergence and W DT admits a continuous density (W CT was already known to have
a density, infinitely differentiable on R\{0} and not bounded at the origin).
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1 Introduction

Pólya urns provide a rich model for many situations in algorithmics. Consider an urn
that contains red and black balls. Start with a finite number of red and black balls as
initial composition (possibly monochromatic). At each discrete time n, draw a ball
at random, notice its color, put it back into the urn and add balls according to the
following rule: if the drawn ball is red, add a red balls and b black balls; if the drawn
ball is black, add c red balls and d black balls. The integers a, b, c, d are assumed to
be nonnegative.1 Thus, the replacement rule is described by the so-called replacement
matrix

R =
(

a b
c d

)
.

“Drawing a ball at random” means choosing uniformly among the balls contained in the
urn. That is why this model is related to many situations in mathematics, algorithmics
or theoretical physics where a uniform choice among objects determines the evolution
of a process. See Johnson and Kotz’s book [20], Mahmoud’s book [26] or Flajolet et
al. [18] for many examples.

In the present paper, the urn is assumed to be balanced, which means that the total
number of balls added at each step is a constant

1 One admits classically negative values for a and d, together with arithmetical conditions on c and b.
Nevertheless, the paper deals with so-called large urns, for which this never happens.
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S = a + b = c + d.

The composition vector of the urn at time n is denoted by

U DT(n) =
(

number of red balls at time n
number of black balls at time n

)
.

Two main points of view are classically used on this random vector. The forward point
of view consists in considering the composition vector sequence

(
U DT(n)

)
n∈N as a

N2-valued Markov chain. The information on the successive configurations is thus
concentrated in a global object: the random process, giving access to probabilistic
tools like martingales, embedding in continuous time, branching processes. A vast
part of the literature on Pólya urns relies on such probability tools, dealing most often
with natural extensions of the model to a random replacement matrix or to an arbitrary
finite number of colors. The forward point of view is particularly efficient to get results
on the asymptotics of the process. See for instance Janson’s seminal paper [19] or [32]
for an extensive state of the art on such methods.

Alternatively, a natural feature consists in using the recursive properties of the
random structure through a divide-and-conquer principle. This is the backward point
of view. Applied to generating functions, it is the base tool for analytic combinatorics
methods, developed in Flajolet et al. papers [17,18]. Expressed in terms of the random
process, the backward approach leads to dislocation equations on limit distributions
that can already be found in a wide generality in Janson [19]; these equations are
further developed in [13] for two-color urns and in [11,12] for the urn related to m-ary
search trees as well.

In order to state our results and also the asymptotic theorems they are based on, we
first give some notations that are made more complete in Sect. 2. The eigenvalues of
the replacement matrix R are S and the integer

m := a − c = d − b

and we denote by

σ := m
S

≤ 1

the ratio between these eigenvalues. The particular case σ = 1 is the original Pólya urn
(see Pólya [31]); this process has a specific well-known asymptotics with a random
drift. In appendix, our Sect. 6 is devoted to gather results on this almost sure limit and
on the asymptotic Dirichlet distribution as well. When σ < 1, it is well known that
the asymptotics of the process has two different behaviors, depending on the position
of σ with respect to the value 1/2 (see Athreya and Karlin [4] for the original result,
Janson [19] or [32] for the results below). Briefly said,

(i) when σ < 1
2 , the urn is called small and, except when R is triangular, the

composition vector is asymptotically Gaussian2:

2 The case σ = 1/2 is similar to this one, the normalization being
√

n log n instead of
√

n.
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U DT (n) − nv1√
n

D−→
n→∞ G

(
0,"2

)

where v1 is a suitable eigenvector of tR relative to S and G a centered Gaussian vector
with covariance matrix "2 that has a simple closed form;

(ii) when 1
2 < σ < 1, the urn is called large and the composition vector has a quite

different strong asymptotic form:

U DT (n) = nv1 + nσW DTv2 + o
(
nσ

)
(1)

where v1, v2 are suitable (nonrandom) eigenvectors of tR relative to the respective
eigenvalues S and m, W DT is a real-valued random variable arising as the limit of a
martingale, the little o being almost sure and in any L p, p ≥ 1.

Classically, like for any Markov chain, one can embed the discrete-time process(
U DT(n)

)
n∈Z≥0

into continuous time. In the case of Pólya urns having a replacement
matrix with nonnegative entries, this defines a two-type branching process

(
U CT(t)

)

t∈R≥0
.

A similar phase transition occurs when t tends to infinity: for small urns, the process
U CT has a (random) almost sure drift and satisfies a gaussian central limit theorem
(see Janson [19]). When the urn is large, the asymptotic behavior of the process, when
t tends to infinity, is given by

U CT (t) = eStξv1 (1 + o(1)) + emt W CTv2 (1 + o(1)) ,

where ξ is Gamma-distributed, W CT is a real-valued random variable arising as the
limit of a martingale, the little o is almost sure and in any L p, p ≥ 1, the basis (v1, v2)

of deterministic vectors being the same one as in (1). These asymptotic results are
more detailed in Sect. 2. Because of the canonical link between U DT and U CT via
stopping times, the two random variables W DT and W CT are related by the so-called
martingale connexion as explained in Sect. 2.3. Consequently, any information about
one distribution is of interest for the other one. All along the paper, the symbol DT is
used to qualify discrete-time objects while CT will refer to continuous-time ones.

In this article, we are interested by large urns. More precisely, the attention is focused
on the nonclassical distributions in W DT and W CT when the replacement matrix R
is not triangular (i.e. when bc ̸= 0). For example, W CT is not normally distributed,
which can be seen on its exponential moment generating series that has a radius of
convergence equal to zero, as shown in [13] (see Sect. 5 for more details). Because of
the martingale connexion, this implies that W DT is not normal either. Our main goal
is to get descriptions of these laws (density, moments, tail, …).

What is already known about W DT or W CT? In [13], the Fourier transform of W CT

is “explicitely” calculated, in terms of the inverse of an abelian integral on the Fermat
curve of degree m. The existence of a density with respect to the Lebesgue measure
on R and the fact that W CT is supported by the whole real line are deduced from this
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closed form. Nevertheless, the order of magnitude of the moments and the question
of the determination of the law by its moments remained open questions. The shape
of the density was mysterious, too. The present paper answers to these questions in
Sects. 5 and 3.5, respectively.

In the present text, we exploit the underlying tree structure of a Pólya urn. Govern-
ing both the backward and the forward points of view, it contains a richer structure
than the plain composition vector process. Section 3 is devoted to highlighting this
tree process and to derive decomposition properties on the laws of the composition
vector at finite time. These decompositions directly lead to distributional fixed-point
systems (15) and (18), respectively, satisfied by W DT and W CT, as stated in Theorem 4
and Theorem 5.

With a slightly different approach, Knape and Neininger [22] start from the tree
decomposition of the discrete Pólya urn and establish the fixed-point system (15)
with the contraction method tools developed in Neininger and Rüschendorf [28]. This
complementary point of view does not take advantage of the limit random variable
W DT but applies for small and large urns together, allowing to find limit Gaussian
distributions thus providing an alternative method to the embedding method used by
Janson in [19].

Sometimes called fixed-point equations for the smoothing transform or just smooth-
ing equations in the literature (Liu [25], Durrett and Liggett [15]), distributional equa-
tions of type

X L=
∑

Ai X (i) (2)

have given rise to considerable interest in, and literature on. For a survey, see Aldous
and Bandyopadhyay [1]. In theoretical probability, they are of relevance in connex-
ion with branching processes (like in Liu [23], Biggins and Kyprianou [8], Alsmeyer
et al [2]) or with Mandelbrot cascades (Mandelbrot [27], Barral [6]). They occur
in various areas of applied probability, and also on the occasion of famous prob-
lems arising in analysis of algorithms, like Quicksort (Rösler [33]). They are natu-
rally linked with the analysis of recursive algorithms and data structures (Neininger
and Rüschendorf [29], surveys in Rösler and Rüschendorf [34] or Neininger and
Rüschendorf [30])

Most often, in Eq. (2), the Ai are given random variables and the X (i) are inde-
pendent copies of X , independent of the Ai as well. Our System (18) with unknown
real-valued random variables (or distributions) X and Y is the following:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X L= U m
( a+1∑

k=1

X (k) +
S+1∑

k=a+2

Y (k)

)

Y L= U m
( c∑

k=1

X (k) +
S+1∑

k=c+1

Y (k)

)
,

where U is uniform on [0, 1], X (k) and Y (k) are respective copies of X and Y , all
being independent of each other and of U . Our System (15) for the discrete-time limit

123

Author's personal copy



J Theor Probab

W DT, slightly more complicated, is essentially of the same type. These systems can
be seen as natural generalizations of equations of type (2), as set out in Neininger and
Rüschendorf [28]. Section 4 is devoted to the existence and the unicity of solutions
of our systems by means of a contraction method (Theorems 7 and 8), leading to a
characterization of W DT and W CT distributions.

