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Variable Length Markov Chains, Persistent
Random Walks: A Close Encounter

We consider a walker on the line that at each step keeps the same direction with a
probability that depends on the time already spent in the direction the walker is
currently moving. These walks with memories of variable length can be seen as
generalizations of directionally reinforced random walks (DRRWs) introduced in
Mauldin et al. (1996). We give a complete and usable characterization of the
recurrence or transience in terms of the probabilities to switch the direction. These
conditions are related to some characterizations of existence and uniqueness of a
stationary probability measure for a particular Markov chain: in this chapter, we define
the general model for words produced by a variable length Markov chain (VLMC) and
we introduce a key combinatorial structure on words. For a subclass of these VLMC,
this provides necessary and sufficient conditions for existence of a stationary
probability measure.

1.1. Introduction

This is the story of the encounter between two worlds: the world of random walks

and the world of VLMCs. The meeting point turns around the semi-Markov property

of underlying processes.

In a VLMC, unlike fixed-order Markov chains, the probability to predict the next

symbol depends on a possibly unbounded part of the past, the length of which depends

on the past itself. These relevant parts of pasts are called contexts. They are stored in

a context tree. With each context, a probability distribution is associated, prescribing

the conditional probability of the next symbol, given this context.
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VLMCs are now widely used as random models for character strings. They were

introduced in Rissanen (1983) to perform data compression. When they have a finite

memory, they provide a parsimonious alternative to fixed-order Markov chain models,

in which the number of parameters to estimate grows exponentially fast with the order;

they are also able to capture finer properties of character sequences. When they have

infinite memory – this will be our case of study in this chapter – they are a tractable

way to build non-Markov models and they may be considered as a subclass of “chaînes
à liaisons complètes” (Doeblin and Fortet 1937) or “chains with infinite order” (Harris

1955).

VLMCs are used in bioinformatics, linguistics and coding theory to model how

words grow or to classify words. In bioinformatics, both for protein families and DNA

sequences, identifying patterns that have a biological meaning is a crucial issue. Using

VLMC as a model enables one to quantify the influence of a meaning pattern by

giving a transition probability on the following letter of the sequence. In this way, these

patterns appear as contexts of a context tree. Note that their length may be unbounded

(Bejerano and Yona 2001).

In addition, if the context tree is recognized to be a signature of a family (say, of

proteins), this gives an efficient statistical method to test whether or not two samples

belong to the same family (Busch et al. 2009).

Therefore, estimating a context tree is an issue of interest and many authors

(statisticians or not, applied or not) stress the fact that the height of the context tree

should not be supposed to be bounded. This is the case in Galves and Leonardi

(2008) where the algorithm CONTEXT is used to estimate an unbounded context tree,

or in Garivier and Leonardi (2011). Furthermore, as explained in Csiszár and Talata

(2006), the height of the estimated context tree grows with the sample size, so that

estimating a context tree by assuming a priori that its height is bounded is not

realistic.

There is extensive literature on the construction of efficient estimators of context

trees, as well for finite or infinite context trees. This chapter is not a review of statistics

issues, which would already be relevant for finite memory VLMC. This is a study

of the probabilistic properties of infinite memory VLMC as random processes, and

more specifically of the main property of interest for such processes: existence and

uniqueness of a stationary measure.

As has already been said, VLMC are a natural generalization to infinite memory

of Markov chains. It is usual to index a sequence of random variables forming a

Markov chain with positive integers and to make the process grow to the right. The

main drawback of this habit for an infinite memory process is that the sequence of the

process is read from left to right, whereas the (possibly infinite) sequence giving the

past needed to predict the next symbol is read in the context tree from right to left,
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thus giving rise to confusion and lack of readability. For this reason, in this chapter,

the VLMC grows to the left. In this way, both the process sequence and the memory

in the context tree are read from left to right.

Classical random walks have independent and identically distributed increments.

In the literature, persistent random walks (PRMs), also called Goldstein-Kac random
walks or correlated random walks, refer to random walks having a Markov chain of

finite order as an increment process. For such walks, the dynamics of trajectories has

a short memory of given length and the random walk itself is not Markovian anymore.

What happens whenever the increments depend on a non-bounded past memory?

Consider a walker on Z, allowed to increment its trajectory by −1 or 1 at each

step of time. Assume that the probability to keep the current direction ±1 depends

on the time already spent in the said direction – the distribution of increments thus

acts as a reinforcement of the dependency from the past. More precisely, the process

of increments of such a one-dimensional random walk is a Markov chain on the set

of (right-)infinite words, with variable – and unbounded – length memory: a VLMC.

The concerned VLMC is defined in section 1.3.1. It is based on a context tree called

a double comb. Later, section 1.3.2 deals with a two-dimensional persistent random

walk defined in an analogous manner on Z2 by a VLMC based on a context tree called

a quadruple comb.

These random walks that have an unbounded past memory can be seen as a

generalization of “directionally reinforced random walks (DRRW)” introduced by

Mauldin et al. (1996), in the sense that the persistence times are anisotropic ones. For

a one-dimensional random walk associated with a double comb, a complete

characterization of recurrence and transience, in terms of changing (or not) direction

probabilities, is given in section 1.3.1. More precisely, when one of the random times

spent in a given direction (the so-called persistence times) is an integrable random

variable, the recurrence property is equivalent to a classical drift-vanishing. In all

other cases, the walk is transient unless the weight of the tail distributions of both

persistent times are equal. In two-dimensional random walk, sufficient conditions of

transience of recurrence are given in section 1.3.2.

Actually, because of the very specific form of the underlying driving VLMC,

these PRWs turn out to be in one-to-one correspondence with so-called Markov
additive processes. Section 1.5 examines the close links between PRWs, Markov

additive processes, semi-Markov chains and VLMC.

In section 1.2, the definition of a general VLMC and a couple of examples are

given. In section 1.3, the PRWs are defined and known results on their recurrence

properties are collected. In view of section 1.5 where we show how PRW and VLMC

meet through the world of semi-Markov chains, section 1.4 is devoted to results –

together with a heuristic approach – on the existence and unicity of stationary

measures for a VLMC.
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1.2. VLMCs: definition of the model

Let A be a finite set, called the alphabet. Here A will most often be the standard

alphabet A = {0, 1}, but also A = {d, u} (for down and up) or A = {n, e, w, s} (for

the cardinal directions). Let

R = {αβγ · · · : α, β, γ, · · · ∈ A}

be the set of right-infinite words over A, written by simple concatenation. A VLMC

on A, defined below and most often denoted by (Un)n∈N
, is a particular type of

R-valued discrete time Markov chain where:

– the process evolves between time n and time n + 1 by adding one letter on the
left of Un;

– the transition probabilities between time n and time n + 1 depend on a finite –

but not bounded – prefix1 of the current word Un.

Giving a formal frame of such a process leads to the following definitions. For a

complete presentation of VLMC, one can also refer to Cénac et al. (2012).

As usual, a tree on A is a set T of finite words – namely a subset of ∪n∈NAn –

which contains the empty word ∅ (the root of T ) and which is prefix-stable: for all

finite words u, v, uv ∈ T =⇒ u ∈ T . A tree is made of internal nodes (u ∈ T is

internal when ∃α ∈ A, uα ∈ T ) and of leaves (u ∈ T is a leaf when it has no child:

∀α ∈ A, uα /∈ T ).

DEFINITION 1.1 (Context tree).– A context tree on A is a saturated tree on A having
an at most countable set of infinite branches.

The tree T is saturated whenever any internal node has #(A) children: for any

finite word u and for any α ∈ A, uα ∈ T =⇒ (∀β ∈ A, uβ ∈ T ). A right-infinite

word on A is an infinite branch of T when all its finite prefixes belong to T .

Following the vocabulary introduced by Rissanen, a context of the tree is a leaf

or an infinite branch. A finite or right-infinite word on A is an external node when it

is neither internal nor a context. See Figure 1.1 which illustrates these definitions, as

well as the pref function defined hereunder.

DEFINITION 1.2 (pref function).– Let T be a context tree. If w is any external node
or any context, the symbol pref w denotes the longest (finite or infinite) prefix of w
that belongs to T .

1 In fact, an infinite prefix might be needed in a denumerable number of cases.
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In other words, pref w is the only context c for which w = c · · · For a more visual

presentation, hang w by its head (its left-most letter) and insert it into the tree; the only

context through which the word goes out of the tree is its pref .