Finally, in Sect. 5, we take advantage of the fixed-point systems again to give
accurate bounds on the moments of W CT (Lemma 7). Using this lemma, we show that
the law W CT is determined by its moments and that the Laplace series of W DT has an
infinite radius of convergence (Corollary to Theorem 9).

2 Two-Color Pólya Urn: Definition and Asymptotics

2.1 Notations and Asymptotics in Discrete Time

Consider a two-color Pólya–Eggenberger urn random process. We adopt notations of

the introduction: the replacement matrix R =
(

a b
c d

)
is assumed to have nonnegative

entries, the integers S as balance and m as second smallest eigenvalue. We assume R
to be nontriangular, i.e. that bc ̸= 0; this implies that m ≤ S − 1. Moreover, the paper
deals with large urns which means that the ratio σ = m/S is assumed to satisfy

σ >
1
2
.

We denote by v1 and v2 the vectors

v1 = S
(b + c)

(
c
b

)
and v2 = S

(b + c)

(
1

−1

)
; (3)

they are eigenvectors of the matrix tR, respectively, associated with the eigenvalues S
and m. Let also (u1, u2) be the dual basis

u1(x, y) = 1
S
(x + y) and u2(x, y) = 1

S
(bx − cy); (4)

u1 and u2 are eigenforms of tR, respectively, associated with the eigenvalues S and m.
When the urn contains α white balls and β black balls at (discrete) time 0, the

composition vector at time n ∈ N is denoted by

U DT
(α,β)(n).

Since the urn is assumed to be large, the asymptotics of its composition vector is
given by the following result.

Theorem 1 (Asymptotics of discrete-time process, [19,32] )
Let

(
U DT

(α,β)(n)
)

n∈N
be a large Pólya urn discrete-time process. Then, when n tends to

infinity,
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U DT
(α,β)(n) = nv1 + nσW DT

(α,β)v2 + o(nσ ) (5)

where v1 and v2 are the nonrandom vectors defined by (3), W DT
(α,β) is the real-valued

random variable defined by

W DT
(α,β) := lim

n→+∞
1

nσ
u2

(
U DT

(α,β)(n)
)

(6)

u2 being defined in (4), and where o( ) means almost surely and in any L p, p ≥ 1.

A proof of this result can be found in Janson [19] by means of embedding in
continuous time, under an irreducibility assumption. Another proof, which is valid in
any case and that remains in discrete time, is also given in [32]. The present paper is
focused on the distribution of W DT

(α,β) which appears in both proofs as the limit of a
bounded martingale. One remarkable fact that does not occur for small urns (i.e. when
σ ≤ 1/2) is that the distribution of W DT

(α,β) actually depends on the initial composition
vector (α,β). For example, its expectation turns out to be

E
(

W DT
(α,β)

)
=

Γ
(
α+β

S

)

Γ
(
α+β

S + σ
) bα − cβ

S
. (7)

This formula, explicitely stated in [13] can be shown by elementary means or using
the convergent martingale

⎛

⎜⎜⎝
u2

(
U DT

(α,β)(n)
)

∏
0≤k≤n−1

(
1 + σ

k+ α+β
S

)

⎞

⎟⎟⎠

n∈N

.

For more developments about this discrete martingale which is the essential tool in
the discrete method for proving Theorem 1, see [32].

The approach in analytic combinatorics makes easy to compute the probability
generating function of the number of (say) red balls in the urn at finite time, by
iteration of some suitable partial differential operator. The treatment of Pólya urns by
analytic combinatorics, which is due to P. Flajolet and his co-authors, can be found
in [17]. Figure 1 is the exact distribution of the (normalized) number of red balls after
300 drawings, centered around its expectation. The computations have been managed

using Maple and concern the (large) urn with replacement matrix R =
(

18 2
3 17

)
and

respective initial compositions (1, 0), (1, 1) and (0, 1).
Some direct first observations can be made on these pictures. For example, one gets

an illustration of the decomposition formula (12) which states that the distribution of
U(1,1) is decomposed as a weighted convolution of U(1,0)’s and U(0,1)’s.
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Fig. 1 Starting from initial composition (α,β), exact distribution of the number of red balls after n = 300
drawings, centered around its mean and divided by nσ (Color figure online)

2.2 Embedding in Continuous Time

Classically, the discrete-time process is embedded in a continuous time multitype
branching process; the idea of embedding discrete urn models in continuous-time
branching processes goes back at least to Athreya and Karlin [4] and a description is
given in Athreya and Ney [5], Section 9. The method has been revisited and developed
by Janson [19], and we summarize hereunder the results obtained in [13].

We define the continuous-time Markov branching process
(

U CT
(α,β)(t)

)

t∈R≥0

as being the embedded process of
(

U DT
(α,β)(n)

)

n∈N
. It starts from the same initial

condition U CT
(α,β)(0) = U DT

(α,β)(0) = (α,β); at any moment, each ball is equipped with
an Exp(1)-distributed3 random clock, all the clocks being independent. When the
clock of a red ball rings, a red balls and b black balls are added in the urn; when the
ringing clock belongs to a black ball, one adds c red balls and d black balls, so that
the replacement rules are the same as in the discrete-time urn process.

The important benefit of considering such a process comes from the independence
of the subtrees in the branching process. In the continuous-time urn process, each ball
reproduces independently from the other balls.

The asymptotics of this process is given by the following theorem.

Theorem 2 (Asymptotics of continuous-time process, [19,13])
Let

(
U CT

(α,β)(t)
)

t≥0
be a large Pólya urn continuous-time process. Then, when t tends

to infinity,

U CT
(α,β) (t) = eStξv1 (1 + o(1)) + emt W CT

(α,β)v2 (1 + o(1)) , (8)

where v1, v2, u1, u2 are defined in (3) and (4), ξ and W CT
(α,β) are real-valued random

variables defined by

3 For any positive real a, Exp(a) denotes the exponential distribution with parameter a.
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ξ = lim
t→+∞

e−St u1

(
U CT(t)

)
,

W CT
(α,β) = lim

t→+∞
e−mt u2

(
U CT

(α,β)(t)
)

,

all the convergences are almost sure and in any Lp-space, p ≥ 1. Furthermore, ξ

is Gamma
(
α+β

S

)
distributed.

Here again, the distribution of W CT depends on the initial composition of the urn.
For example, its expectation is

E
(

W CT
(α,β)

)
= bα − cβ

S
, (9)

as can be seen from the continuous-time martingale

(
e−mt u2

(
U CT

(α,β) (t)
) )

t≥0
.

Some properties of W CT are already known. For example, it is supported by the
whole real line R and admits a density. Moreover, this density is increasing on R<0,
decreasing on R>0 and is not bounded in the neighborhood of the origin. Note that it is
not an even function since W CT is not centered. Finally, the characteristic function of
W CT (i.e. its Fourier transform) is infinitely differentiable but not analytic at the origin:
the domain of analyticity of E exp

(
zW CT)

is of the form C\L+
⋃

L− where L+ and
L− are half lines contained in R, one of them being bordered at the origin. In particular,
the exponential moment generating series of W CT has a radius of convergence equal
to zero, due to a ramification and a divergent series phenomenon as well. All these
properties are shown in [13], based on the expression of this characteristic function in
terms of the inverse of an abelian integral on the Fermat curve xm + ym + zm = 0.

2.3 Connexion Discrete Time/Continuous Time

As in any embedding into continuous time of a Markov chain, the discrete-time process
and the continuous-time one are connected by

(
U CT(τn)

)

n∈N
=

(
U DT (n)

)

n∈N

where

0 = τ0 < τ1 < · · · < τn < · · ·

are the jumping times of the continuous process. These random times are indepen-
dent of the positions U CT(τn). The embedding for urn processes is widely studied in
Janson [19]. It is detailed in [13] in the special case of two-color Pólya urns. A dual
formulation of this connexion is

(
U CT(t)

)

t∈R≥0
=

(
U DT (n(t))

)

t∈R≥0
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where

n(t) := inf{n ≥ 0, τn ≥ t}

is the number of drawings in the urn before time t . After projection and normalization,
these equalities provide the connexion between the limit variables W DT

(α,β) and W CT
(α,β):

W CT
(α,β)

L= ξσ · W DT
(α,β) (10)

where ξ and W DT
(α,β) are independent, ξ being Gamma

(
α+β

S

)
distributed. Note that the

almost sure equality

W DT
(α,β) = ξ−σ · W CT

(α,β)

holds as well, the variables ξ and W CT
(α,β) being, however, not independent.

3 Decomposition Properties

This section emphasizes the underlying tree structure of the urn process. This obvious
vision is indeed the key in the following two decompositions: first, we reduce the
study of W(α,β) to the study of W(1,0) and W(0,1), called later on X and Y respectively,
to lighten the notations and second, in Sect. 3.2, we exploit a “divide-and-conquer”
property to deduce a system of fixed-point equations on X and Y . The reasoning is
detailed in discrete time. It is much more straightforward in continuous time, since
the decomposition is contained inside the branching property. Detailed in [13], the
continuous case is briefly recalled in Sect. 3.3.