An internal node A context

1000

0 1

Figure 1.1. A context tree on the alphabet A = {0, 1}. The dotted lines are possibly the
beginning of infinite branches. Any word that writes 1000 · · · , like the one represented
by the dashed line, admits 1000 as a pref. For a color version of this figure, see
www.iste.co.uk/barbu/data.zip

With these definitions, it is now possible to define a VLMC.

DEFINITION 1.3 (VLMC).– Let T be a context tree. For every context c of T , let qc be
a probability measure onA. The VLMC defined by T and by the (qc)c is theR-valued
discrete-time Markov chain (Un)n∈N

defined by the following transition probabilities:
∀n ∈ N, ∀α ∈ A,

P (Un+1 = αUn|Un) = qpref(Un) (α) . [1.1]

To get a realization of a VLMC as a process on R, take a (random) right infinite

word

U0 = X0X−1X−2X−3 · · ·

At each step of time n ≥ 0, one gets Un+1 by adding a random letter Xn+1 on the

left of Un:

Un+1 = Xn+1Un

= Xn+1Xn · · ·X1X0X−1X−2 · · ·

under the conditional distribution [1.1].

REMARK 1.1.– Probabilizing a context tree consists, as in definition 1.3, of endowing

it with a family of probability measures on the alphabet, indexed by the set of contexts.

This vocabulary is used below.
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REMARK 1.2.– Assume that the context tree is finite and denote its height by h; in

this condition, the VLMC is just a Markov chain of order h on A. On the contrary,

when the context tree is infinite, and this is mainly our case of interest, the VLMC is

generally not a Markov process on A.

EXAMPLE 1.1.– Take A = {n, e, w, s} as an (ordered) alphabet, so that the daughters

of an internal node are represented, as shown on the left side of Figure 1.2. Making the

transition probabilities P (Un+1 = αUn|Un) depend only on the length of the largest

prefix of the form nk (k ≥ 0) of Un amounts to taking a comb as a context tree, as

shown on the right side of Figure 1.2. Its finite contexts are the nkα where k ≥ 0 and

α ∈ A \ {n}.

n e w s

Figure 1.2. On the left: how one can represent trees on
A = {n, e, w, s}. On the right, the so-called left comb on A = {n, e, w, s}

EXAMPLE 1.2.– Take again A = {n, e, w, s} as an alphabet. Making the transition

probabilities P (Un+1 = αUn|Un) depend only on the length of the largest prefix of

the form αk (k ≥ 1) of Un, where α is any letter, amounts to taking a quadruple comb
as a context tree, as shown on the right side of Figure 1.3. In the same vein, if one

takes A = {u, d}, the double comb is the context tree, as shown on the left side of

Figure 1.3. In the corresponding VLMC, the transitions depend only on the length of

the last current run uk or dk, k ≥ 1. The double comb and the quadruple comb are

used below to define PRWs.

Figure 1.3. The double comb and the quadruple comb

EXAMPLE 1.3.– Take A = {0, 1} (naturally ordered for the drawings). The left comb

of right combs, shown on the left side of Figure 1.4, is the context tree of a VLMC that

makes its transition probabilities depend on the largest prefix of Un of the form 0p1q .
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If one has to take into consideration the largest prefix of the form 0p1q or 1p0q , one has

to use the double comb of opposite combs, as shown on the right side of Figure 1.4.

Figure 1.4. Context trees on A = {0, 1}: the left comb of right combs
(on the left) and a double comb of opposite combs (on the right)

DEFINITION 1.4 (Non-nullness).– A VLMC is called non-null when no transition
probability vanishes, i.e. when qc(α) > 0 for every context c and for every α ∈ A.

Non-nullness appears below as an irreducibility-like assumption made on the

driving VLMC of PRWs and for existence and unicity of an invariant probability

measure for a general VLMC as well.

1.3. Definition and behavior of PRWs

In this section, the so-called PRWs are defined. A PRW is a random walk driven

by some VLMC. In dimensions one and two, results on transience and the recurrence

of PRW are given. These results are detailed and proven in Cénac et al. (2018b, 2013)

in dimension one and in Cénac et al. (2020) in dimension two.

1.3.1. PRWs in dimension one

In this section, we deal with one-dimensional PRWs. Note that, contrary to the

classical random walk, a PRW is generally not Markovian. LetA := {d, u} = {−1, 1}
(d for down and u for up) and consider the double comb on this alphabet as a context

tree, probabilize it and denote by (Un)n a realization of the associated VLMC. The

nth increment Xn of the PRW is given as the first letter of Un: define the persistent

random walk S = (Sn)n≥0 by S0 = 0 and, for n ≥ 1,

Sn :=
n∑

�=1

X�, [1.2]

so that for any n ≥ 1, m ≥ 0,

P (Sm+1 = Sm + 1|Um = dnu . . .) = qdnu(u)

P (Sm+1 = Sm − 1|Um = und . . .) = qund(d).
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Furthermore, for the sake of simplicity and without loss of generality, we condition

the walk to start almost surely (a.s.) from {X−1 = u,X0 = d} – this amounts to

changing the origin of time. In this model, a walker on a line keeps the same direction

with a probability that depends on the discrete time already spent in the direction the

walker is currently moving (see Figure 1.5). This model can be seen as a generalization

of DRRWs introduced in Mauldin et al. (1996).

d

d u

u

u

...

...

u d

B0 B1

d u d

B2

d u

u

u

B3 B4

τd
1 τu

1
τd
2 τu

2

Y1 Y2

Mn =
n∑

�=1

Y�

Sn

Figure 1.5. A one-dimensional PRW. For a color version
of this figure, see www.iste.co.uk/barbu/data.zip

Taking different probabilized context trees would lead to different probabilistic

impacts on the asymptotic behavior of resulting PRWs. Moreover, the

characterization of the recurrent versus transient behavior is difficult in general. We

state here exhaustive recurrence criteria for PRWs defined from a double comb.

In order to avoid trivial cases, we assume that S cannot be frozen in one of the two

directions with a positive probability. Therefore, we make the following assumption.

ASSUMPTION 1.1 (Finiteness of the length of runs).– For any α, β ∈ {u, d}, α 	= β,

lim
n→+∞

(
n∏

k=1

qαkβ(α)

)
= 0. [1.3]
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Let τun and τdn be, respectively, the length of the nth rise and of the nth descent.

Then, by a renewal-type property (see Cénac et al. 2013, proposition 2.3), (τdn)n≥1

and (τun )n≥1 are independent sequences of i.d.d. random variables. Their distribution

tails are straightforwardly given by: for any α, β ∈ {u, d}, α 	= β and n ≥ 1,

P(τα1 ≥ n) =

n−1∏
k=1

qαkβ(α). [1.4]

Note that assumption 1.1 amounts to supposing that the persistence times τdn and

τun are a.s. finite. The jump times (or breaking times) are: B0 = 0 and, for n ≥ 1,

B2n :=
n∑

k=1

(
τdk + τuk

)
and B2n+1 := B2n + τdn+1. [1.5]

In order to deal with a more tractable random walk built with the possibly

unbounded but i.d.d. increments Yn := τun − τdn , we introduce the underlying

skeleton random walk (Mn)n≥1, which is the original walk observed at the random

times of up-to-down turns:

Mn :=
n∑

k=1

Yk = SB2n . [1.6]

Two main quantities play a key role in the asymptotic behavior, namely the

expectations of the lengths of runs: with formula [1.4], let

Θd := E[τd1 ] =
∑
n≥1

n−1∏
k=1

qdku(d) and Θu := E[τu1 ] =
∑
n≥1

n−1∏
k=1

qukd(u). [1.7]

Actually, Θd and Θu are already discussed in Cénac et al. (2013, proposition B1),

where it is shown that the driving VLMC of a one-dimensional PRW admits a unique

invariant probability measure if and only if Θd <∞ and Θu <∞.

Note that the expectation of Y1 is well defined in [−∞,+∞] whenever at least one

of the persistence times τu1 or τd1 is integrable. Thus, as soon as Θd <∞ or Θu <∞,

let

dM := E[Y1] = Θu −Θd︸ ︷︷ ︸
∈[−∞,+∞]

[1.8]

and

dS :=
E[τu1 ]−E[τd1 ]

E[τu1 ] +E[τd1 ]
=

Θu −Θd

Θu +Θd
∈ [−1, 1]. [1.9]
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An elementary computation shows that E (Mn) = ndM and E (Sn) ∼ ndS when

n tends to infinity. Thus, dM and dS appear as asymptotic drifts when the walks

(Mn)n and (Sn)n respectively, turn out to be transient (see Table 1.1). The behavior

of the walk also depends on quantities Jα|β , defined for α and β ∈ A, α 	= β by:

Jα|β :=

∞∑
n=1

nP(τα1 = n)∑n
k=1 P(τ

β
1 ≥ k)

.