The natural question “Is it possible to deduce the DT-system from the CT-system
and conversely?” is partially addressed in Sect. 3.4.

3.1 Tree Structure in Discrete Time

In this section dealing with the discrete-time process, we skip the index DT when no
confusion is possible.

Let us make precise the tree structure of the urn process: a forest (Tn) grows at each
drawing from the urn. At time 0, the forest is reduced to α red nodes and β black nodes,
which are the roots of the forest trees. At time n, each leaf in the forest represents a
ball in the urn. When a leaf is chosen (a ball is drawn), it becomes an internal node
and gives birth to (a + 1) red leaves and b black leaves, or c red leaves and (d + 1)

black leaves, according to the color of the chosen leaf.
The dynamics of the urn process was described saying “at each time n, a ball is

uniformly chosen in the urn.” It becomes “a leaf is uniformly chosen among the leaves
of the forest.” This forest therefore appears as a nonbinary colored generalization of
a binary search tree.
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For example, take the following urn with R =
(

6 1
2 5

)
as replacement matrix (it is

a large urn) and start from α = 3 red balls and β = 2 black balls. Below is a possible
configuration after 3 drawings.

Initial red balls are numbered from 1 to α and initial black balls from (α + 1) to
(α + β). The following figure represents the forest coming from these initial balls.

For any n ≥ 0 and k ∈ {1, . . . ,α + β}, denote by Dk(n) the number of leaves of
the k-th tree in the forest at time n. Thus, at time n, the number of drawings in the k-th
tree is Dk (n)−1

S . These numbers represent the time inside this k-th tree.
Remember that the balls of the whole urn are uniformly drawn at any time and

notice that at each drawing in the k-th tree, Dk(n) increases by S: the random vector
D(n) =

(
D1(n), . . . , Dα+β(n)

)
has exactly the same distribution as the composition

vector at time n of an (α + β)-color Pólya urn process having SIα+β as replacement
matrix and (1, . . . , 1) as initial composition vector.

Gathering these arguments, the distribution of U(α,β)(n) can be described the fol-
lowing way: consider simultaneously

(i) an original (α + β)-color urn process D =
(
D1, . . . , Dα+β

)
having SIα+β as

matrix replacement and (1, . . . , 1) as initial condition;
(ii) for any k ∈ {1, . . . ,α}, an urn process U (k)

(1,0) having R as replacement matrix
and (1, 0) as initial condition;

(iii) for any k ∈ {α+ 1, . . . ,α+β}, an urn process U (k)
(0,1) having R as replacement

matrix and (0, 1) as initial condition,
all these processes being independent of each other. Then, the process U(α,β) =(

U(α,β)(n)
)

n has the same distribution as the process defined by the sum of the U (k)
(1,0)

and of the U (k)
(0,1) at respective times Dk (n)−1

S . In other words, for any n ≥ 0,
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U(α,β) (n)
L=

α∑

k=1

U (k)
(1,0)

( Dk (n)−1
S

)
+

α+β∑

k=α+1

U (k)
(0,1)

( Dk (n)−1
S

)
(11)

where the U (k)
(1,0) and the U (k)

(0,1) are respective copies of the random vector processes
U(1,0) and U(0,1), all being independent of each other and of D.

The following claim is a direct consequence of Proposition 3 in Sect. 6.

Claim When n goes off to infinity, 1
nS

(
D1(n), . . . , Dα+β(n)

)
converges almost surely

to a Dirichlet
( 1

S , . . . , 1
S

)
- distributed random vector, denoted by

Z = (Z1, . . . , Zα+β).

Notice that for any k, Dk(n) tends almost surely to +∞ when n tends to infinity.
Starting from Eq. (11), dividing by nσ , taking the image by the second projection
u2 (notations of Sect. 2.1) and passing to the (almost sure) limit n → ∞ thanks to
Theorem 1, one obtains the following theorem.

Theorem 3 For any (α,β) ∈ N2\(0, 0), let W(α,β) be the limit distribution of a large
two-color discrete time Pólya urn process with ratio σ and initial condition (α,β).
Then,

W(α,β)
L=

α∑

k=1

Zσk W (k)
(1,0) +

α+β∑

k=α+1

Zσk W (k)
(0,1) (12)

where

(i) Z = (Z1, . . . , Zα+β) is a Dirichlet-distributed random vector, with parameters
( 1

S , . . . , 1
S );

(ii) the W (k)
(1,0) and the W (k)

(0,1) are respective copies of W(1,0) and W(0,1), all being
independent of each other and of Z.

Notice that any Zk is Beta( 1
S , α+β−1

S )-distributed (see Sect. 6).

3.2 Discrete-Time Fixed-Point Equation

Theorem 3 shows that the limit distribution of a large urn process starting with any
initial composition can be written as a function of two “elementary” particular laws,
namely the laws of W DT

(1,0) and W DT
(0,1). The present section gives a characterization of

these two distributions by means of a fixed-point equation.
Let (U (n))n≥0 be a two-color Pólya urn process, with all the notations of Sect. 2.1.

In order to simplify the notations, denote

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X := W DT
(1,0) = lim

n→+∞
u2

(
U(1,0)(n)

nσ

)

Y := W DT
(0,1) = lim

n→+∞
u2

(
U(0,1)(n)

nσ

) (13)
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Focus now on the study of U(1,0)(n). At time 1, the composition of the urn is deter-
ministic: there are (a +1) red balls and b black balls. Exactly like in Sect. 3.1, the tree
structure of the urn appears, with a forest starting from (a + 1) red balls and b black

balls. In the same example with replacement matrix R =
(

6 1
2 5

)
, this fact is illustrated

by the following figure:

For any n ≥ 1, denote by Jk(n) the number of leaves at time n of the k-th subtree.
Then, at time n, the number of drawings in the k-th subtree is Jk (n)−1

S so that, as in
Sect. 3.1, one gets the equation in distribution (a scalar version of this equation can
be found in Knape and Neininger [22], Eq. (2))

U(1,0) (n)
L=

a+1∑

k=1

U (k)
(1,0)

( Jk(n)−1
S

)
+

S+1∑

k=a+2

U (k)
(0,1)

( Jk(n)−1
S

)
(14)

where the U (k)
(1,0) and the U (k)

(0,1) are respective copies of the random vector processes
U(1,0) and U(0,1), all being independent of each other and of the Jk’s. Besides, the
random vector (J1(n), . . . , JS+1(n)) is exactly distributed like the composition vector
at time (n − 1) of an (S + 1)-color Pólya urn process having SIS+1 as replacement
matrix and (1, . . . , 1) as initial composition vector, so that, by Proposition 3 in Sect. 6,

1
nS

(
J1(n), . . . , JS+1(n)

)
−→
n→∞V = (V1, . . . , VS+1)

almost surely, the random vector V being Dirichlet
( 1

S , . . . , 1
S

)
-distributed. Like in

Sect. 3.1, divide Eq. (14) by nσ , take the image by the second projection u2 and pass
to the limit n → ∞ using Theorem 1. This leads to the following theorem.

Theorem 4 As defined just above by (13), let X and Y be the elementary limit laws

of a large two-color discrete time Pólya urn process with replacement matrix
(

a b
c d

)
,

balance S = a + b = c + d and ratio σ > 1
2 . Then, X and Y satisfy the distributional

equations system
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X L=
a+1∑

k=1

V σ
k X (k) +

S+1∑

k=a+2

V σ
k Y (k)

Y L=
c∑

k=1

V σ
k X (k) +

S+1∑

k=c+1

V σ
k Y (k)

(15)

where

(i) V = (V1, . . . , VS+1) is a Dirichlet-distributed random vector, with parameters
( 1

S , . . . , 1
S );

(ii) the X (k) and the Y (k) are respective copies of X and Y , all being independent of
each other and of V .

Notice that any Vk is distributed like a random variable U S , U being uniformly
distributed on [0, 1]. Equivalently, V σ

k is distributed like U m (notations of Sect. 2.1).

Remark 1 The system of equations (15) is the same as (41)–(42) in Knape and
Neininger [22], which is not surprising since the rescaled number of red balls, con-

sidered in [22], actually tends to
S

b + c
W DT

(1,0) via Theorem 1. Thus, starting from the

composition vector at finite time, there are two paths leading to (41)–(42) in [22] or
to (15) above: either stay in the canonical basis of R2 or focus on the eigendirection
v2. In the first case, a contraction method is used in [22] to prove the convergence of
the rescaled first coordinate of the composition vector, whereas in the second case, the
convergence is given by a martingale limit and the contraction method is only used
(cf. Sect. 4.2) to prove the unicity of the solution of (15).