A complete and usable characterization of the recurrence and the transience of

the PRW in terms of the probabilities to persist in the same direction or to switch is

given in proposition 1.1. Its proof relies on a criterion of Erickson (1973), applied to

the skeleton walk (Mn)n, which is simpler to deal with because its increments are

independent.

PROPOSITION 1.1.– Under the non-nullness assumption and assumption 1.1, the

random walk (Sn)n is recurrent or transient as described in Table 1.1.

Θu < ∞ Θu = ∞

Θd < ∞
Drifting +∞

Drifting +∞Recurrent dS > 0
dS = 0 Drifting −∞

dS < 0

Θd = ∞ Drifting −∞
Drifting +∞

Recurrent ∞ = Ju|d > Jd|u
Ju|d = Jd|u = ∞ Drifting −∞

∞ = Jd|u > Ju|d

Table 1.1. Recurrence versus transience (drifting)
for (Sn)n in dimension one

The most fruitful situation emerges when both running times τu1 and τd1 have

infinite means. In that case, the recurrence properties of (Sn)n are related to the

behavior of the skeleton random walk (Mn)n defined in [1.6], the drift of which,

dM , is not defined. Thus, the behavior of (Sn)n depends on the comparison between

the distribution tails of τu1 and τd1 defined in [1.4], expressed by the quantities Jα|β .

Note that the case when both Ju|d and Jd|u are finite does not appear in the table

since it would imply that Θu <∞ and Θd <∞ (see Erickson 1973).

In all three other cases, the drift dS is well defined and the PRW is recurrent if and

only if dS = 0. In that case, lim
n→∞

Sn

n
= dS = 0. Note that modifying one transition

qc transforms a recurrent PRW into a transient one, since dS becomes non-zero.
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1.3.2. PRWs in dimension two

Take the alphabet A := {n, e, w, s}. Here, (e, n) stands for the canonical basis

of Z2, w = −e and s = −n. Hence, the letters e, n, w and s stand for moves to the east,

north, west and south, respectively. Having in mind a random walk with increments

in A, any word of the form αβ, α, β ∈ A, α 	= β is called a bend. For the sake of

simplicity, we condition the walk to start a.s. with an ne bend: {X−1 = n, X0 = e}.

J0 = ne
J1 = en

J2 = nw

J3 = ws

J4 = se J5 = en

J6 = ns

J7 = sw

B1

B2 − B1

M0
M1

M2
M3

M4
M5

M6

M7

Figure 1.6. A walk in dimension two. For a color version
of this figure, see www.iste.co.uk/barbu/data.zip

Take a non-null VLMC associated with a quadruple comb on A, as shown in

Figure 1.3: the contexts are αnβ for α, β ∈ A, α 	= β, n ≥ 1 and the attached

probability distributions are denoted by qαnβ . The two-dimensional PRW (Sn)n is

defined, using this VLMC, as in formula [1.2].

Contrary to the one-dimensional PRWs, as detailed below, the probability to

change direction depends on the time spent in the current direction but also on the

previous direction. As in dimension one, we intend to avoid that S remains frozen in

one of the four directions with a positive probability. Therefore, we make the

following assumption, analogous to assumption 1.1 in dimension two.

ASSUMPTION 1.2 (Finiteness of the length of runs).– For any α, β ∈ {n, e, w, s},

α 	= β,

lim
n→+∞

(
n∏

k=1

qαkβ(α)

)
= 0. [1.10]
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Let (Bn)n≥0 be the breaking times defined inductively by

B0 = 0 and Bn+1 = inf {k > Bn : Xk 	= Xk−1} . [1.11]

As in dimension one, assumption 1.2 implies that the breaking times Bn are a.s.

finite.

Define the so-called internal chain (Jn)n≥0 by J0 = ne and, for all n ≥ 1,

Jn := XBn−1XBn . [1.12]

Let us illustrate these random variables with a small example, in which: B1 = 4,

B2 = 7, J0 = X−1X0, J1 = XB0XB1 = X0X4, J2 = XB1XB2 = X4X7.

−1 0 1 2 3 4 5 6 7

n e e e e n n n w

B0 = 0

J0 = ne

B1 = 4

J1 = en

B2 = 7

J2 = nw

n:

Xn:

The process (Jn)n≥0 is an irreducible Markov chain on the set of bends S :=
{αβ|α ∈ A, β ∈ A, α 	= β}. Its Markov kernel is defined by: for every β, α, γ ∈ A
with β 	= α and α 	= γ,

P (βα;αγ) :=
∞∑

n=1

(
n−1∏
k=1

qαkβ(α)

)
qαnβ(γ), [1.13]

the numbers P (αβ, γδ) being 0 for every couple of bends not of the previous form.

Remark that the non-nullness assumption (see definition 1.4) implies the irreducibility

of (Jn)n and its aperiodicity. The state space S is finite so that (Jn)n is positive

recurrent: it admits a unique invariant probability measure πJ .

Denote T0 = 0 and Tn+1 := Bn+1 − Bn for every n ≥ 0. These waiting times

(also called persistence times) are not independent, contrary to the one-dimensional

case. The skeleton random walk (Mn)n≥0 on Z2 – which is the PRW observed at the

breaking times – is then defined as

Mn := SBn =
n∑

i=1

⎛⎝ Bi∑
k=Bi−1+1

Xk

⎞⎠ =

n∑
i=1

(Bi −Bi−1)XBi . [1.14]

Note that (Mn)n is generally not a classical RW with i.d.d. increments.

Nevertheless, taking into account the additional information given by the internal
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Markov chain (Jn)n, then (Jn,Mn)n is a Markov additive process (see Çinlar 1972)

as it will appear in section 1.5.

Here, (Jn)n is positive recurrent but this does not imply the recurrence of (Sn)n
or (Mn)n. Moreover, (Sn)n and (Mn)n may have different behaviors. Explicit,

necessary and sufficient conditions for the recurrence of (Mn)n in terms of

characteristic functions and convergence of suitable series are given in Cénac et al.
(2020, theorem 2.1). The following proposition states a dichotomy between some

recurrence versus transience phenomenon.

THEOREM 1.1.– Under non-nullness assumption, the following dichotomy holds:

i) the series
∑

n P (Mn = 0) diverges if and only if the process (Mn)n is recurrent

in the following sense:

∃r > 0, P

(
lim inf
n→∞ ‖Mn‖ < r

)
= 1.

ii) the series
∑

n P (Mn = 0) converges if and only if the process (Mn)n is

transient in the following sense:

P

(
lim

n→∞ ‖Mn‖ =∞
)
= 1.

Does the recurrence (respectively, the transience) of (Mn)n and (Sn)n occur at

the same time? The answer to this 20-year-old question is no:

THEOREM 1.2 (Definitive invalidation of the conjecture in Mauldin et al. 1996).–

There exist recurrent PRWs (Sn)n having an associated transient skeleton (Mn)n.

Supposing that the persistence time distributions are horizontally and vertically

symmetric is a natural necessary condition for the random walk (Sn)n to be

recurrent. One example is given by the DRRW, originally introduced in Mauldin

et al. (1996) (see Figure 1.7). Some particular values of the transition probabilities

qαnβ provide counterexamples. It is shown in Cénac et al. (2020) that the

corresponding distributions of the persistence times must be non-integrable. In

section 1.5, this non-integrability will be related to the non-existence of any invariant

probability measure for the driving VLMC.

1.4. VLMC: existence of stationary probability measures

Consider a VLMC denoted by U = (Un)n≥0, defined by a pair (T , q) where T
is a context tree on an alphabet A and q = (qc)c∈C a family of probability measures

on A, indexed by the contexts of T . A probability measure π on R is stationary or

invariant (with regard to U ) whenever π is the distribution of every Un as soon as it is

the distribution of U0. The question of interest consists here of finding conditions on
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(T , q) for the process to admit at least one – or a unique one – stationary probability

measure. The heuristic presentation aims to show how combinatoric objects, namely

the α-LIS of contexts, and conditional probabilities, the cascades, naturally emerge.

qαnβ(α)

1
3 (1− qαnβ(α))

1
3 (1− qαnβ(α))

1
3 (1− qαnβ(α))

Figure 1.7. The original directionally reinforced random walk (DRRW).
For a color version of this figure, see www.iste.co.uk/barbu/data.zip

Assume that π is a stationary probability measure on R:

– First step: finite words. Since R is endowed with the cylinder σ-algebra, π is

determined by its values π (wR) on the cylinders wR, where w runs over all finite

words on A.