3.3 Decomposition Properties in Continuous Time

Remember that
(
U CT(t)

)
t is a continuous-time branching process. Thanks to the

branching property, the decomposition properties of this process are somehow auto-
matic. First,

U CT
(α,β) (t) = [α] U CT

(1,0) (t) + [β] U CT
(0,1) (t) ,

where the notation [n]X means the sum of n independent random variables having
the same distribution as X . Consequently, passing to the limit when t → +∞ after
normalization and projection yields

W CT
(α,β) = [α] W CT

(1,0) + [β] W CT
(0,1). (16)

This convolution formula expresses how the limit law W CT is decomposed in terms
of elementary limit laws W CT

(1,0) and W CT
(0,1). It corresponds to the discrete-time decom-

position shown in Theorem 3.
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Now start from one red ball or from one black ball, and apply again the branching
property at the first splitting time. As before, define XCT and Y CT by

⎧
⎪⎨

⎪⎩

XCT := W CT
(1,0) = lim

t→+∞
e−mt u2

(
U CT

(1,0)(t)
)

,

Y CT := W CT
(0,1) = lim

t→+∞
e−mt u2

(
U CT

(0,1)(t)
)

.
(17)

Then, with the above Theorem 2, one gets the following result.

Theorem 5 ([13,19]) Let X = XCT and Y = Y CT be the elementary limit laws of a

large two-color continuous time Pólya urn process with replacement matrix
(

a b
c d

)
,

balance S = a + b = c + d and ratio σ > 1
2 , as defined just above by (17). Then, X

and Y satisfy the distributional equations system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X L= U m

(
a+1∑

k=1

X (k) +
S+1∑

k=a+2

Y (k)

)

Y L= U m

(
c∑

k=1

X (k) +
S+1∑

k=c+1

Y (k)

)

,

(18)

where U is uniform on [0, 1], where X, X (k) and Y , Y (k) are respective copies of XCT

and Y CT, all being independent of each other and of U.

Remark 2 As mentioned above, it is shown in [13] that XCT (and Y CT) admit densities.
The proof is based on the computation of the Fourier transform of XCT in terms of
the inverse of an abelian integral on a Fermat curve. This method is specific to two-
color urn processes. Theorems 4 and 5 give a new way of proving this fact by means
of techniques that can be adapted from Liu’s method (see [24] for example). This
alternative method provides a perspective (adressed in a forthcoming paper): it can be
applied to show that the limit laws of d-color large urns admit densities as well.

3.4 Connexion Between Continuous-Time and Discrete-Time Systems

In Sect. 2.3, we described the connexion between the limit laws of large urns in discrete
and continuous time, called the martingale connexion. It was seen as a consequence of
the embedding into continuous time of the initial discrete-time Markov chain defining
the urn process. In this paragraph, we show how one can deduce the solutions of the
continuous-time system (18) from the solutions of the discrete-time system (15).

Proposition 1 Let X and Y be solutions of the distributional System (15) and let ξ be
a Gamma-distributed random variable with parameter 1

S , independent of X and Y .
Then, ξσ X and ξσY are solutions of the distributional System (18).

The assertion of Proposition 1 is a consequence of the following lemma which is
an elementary result in probability theory.
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Lemma 1 Consider the two following distributional equations with unknown inde-
pendent real-valued random variables X, X1, . . . , X S+1.

1- Equation D:

X L=
∑

1≤k≤S+1

V σ
k Xk

where (V1, . . . , VS+1) is a Dirichlet-distributed random vector with parameter( 1
S , . . . , 1

S

)
, independent of (X1, . . . , X S+1).

2- Equation C:

X L= V σ
∑

1≤k≤S+1

Xk

where V is a Beta-distributed random variable with parameter
( 1

S , 1
)

(in other words,
V 1/S is uniformly distributed on [0, 1]), independent of (X1, . . . , X S+1).

Let V, ξ1, . . . , ξS+1 be independent random variables, the ξk’s being Gamma
( 1

S

)
-

distributed and V being Beta
( 1

S , 1
)
-distributed. Denote

ξ := V
∑

1≤ j≤S+1

ξ j

and, for any k ∈ {1, . . . , S + 1},

Vk := ξk∑

1≤ j≤S+1

ξ j

.

Then,

(i) the random variable ξ is Gamma
( 1

S

)
-distributed;

(ii) the random vector (V1, . . . , VS+1) is independent of ξ and Dirichlet-distributed
with parameter

( 1
S , . . . , 1

S

)
;

(iii) if X, X1, . . . , X S+1 satisfy Equation D, if (X1, . . . , X S+1) is independent of
(V, ξ1, . . . , ξS+1) and if X is independent of ξ , then ξσ X, ξσ1 X1, . . . , ξ

σ
S+1 X S+1

satisfy Equation C.

Proof (i) This can be seen for example by computation of moments (Beta and
Gamma distributions are moment determined): the p-th moment of a Gamma(α)

distribution is Γ (α+p)
Γ (α) and the p-th moment of a Beta(α,β) distribution is

Γ (α+p)Γ (α+β)
Γ (α+β+p)Γ (α) where Γ is Euler Gamma function. Moreover, the sum of indepen-
dent Gamma(α1), . . . , Gamma(αd)-distributed random variables is Gamma(α1 +
· · · + αd)-distributed. Assertion (i) is a direct consequence of these facts.

(ii) Classically, (V1, . . . , VS+1) is Dirichlet distributed and independent of the sum∑
1≤ j≤S+1 ξ j . For a proof of this result, see for example Chaumont and Yor [10].
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Since V is independent of the ξk’s, the random variable ξ is also independent of
(V1, . . . , VS+1).

(iii) Suppose that X, X1, . . . , X S+1 satisfy Equation D. Then, X L= ∑
1≤k≤S+1

V σ
k Xk . Multiplying the equality by the random variable ξσ leads to the distributive

relation

ξσ X L=

⎛

⎜⎜⎜⎝
ξ

∑

1≤ j≤S+1

ξ j

⎞

⎟⎟⎟⎠

σ

∑

1≤k≤S+1

ξσk Xk = V σ
∑

1≤k≤S+1

ξσk Xk

which makes the proof complete. ⊓*

3.5 Densities

As shown in [13], the law of W CT
(α,β) turns out to be absolutely continuous with regard

to Lebesgue measure on R. In this section, the same property is deduced for W DT
(1,0)

and W DT
(0,1) from the fixed-point equation (15). The decomposition property (12) then

implies that any W DT
(α,β) also admits a density. The observations made in Sect. 2.1 on

Fig. 1 can be seen as a first approximation of the shape of the density of W DT
(α,β).

The method we use is widely inspired from Q. Liu papers [24] and [25]. See
also [11,12] for an argumentation of the same vein for complex-valued probability
measures. Applied to fixed-point equation (18), this method provides a second proof
for the absolute continuity of W CT

(α,β); details are left to the reader.
For the whole Sect. 3.5, we denote

X := W DT
(1,0) and Y := W DT

(0,1).

Let ϕX and ϕY be the Fourier transforms of X and Y : for any t ∈ R,

ϕX (t) = E
(

eit X
)

and ϕY (t) = E
(

eitY
)

.

Theorem 6 As defined just above, let X and Y be the elementary limit distributions of

a large two-color discrete time Pólya urn process with replacement matrix R =
(

a b
c d

)
.

As in the whole paper, let S = a + b = c + d and m = a − c = d − b ∈] S
2 , S[ both

eigenvalues of R. Then,

(i) the support of X and Y is the whole real line R;
(ii) for any ρ ∈]0, a+1

m [, there exists C > 0 such that for any t ∈ R\{0},

|ϕX (t)| ≤ C
|t |ρ ;
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(iii) for any ρ ∈]0, d+1
m [, there exists C > 0 such that for any t ∈ R\{0},

|ϕY (t)| ≤ C
|t |ρ ;

(iv) X and Y are absolutely continuous with regard to Lebesgue’s measure. Their
densities are bounded and continuous on R.

Corollary 1 For any (α,β), the distribution of W DT
(α,β) admits a bounded and contin-

uous density. Its support is the whole real line R.

Corollary 1 is an immediate consequence of Theorem 6 and of the decomposition
property (12). The proof of Theorem 6, that follows Liu’s method, shows successively
that the distributions of X and Y are supported by the whole real line, that the char-
acteristic functions ϕX and ϕY reach the value 1 only at the origin, that they tend to
zero at ±∞ and finally that they are bounded above, in a neighborhood of infinity, by
a suitable power function so that a Fourier inversion theorem can apply, revealing the
absolute continuity.

We first show a couple of lemmas, Lemma 2 being the first item of Theorem 6.

Lemma 2 The support of both X and Y is the whole real line R.

Proof of Lemma 2 We denote by Supp(X) and Supp(Y ) the supports of X and Y .
Let x ∈ Supp(X) and y ∈ Supp(Y ). Because of fixed-point equation (15), for any

v = (v1, . . . , vS+1) and w = (w1, . . . , wS+1) in [0, 1] such that
∑

1≤k≤S+1 vk =∑
1≤k≤S+1 wk = 1,

(

x
a+1∑

k=1

vσk + y
S+1∑

k=a+2

vσk , x
c∑

k=1

wσ
k + y

S+1∑

k=c+1

wσ
k

)

∈ Supp(X) × Supp(Y ). (19)

Apply (19) for v = w = (t, 0, . . . , 0, 1 − t) where t ∈ [0, 1]; since the segment
[x, y] can be written [x, y] = {tσ x + (1 − t)σ y, t ∈ [0, 1]}, this entails that [x, y] ⊆
Supp(X) ∩ Supp(Y ). Thus, for any real numbers x and y,

(x, y) ∈ Supp(X) × Supp(Y ) ⇐⇒ [x, y] ⊆ Supp(X) ∩ Supp(Y ). (20)

As a first consequence, Supp(X) = Supp(Y ) =: Supp. We now proceed in three steps.

Step 1: there exists ε > 0 such that [−ε, ε] ⊆ Supp.
It suffices to take x > 0 and y < 0, respectively, belonging to Supp(X) and

Supp(Y )—which is possible since EX > 0 and EY < 0—and to apply (20), taking
ε = min{x,−y}.
Step 2: there exists η > 0 such that, for any z ∈ R,

z ∈ Supp 0⇒ (1 + η) z ∈ Supp .
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Indeed, apply Formula (19) for v =
( 1

2 , 1
2 , 0, . . . , 0

)
. Then, 21−σ z ∈ Supp as soon as

z ∈ Supp. It suffices to take η = 21−σ − 1.

Step 3: the images of [−ε, ε] by the iterates of the homothetic transformation z 1→
(1 + η)z fill the whole real line. ⊓*
Lemma 3 For any t ̸= 0, |ϕX (t)| < 1 and |ϕY (t)| < 1.

Proof of Lemma 3 Of course, |ϕX (t)| ≤ 1 for any real number t . Assume that t0 ∈ R
satisfies |ϕX (t0)| = 1. Let θ0 ∈ R such that E

(
eit0 X )

= eiθ0 . Then, almost surely,
eit0 X = eiθ0 which is possible only if t0 = 0 (and θ0 ∈ 2πZ) since Supp(X) = R.
Same proof for Y . ⊓*
Lemma 4 lim

t→±∞
ϕX (t) = 0 and lim

t→±∞
ϕY (t) = 0

Proof of Lemma 4 This proof and the remainder of the argumentation on the absolute
continuity rely on the following equalities that are consequences of the fixed-point
equation (15): for any t ∈ R,

⎧
⎪⎨

⎪⎩

ϕX (t) = E
(
ϕX

(
tV σ

1

)
· · ·ϕX

(
tV σ

a+1

)
ϕY

(
tV σ

a+2

)
· · ·ϕY

(
tV σ

S+1

) )

ϕY (t) = E
(
ϕX

(
tV σ

1

)
· · ·ϕX

(
tV σ

c
)
ϕY

(
tV σ

c+1

)
· · ·ϕY

(
tV σ

S+1

) )

(21)

where V = (V1, . . . , VS+1) is a Dirichlet-distributed random vector with parameters( 1
S , . . . , 1

S

)
. These relations are obtained from fixed-point equation (15) by condition-

ing with respect to V . In particular, since all Vk are not zero with positive probability,
Fatou’s Lemma together with Eq. (21) imply that

⎧
⎪⎨

⎪⎩

lim supt→±∞ |ϕX (t)| ≤
(

lim supt→±∞ |ϕX (t)|
)a+1

lim supt→±∞ |ϕY (t)| ≤
(

lim supt→±∞ |ϕY (t)|
)d+1

.

Consequently, since a ≥ 1 and d ≥ 1 (the urn is assumed to be large),
lim supt→±∞ |ϕX (t)| ∈ {0, 1} and the same holds for ϕY . It remains to show that
lim supt→±∞ |ϕX (t)| = 1 is impossible to get the result for X (a same argument for
Y applies as well). The first Eq. (21) implies that

|ϕX (t)| ≤ E
∣∣ϕX

(
V σ

1 t
)∣∣ .

The end of the proof relies on the following idea: denoting by U the uniform distrib-

ution on [0, 1], since V σ
1

L= U m ≤ 1 almost surely and EV σ
k = 1

m+1 < 1 for any k,
iterating this last inequality leads to lim supt→±∞ |ϕX (t)| = 0 which implies the final
result. The details, that are rather technical, can be almost literally adapted from Liu’s
proof of a result of the same kind. See [25], Lemma 3.1, page 93. One can also refer
to [12] for a similar argument in a slightly different context. ⊓*
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Lemma 5 For any ρ′ ∈]0, 1
m [, when t tends to ±∞, ϕX (t) ∈ O

(
t−ρ

′)
and ϕY (t)

∈ O
(

t−ρ
′)

.

Proof of Lemma 5 Let ε > 0. Let T > 0 such that |ϕX (t)| ≤ ε and |ϕY (t)| ≤ ε as
soon as |t | ≥ T ; the existence of T is guaranteed by Lemma 4. Then, because of (21),
for any t ∈ R,

|ϕX (t)| ≤ εSE
∣∣ϕX

(
V σ

S+1t
)∣∣ +

S∑

k=1

P
(
V σ

k |t | ≤ T
)
.

Since any V σ
k

L= U m where U denotes the uniform distribution on [0, 1], this leads to

|ϕX (t)| ≤ εSE
∣∣ϕX

(
U mt

)∣∣ + S
(

T
|t |

) 1
m

for any t ∈ R\{0}. Now, for any ρ ∈]0, 1/m[, E
(
U−mρ) < ∞ and the former

inequality implies that there exists a positive constant C such that for any nonzero t ,

|ϕX (t)| ≤ εSE
∣∣ϕX

(
U mt

)∣∣ + C
(

1
|t |

)ρ
.

Thus, the random variables X and U satisfy the assumptions of the Gronwall type
Lemma shown in [25], Lemme 3.2 page 93. Using iterations of the former inequality,
one gets for any n ≥ 1,

|ϕX (t)| ≤ εnsE
∣∣ϕX

(
U m

1 . . . U m
n t

)∣∣ + C |t |−ρ
n−1∑

k=0

(
εSE

(
U−mρ)

)k
,

which entails that |ϕX (t)| ≤ C |t |−ρ/
(
1 − εSE

(
U−mρ)) as soon as ε is chosen in

order that 1 − εSE
(
U−mρ

)
> 0. This implies the result. A same argument is used for

ϕY . ⊓*
End of the proof of Theorem 6 Let ρ ∈]0, a+1

m [ and let ρ′ = ρ
a+1 . Let κ > 0 such that

ϕX (t) ≤ κ|t |−ρ′
for any t ̸= 0; the existence of κ is due to Lemma 5. Applying (21),

one gets the successive inequalities

|ϕX (t)| ≤ E
(

a+1∏

k=1

∣∣ϕX
(
V σ

k t
)∣∣

)

≤ κa+1

|t |ρ E
(

a+1∏

k=1

V −σρ′
k

)

as soon as the last expectation is defined. Since the random vector V = (V1, . . . , VS+1)

is Dirichlet distributed with parameters
( 1

S , . . . , 1
S

)
, this expectation can be computed

from the Stieltjes transform of V (see the Appendix for the general form of joint
moments that can be extended to nonreal powers):

E
(

a+1∏

k=1

V −σρ′
k

)

= Γ
(
1 + 1

S

)

Γ
(
1 + 1

S − (a + 1)σρ′)

(
Γ

( 1
S − σρ′)

Γ
( 1

S

)

)a+1
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is finite since σρ′ < σ
m = 1

S and 1 + 1
S − (a + 1)σρ′ > 1 − a

S > 0. Note that
a < S = a + b because the urn assumed to be is nontriangular. This proves (ii). The
same argument is used for the similar result on ϕY (iii).

Since a+1
m = a+1

a−c > 1, item (ii) implies that the Fourier transform ϕX of the prob-
ability measure of X is integrable. This implies that X admits a bounded continuous
function as density. The same result holds for Y . ⊓*
Remark 3 For the continuous-time urn process, as shown in [13], the limit random
variables W CT

(1,0) and W CT
(0,1) admit densities as well. These functions have been shown

to be infinitely differentiable outside 0, monotonic on R<0 and R>0, but not bounded
around the origin. The different behaviors of W CT and W DT have to be related to the
martingale connexion (10): when the process starts with one ball, the density of ξσ is
not bounded at 0 since ξ is Gamma distributed, with parameter 1

S .

4 Smoothing Transforms

This section is devoted to the existence and the unicity of solutions of the distributional
systems (15) and (18). Notice that existence and unicity of solutions of the discrete-time
system (15) could be deduced from the general result in Neininger and Rüschendorf
[28]; nevertheless, we give hereunder a rapid and autonomous proof of Theorem 7,
in order to make explicit the contraction method in the case of large Pólya urns. The
same approach is developed in Knape and Neininger [22] in the case of d-color Pólya
urns. The proof is also reminiscent of the one in Fill and Kapur [16].

When A is a real number, let M2 (A) be the space of probability distributions on
R that have A as expectation and a finite second moment, endowed with a complete
metric space structure by the Wasserstein distance. Note first that when X and Y
are solutions of (15) or (18) that have, respectively, B and C as expectations, then
cB + bC = 0 (elementary computation). In Theorems 7 and 8, we prove that when B
and C are two real numbers that satisfy cB + bC = 0, the systems (15) and (18) both
have a unique solution in the product metric space M2 (B) × M2 (C). To do so, we
use the Banach contraction method.

Since (EX, EY ) is proportional to (b,−c) in both continuous-time and discrete-
time urn processes (Formulae (7) and (9)), this result shows that the systems (15)
and (18) characterize the limit distributions W DT

(1,0) and W DT
(0,1) on one hand, W CT

(1,0) and
W CT

(0,1) on the other hand.

4.1 The Wasserstein Distance

Let A ∈ R. The Wasserstein distance on M2 (A) is defined as follows:

dW (µ1, µ2) = min
(X1,X2)

(
E (X1 − X2)

2
)1/2

where the minimum is taken over random vectors (X1, X2) on R2 having respec-
tive marginal distributions µ1 and µ2; the minimum is attained by the Kantorovich–
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Rubinstein Theorem. With this distance, M2 (A) is a complete metric space (see for
instance Dudley [14]).

Let (B, C) ∈ R2. The product space M2 (B) × M2 (C) is equipped with the
product metric, defined (for example) by the distance

d
(

(µ1, ν1) , (µ2, ν2)
)

= max
{

dW (µ1, µ2) , dW (ν1, ν2)
}
.

Of course, this product remains a complete metric space.

4.2 Contraction Method in Discrete Time

Let us recall the fixed-point system (15) satisfied by (XDT, Y DT), the elementary limits
of a large two-color discrete-time Pólya urn process:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X L=
a+1∑

k=1

V σ
k X (k) +

S+1∑

k=a+2

V σ
k Y (k)

Y L=
c∑

k=1

V σ
k X (k) +

S+1∑

k=c+1

V σ
k Y (k).

Let M2 be the space of square-integrable probability measures on R. When
(B, C) ∈ R2, let K1 be the function defined on M2 (B) × M2 (C) by:

K1 : M2 (B) × M2 (C) −→ M2

(µ, ν) 1−→ L
(

a+1∑

k=1

V σ
k X (k) +

S+1∑

k=a+2

V σ
k Y (k)

)

where X (1), . . . , X (a+1) are µ-distributed random variables, Y (a+2), . . . , Y (S+1) are
ν-distributed random variables, V = (V1, . . . , VS+1) is a Dirichlet-distributed random
vector with parameter

( 1
S , . . . , 1

S

)
, the X (k), Y (k) and V being all independent of each

other. Similarly, let K2 be defined by

K2 : M2 (B) × M2 (C) −→ M2

(µ, ν) 1−→ L
(

c∑

k=1

V σ
k X (k) +

S+1∑

k=c+1

V σ
k Y (k)

)

.

A simple computation shows that if (µ, ν) ∈ M2 (B) × M2 (C), then

EK1(µ, ν) = (a + 1)B + bC
m + 1
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and

EK2(µ, ν) = cB + (d + 1)C
m + 1

,

so that, since m = a − c = d − b, the relation cB + bC = 0 is a sufficient and
necessary condition for the product function (K1, K2) to range M2 (B) × M2 (C)

into itself.

Lemma 6 Let B and C be real numbers that satisfy cB+bC = 0. Then, the smoothing
transform

K : M2 (B) × M2 (C) −→ M2 (B) × M2 (C)

(µ, ν) 1−→
(

K1(µ, ν), K2(µ, ν)
)

is
√

S+1
2m+1 -Lipschitz. In particular, it is a contraction.

Theorem 7 (i) When B and C are real numbers that satisfy cB+bC = 0, System (15)
has a unique solution in M2 (B) × M2 (C).

(ii) The pair
(
XDT, Y DT)

is the unique solution of the distributional System (15) having(
Γ

(
1
S

)

Γ
(

m+1
S

) b
S ,−

Γ
(

1
S

)

Γ
(

m+1
S

) c
S

)

as expectation and a finite second moment.

Theorem 7 is a direct consequence of Lemma 6 and of Banach’s fixed-point theorem.

Proof of Lemma 6 Let (µ1, ν1) and (µ2, ν2) in M2 (B) × M2 (C). Let
V = (V1, . . . , VS+1) be a Dirichlet-distributed random vector with parameter( 1

S , . . . , 1
S

)
. Let X (1)

1 , . . . , X (a+1)
1 be µ1-distributed random variables, Y (a+2)

1 , . . . ,

Y (S+1)
1 be ν1-distributed random variables, X (1)

2 , . . . , X (c)
1 be µ2-distributed random

variables and Y (c+1)
2 , . . . , Y (S+1)

2 be ν2-distributed random variables, all of them being
independent and independent of V . Then,

dW

(
K1 (µ1, ν1) , K1 (µ2, ν2)

)2
≤

∥∥∥∥∥

a+1∑

k=1

V σ
k

(
X (k)

1 − X (k)
2

)

+
S+1∑

k=a+2

V σ
k

(
Y (k)

1 − Y (k)
2

)∥∥∥∥∥

2

2

= Var

[
a+1∑

k=1

V σ
k

(
X (k)

1 − X (k)
2

)

+
S+1∑

k=a+2

V σ
k

(
Y (k)

1 − Y (k)
2

)]
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= E Var

(
a+1∑

k=1

V σ
k

(
X (k)

1 − X (k)
2

)

+
S+1∑

k=a+2

V σ
k

(
Y (k)

1 − Y (k)
2

)∣∣∣∣∣ V

)

+ Var E
(

a+1∑

k=1

V σ
k

(
X (k)

1 − X (k)
2

)

+
S+1∑

k=a+2

V σ
k

(
Y (k)

1 − Y (k)
2

)∣∣∣∣∣ V

)

thanks to the law of total variance. Since V = (V1, . . . , VS+1) is independent of the
X (k)

j and of the Y (k)
j , one gets

dW

(
K1 (µ1, ν1) , K1 (µ2, ν2)

)2
≤

a+1∑

k=1

EV 2σ
k Var

(
X (k)

1 − X (k)
2

)

+
S+1∑

k=a+2

EV 2σ
k Var

(
Y (k)

1 − Y (k)
2

)

≤ Var
(

X (1)
1 − X (1)

2

) a+1∑

k=1

EV 2σ
k

+ Var
(

Y (1)
1 − Y (1)

2

) S+1∑

k=a+2

EV 2σ
k

= a+1
2m+1

∥∥∥X (1)
1 −X (1)

2

∥∥∥
2

2
+ b

2m+1

∥∥∥Y (1)
1 −Y (1)

2

∥∥∥
2

2
.

Since the inequality holds for any random variables X (1)
1 , X (1)

2 , Y (1)
1 and Y (1)

2 having
respective distributions µ1, µ2, ν1 and ν2, this leads to

dW

(
K1 (µ1, ν1) , K1 (µ2, ν2)

)2
≤ a + 1

2m + 1
dW (µ1, µ2)

2 + b
2m + 1

dW (ν1, ν2)
2

≤ S + 1
2m + 1

d
(

(µ1, ν1) , (µ2, ν2)
)2

.

A very similar computation shows that

dW

(
K2 (µ1, ν1) , K2 (µ2, ν2)

)2
≤ S + 1

2m + 1
d
(

(µ1, ν1) , (µ2, ν2)
)2

,
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so that, finally,

d
(

K (µ1, ν1) , K (µ2, ν2)
)2

≤ S + 1
2m + 1

d
(

(µ1, ν1) , (µ2, ν2)
)2

making the proof complete. Note that the assumption σ = m
S > 1

2 guarantees that the
Lipschitz constant is in ]0, 1[. ⊓*

4.3 Contraction Method in Continuous Time

In continuous time, the laws of XCT and Y CT are solutions of the following system
(cf. (18)):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X L= U m
( a+1∑

k=1

X (k) +
S+1∑

k=a+2

Y (k)

)

Y L= U m
( c∑

k=1

X (k) +
S+1∑

k=c+1

Y (k)

)
,

The following theorem, which is the continuous-time version of Theorem 7, can be
proved by adapting the arguments of Theorem 7. It is still in the same vein as Neininger
and Rüschendorf [28] or Knape and Neininger [22]. Details are left to the reader.

Theorem 8 (i) When B and C are real numbers that satisfy cB+bC = 0, System (18)
has a unique solution in M2 (B) × M2 (C).

(ii) The pair
(
XCT, Y CT)

is the unique solution of the distributional system (18) having( b
S ,− c

S

)
as expectation and a finite second moment.

5 Moments

This section is devoted to the asymptotics of the moments of the limit variables W DT

and W CT. We shall see that they are big but not too much. Observe first that the con-
nexion (10) allows us to study only one of the two cases among discrete or continuous
case. We chose to focus on the continuous case, since the fixed-point equation system
is slightly easier to deal with. Let us recall here system (18).

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X L= U m
( a+1∑

k=1

X (k) +
S+1∑

k=a+2

Y (k)

)

Y L= U m
( c∑

k=1

X (k) +
S+1∑

k=c+1

Y (k)

)
,
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where U is uniform on [0, 1], where X , X (k) and Y , Y (k) are respective copies of XCT

and Y CT, all being independent of each other and of U .
Up to now, what is known about the size of these moments is contained in [13]

where it is proved that the radius of convergence of the Laplace series of a nontrivial
square-integrable solution of (18) is equal to zero. Consequently, by the Hadamard
formula for the radius of convergence,

lim sup
p

(
E|X |p

p!

) 1
p

= +∞.

In other words, for any constant C , for any integer p0 ≥ 1, there exists an integer
p ≥ p0 such that

C p ≤ E|X |p

p! .

The following lemma gives an upperbound for E|X |p

p! . It is the argument leading to
Theorem 9 where it is proved that the law of X is determined by its moments.

Lemma 7 If X and Y are square-integrable solutions of (18), they admit absolute

moments of all orders p ≥ 1 and the sequences
(

E|X |p

p! logp p

) 1
p

and
(

E|Y |p

p! logp p

) 1
p

are
bounded.

Proof Since X and Y are square-integrable solutions of (18), their respective expec-
tations B and C satisfy cB + bC = 0. We may assume that BC ̸= 0 (otherwise X
and Y are trivial). By Theorem 8, the random variables bX

SB and −cY
SC are, respectively,

distributed like XCT and Y CT so that they admit moments of all orders.
Let ϕ(p) := logp(p + 2) and define

u p := E|X |p

p!ϕ(p)
and vp := E|Y |p

p!ϕ(p)
.

We show by induction that, for all integer p ≥ 1, the positive numbers
(

E|X |p

p!ϕ(p)

) 1
p and

(
E|Y |p

p!ϕ(p)

) 1
p define bounded sequences. Notice that a similar technique is used in Kahane

and Peyrière [21]. Take the power p in the first equation, notice that EU mp = 1
mp+1 ,

and isolate the two extreme terms. One gets (remember S + 1 = a + 1 + b)

E|X |p ≤ 1
mp + 1

(
(a + 1)E|X |p + bE|Y |p

+
∑

p1+···+pS+1=p
p j ≤p−1

p!
p1! · · · pS+1!

E|X |p1 · · · E|X |pa+1E|Y |pa+2 · · · E|Y |pS+1

)
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or also

(mp − a)E|X |p ≤ bE|Y |p

+
∑

p1+···+pS+1=p
p j ≤p−1

p!
p1! · · · pS+1!

E|X |p1 · · · E|X |pa+1E|Y |pa+2 · · · E|Y |pS+1 .

An analog inequality holds for E|Y |p, leading to the system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(mp − a)u p ≤ bvp +
∑

p1+···+pS+1=p
p j ≤p−1

u p1 · · · u pa+1vpa+2 · · · vpS+1

ϕ(p1) · · · ϕ(pS+1)

ϕ(p)

(mp − d)vp ≤ cu p +
∑

p1+···+pS+1=p
p j ≤p−1

u p1 · · · u pcvpc+1 · · · vpS+1

ϕ(p1) · · · ϕ(pS+1)

ϕ(p)
.

(22)

Since the eigenvalues of R are S and m, and since m
S > 1

2 (we consider a large urn),
then, for all integer p ≥ 2, the matrix (mpI2 − R) is invertible. Moreover, its inverse
is given by

(mpI2 − R)−1 = 1
(mp − d)(mp − a) − bc

(
mp − d b

c mp − a

)
.

For all integer p ≥ 2, mp −a > S −a = b ≥ 0, mp −d > c ≥ 0 and (mp −d)(mp −
a)− bc > 0, and the inverse of (mpI2 − R) has thus nonnegative coefficients. We can
thus rewrite System (22) as

(mpI2 − R)

(
u p
vp

)
≤ tp−1,

where the inequality has to be read coefficient by coefficient, and where the two
coefficients of vector tp−1 are the two sums arisen in System (22). Therefore, since
the inverse of (mpI2 − R) has nonnegative coefficients, we get

(
u p
vp

)
≤ (mpI2 − R)−1tp−1.

Let p0 be the smallest positive integer such that for any p ≥ p0,

m(p − 1)

(mp − a)(mp − d) − bc

(
1 + 8 log (p + 2)

)S+1
≤ 1.

Such a p0 exists since the left-hand side goes to 0 when p goes to +∞. Denote

A := max
1≤q≤p0

{(
uq

) 1
q ,

(
vq

) 1
q

}
.
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Assume by induction on p ≥ p0 + 1 that for every q ≤ p − 1, (uq)
1
q ≤ A and

(vq)
1
q ≤ A. Then,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(mp − a)u p ≤ bvp + Ap
∑

p1+···+pS+1=p
p j ≤p−1

ϕ(p1) · · ·ϕ(pS+1)

ϕ(p)

(mp − d)vp ≤ cu p + Ap
∑

p1+···+pS+1=p
p j ≤p−1

ϕ(p1) · · ·ϕ(pS+1)

ϕ(p)
.

Let

0(p) :=
∑

p1+···+pS+1=p
p j ≤p−1

ϕ(p1) · · ·ϕ(pS+1)

ϕ(p)
(23)

so that
{

(mp − a)u p ≤ bvp + Ap0(p)

(mp − d)vp ≤ cu p + Ap0(p)

which implies

u p ≤ m(p − 1)

(mp − a)(mp − d) − bc
Ap0(p)

and the same inequality for vp as well. Admit for a while the following lemma.

Lemma 8 For every p ≥ 2, 0(p) ≤
(

1 + 8 log (p + 2)
)S+1

.

Consequently,

u p ≤ m(p − 1)

(mp − a)(mp − d) − bc
Ap

(
1 + 8 log (p + 2)

)S+1
.

By definition of p0, this implies that (u p)
1
p ≤ A and the recurrence holds. ⊓*

Proof of Lemma 8 The definitions of ϕ and 0 imply directly that

0(p) =
∑

p1+···+pS+1=p
p j ≤p−1

logp1 (p1 + 2) · · · logpS+1 (pS+1 + 2)

logp (p + 2)

=
∑

p1+···+pS+1=p
p j ≤p−1

⎛

⎝1+
log

(
1 − p−p1

p+2

)

log (p + 2)

⎞

⎠

p1

· · ·

⎛

⎝1+
log

(
1 − p−pS+1

p+2

)

log (p + 2)

⎞

⎠

pS+1

.
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Using log(1 − u) ≤ −u for all u < 1 leads to

0(p)≤
∑

p1+···+pS+1=p
p j ≤p−1

(
1− p − p1

(p + 2) log (p + 2)

)p1

· · ·
(

1− p− pS+1

(p+2) log (p+2)

)pS+1

which can be written with an exponential to get, using again log(1 − u) ≤ −u:

0(p) ≤
∑

p1+···+pS+1=p
p j ≤p−1

exp

⎧
⎨

⎩− p2

(p + 2) log (p + 2)

S+1∑

j=1

p j

p

(
1 − p j

p

)⎫
⎬

⎭

Let ψp(x) := exp
(

− p2

(p + 2) log (p + 2)
x(1 − x)

)
, so that

0(p) ≤
∑

p1+···+pS+1=p
p j ≤p−1

ψp

(
p1

p

)
· · ·ψp

(
pS+1

p

)

≤
∑

0≤p1,...,pS+1≤p−1

ψp

(
p1

p

)
· · ·ψp

(
pS+1

p

)

=

⎛

⎝
p−1∑

k=0

ψp

(
k
p

)⎞

⎠
S+1

.

Elementary calculations lead then to

p−1∑

k=0

ψp

(
k
p

)
≤ 1 + p

∫ 1

0
ψp(t)dt

and for any α > 0

1∫

0

exp (−αx(1 − x)) dt ≤ 4
α

so that

1∫

0

ψp(t)dt ≤ 4
(p + 2) log (p + 2)

p2

and the lemma holds. ⊓*
The upperbound on the moments obtained in Lemma 7 leads to the following

theorem.
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Theorem 9 (i) Let X and Y be square-integrable solutions of (18). Then X and Y
admit absolute moments of all orders p ≥ 1 and the probability distributions of
|X |, |Y |, X and Y are determined by their moments.

(ii) Let X and Y be square-integrable solutions of (15). Then their Laplace series
have a radius of convergence equal to +∞ (and their laws are thus determined
by their moments).

Proof (i) By Lemma 7, if X and Y are square-integrable solutions of (18), they admit
moments of all orders and, when p is large enough,

(
E|X |p)− 1

p ≥ C
(p!)−

1
p

log p
. (24)

Besides, by Stirling’s formula, when p tends to infinity,

(p!)−
1
p

log p
∼ e

p log p

which is the general term of a Bertrand divergent series. The Carleman’s criterion
applies, implying that X and Y are moment determined.

(ii) If X and Y are square-integrable solutions of (15) and if ξ is an independent
Gamma

( 1
S

)
-distributed random variable, then thanks to Proposition 1, ξσ X and ξσY

are square-integrable solutions of (18) so that they both satisfy

E |ξσ X |p

p! ≤ C plogp p.

Consequently, for another constant D

E |X |p

p! ≤ D p logp p

Γ (σ p + 1
S )

so that the radius of convergence of the Laplace series of X and Y are infinite. ⊓*
Corollary 2 (i) For any initial composition (α,β), the limit law W CT

(α,β) of a large
Pólya urn process is determined by its moments.

(ii) For any initial composition (α,β), the Laplace series of W DT
(α,β) has an infinite

radius of convergence.

Proof (i) For elementary initial compositions (1, 0) or (0, 1), the result is a direct
consequence of Theorems 7, 8 and 9. For a general initial composition (α,β) in
continuous time, notice that decomposition Formula (16) implies that

||W CT
(α,β)||p ≤ α||W CT

(1,0)||p + β||W CT
(0,1)||p.

Since W CT
(1,0) and W CT

(0,1) satisfy (24), W CT
(α,β) satisfies Carleman’s criterion; it is thus

determined by its moments.
(ii) is a direct consequence of Theorem 9 and of decomposition Formula (12). ⊓*
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Remark 4 We have shown throughout the present paper that the random variable W DT

is smoother than W CT:

• its Laplace series is convergent,
• its Fourier transform is L1, and
• its density is continuous and bounded,

which is not true concerning W CT.

Acknowledgments The authors wish to thank Quansheng Liu for stimulating discussions which gave birth
to the recursive computation on the moments. They warmly thank Henning Sulzbach and the anonymous
referee for pointing out an error in a first version. In addition, one may have recognized Philippe Flajolet’s
style in the Maple figures, which are originally due to him.

6 Appendix: Pólya urns and Dirichlet Distribution

In this section, we deal with results that belong to the “folklore”: they are not new
neither very difficult, but are nowhere properly gathered, to the best of our knowledge.
Proposition 3 goes back to Athreya [3] with different names and a different proof. It
is partially given in Blackwell and Kendall [9] for S = 1 and starting from one ball
of each color. The moment method is evocated in Johnson and Kotz book [20]. We
detail here a proof to make our paper self-contained.

6.1 Dirichlet Distributions

This section gathers some well-known facts on Dirichlet distributions. Besides, we fix
notations we use in the sequel.

Let d ≥ 2 be a natural integer. Let " be the (d − 1)-dimensional simplex

" =
{

(x1, . . . xd) ∈ [0, 1]d ,

d∑

k=1

xk = 1

}

.

The following formula is a generalization of the definition of Euler’s Bêta function:
let (ν1, . . . , νd) be positive real numbers. Then,

∫

"

[
d∏

k=1

xνk−1
k

]

d" (x1, . . . , xd) = Γ (ν1) · · ·Γ (νd)

Γ (ν1 + · · · + νd)
(25)

where d" denotes the positive measure on the simplex ", defined by

f (x1, . . . , xd) d" (x1, . . . , xd)

= f

(

x1, . . . , xd−1, 1 −
d−1∑

k=1

xk

)

1{
x∈[0,1]d−1,

∑d−1
k=1 xk≤1

}dx1 · · · dxd−1

for any continuous function f defined on ".
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By means of this formula, one defines usually the Dirichlet distribution with para-
meters (ν1, . . . , νd), denoted by Dirichlet (ν1, . . . , νd), whose density on" is given
by

Γ (ν1 + · · · + νd)

Γ (ν1) · · ·Γ (νd)

[
d∏

k=1

xνk−1
k

]

d" (x1, . . . , xd) .

In particular, if D = (D1, . . . , Dd) is a d-dimensional random vector which is Dirich-
let distributed with parameters (ν1, . . . , νd), then, for any p = (p1, . . . , pd) ∈ Nd ,
the (joint) moment of order p of D is

E
(
D p) = E

(
D p1

1 · · · D pd
d

)
= Γ (ν)

Γ (ν + |p|)
d∏

k=1

Γ (νk + pk)

Γ (νk)

where ν = ∑d
k=1 νk and |p| = ∑d

k=1 pk .
Finally, a computation of same kind shows that the [0, 1]-valued random variable

Dk , which is the k-th marginal distribution of D, is Beta (νk, ν − νk)-distributed i.e.
admits the density

1
B (νk, ν − νk)

tνk−1 (1 − t)ν−νk−1 1[0,1]dt.

An alternative description of a Dirichlet distribution can be made by considering a
sequence (G1, . . . , Gd) of Gamma-distributed random variables:

Proposition 2 (cf. Bertoin [7, p. 63]) If ξ1, . . . , ξd are d independent Gamma-
distributed random variables of respective parameters (ν1, ν), . . . , (νd , ν), if ξ =∑d

i=1 ξi , then ξ is Gamma-(ν1 + · · · + νd , ν) distributed, and the random vector(
ξ1
ξ , . . . , ξd

ξ

)
is Dirichlet(ν1, . . . , νd)-distributed and independent of ξ .

6.2 Original/Diagonal Pólya Urns

Proposition 3 Let d ≥ 2 and S ≥ 1 be integers. Let also (α1, . . . ,αd) ∈ Nd\{0}.
Let (Pn)n≥0 be the d-color Pólya urn random process having SId as replacement

matrix and (α1, . . . ,αd) as initial composition. Then, almost surely and in any Lt ,
t ≥ 1,

Pn

nS
−→
n→∞V

where V is a d-dimensional Dirichlet-distributed random vector, with parameters
(α1

S , . . . , αd
S ).

Remark 5 For any k ∈ {1, . . . , d}, the k-th coordinate of V is Beta
(
αk
S ,

∑
j ̸=k

α j
S

)
-

distributed.
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Proof We give here a short autonomous proof. Denoteα = ∑d
k=1 αk ≥ 1. Conditional

expectation at time n + 1 writes

E (Pn+1 |Fn ) = α + (n + 1)S
α + nS

Pn

so that
(

Pn
α+nS

)

n≥0
is a [0, 1]d -valued convergent martingale with mean (α1/α, . . . ,

αd/α); let V be its limit. If f is any function defined on Rd ,

E ( f (Pn+1) |Fn ) =
(

I + 0

α + nS

)
( f ) (Pn)

where

0( f )(v) =
d∑

k=1

vk
[

f (v + Sek) − f (v)
]

(ek is the k-th vector in Rd canonical basis and v = ∑d
k=1 vkek). In particular, as can

be straightforwardly checked, if p = (p1, . . . , pd) ∈ Nd and |p| = ∑d
k=1 pk , the

function

Γp(v) =
d∏

k=1

Γ
( vk

S + pk
)

Γ
( vk

S

) ,

defined on Rd , is an eigenfunction of the operator 0, associated with the eigenvalue
|p|S. Consequently, after a direct induction, for any p ∈ Nd ,

E
(
Γp(Pn)

)
= Γ

(
α
S + n + |p|

)

Γ
(
α
S + n

) · Γ
(
α
S

)

Γ
(
α
S + |p|

) · Γp(P0)

so that, when n tends to infinity, by Stirling’s formula,

E
(
Γp(Pn)

)
= n|p| · Γ

(
α
S

)

Γ
(
α
S + |p|

) · Γp (P0) ·
(

1 + O
(

1
n

))
.

Besides, expanding real polynomials X p = X p1
1 · · · X pd

d in the basis (Γp)p∈Nd , one
gets formulae

X p = S|p|Γp +
∑

k∈Nd

|k|≤|p|−1

ap,kΓk(X)
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where the ap,k are rational numbers. Consequently, when n tends to infinity, one gets
the asymptotics

E
(

Pn

α + nS

)p

= Γ
(
α
S

)

Γ
(
α
S + |p|

)Γp(P0)

(
1 + O

(
1
n

))
.

which implies that, for any p ∈ Nd ,

E
(
V p) = Γ

(
α
S

)

Γ
(
α
S + |p|

)
d∏

k=1

Γ
(αk

S + pk
)

Γ
(αk

S

) . (26)

Note that this proves the convergence of the martingale in Lt for all t ≥ 1. Since a
Dirichlet distribution is determined by its moments (because its support is compact),
this shows that the law of V is a Dirichlet distribution with parameters

(
α1
S , . . . , αd

S

)
.

⊓*
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