– Second step: longest internal suffixes of words. Assume that e is a finite

non-internal word and take a ∈ A. Then, its pref is well defined and, because of

formula [1.1], since π is stationary,

π (αeR) = qpref(e)(α)× π (eR) . [1.15]

Iterating this formula as far as possible leads to the following definitions.

Consider any non-empty finite word w. It is uniquely decomposed as

w = pαs = β1β2β3 · · ·β�αs, where the α and the β are letters and s is the longest
internal suffix of w. The integer 
 is non-negative and p = β1β2 · · ·β� is a prefix of w
that may be empty – in which case 
 = 0.

DEFINITION 1.5 (Lis and α-LIS).– With these notations, the longest internal suffix s
is shortened as the lis of w. The word αs is called the α-LIS of w.

DEFINITION 1.6 (Cascade).– With the notation above, the cascade of w is the product

casc(w) = qpref(β2···β�αs)(β1)qpref(β3···β�αs)(β2) · · · qpref(αs)(β�). [1.16]

Note that this definition makes sense because all the βk · · ·β�αs are non-internal

words, k ≥ 2. Moreover, if w = αs where s is internal, then 
 = 0 and casc(w) = 1.
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With these definitions, iterating formula [1.15] leads to the following equality, known

as the cascade formula: for every non-empty finite word w having αs as an α-LIS,

π (wR) = casc(w)× π (αsR) . [1.17]

This shows that π is determined by its values on words of the form αs where s is

internal and α ∈ A.

– Third step: finite contexts. Assume that s is an internal word and that α ∈ A. It

is shown in Cénac et al. (2018a) that a stationary probability measure never charges

infinite words so that, by disjoint union,

π (αsR) =
∑

c: finite context
c=s···

π (αcR) =
∑

c: finite context
c=s···

qc(α)π (cR) . [1.18]

Note that the set of indices may be infinite but the family is summable because π
is a finite measure. This shows that π is entirely determined by its values π (cR) on

the finite contexts.

– Fourth step: α-LIS of finite contexts. Cascade formula [1.16] applied to any finite

context c (contexts are non-empty words) is written as π (cR) = casc(c)π (αcscR),
where αcsc is the α-LIS of c. Denote by S = S (T ) the set of finite context α-LIS:

S = {αcsc : c finite context} .

If s is an internal word and if α ∈ A, then formula [1.18] leads to

π (αsR) =
∑

c: finite context
c=s···

casc (αc)π (αcscR) , [1.19]

showing that π is determined by its values π (αcscR) on S.

– Fourth step: a (generally infinite) linear system. When w and v are finite words

and when αs ∈ S , the notation

w = v · · · = · · · [αs]

stands for: w has v as a prefix and αs as an α-LIS. Writing formula [1.19] for every

αs ∈ S and grouping in each of them the terms that arise from contexts having the

same α-LIS leads to the following square system (at most countably many unknowns

π (αsR) and as many equations):

∀αs ∈ S, π (αsR) =
∑
βt∈S

π (βtR)

⎛⎜⎜⎝ ∑
c: finite context
c=s···=···[βt]

casc (αc)

⎞⎟⎟⎠ . [1.20]
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DEFINITION 1.7 (Matrix Q).– When T is a context tree having S as a context α-LIS
set, Q = Q (T ) is the S-indexed square matrix defined by:

∀αs, βt ∈ S, Qβt,αs =
∑

c: finite context
c=s···=···[βt]

casc (αc) ∈ [0,+∞]. [1.21]

Thus, system [1.20] tells us that, when π is a stationary measure, the row-vector

(π (αsR))αs∈S appears as a left-fixed vector of the matrix Q.

DEFINITION 1.8 (Cascade series).– For every αs ∈ S , denote

καs =
∑

c: finite context
c=···[αs]

casc(c) ∈ [0,+∞].

When this series is summable, one says that the cascade series of αs converges.
Whenever the cascades series of all αs ∈ S converge, one says that the cascade series

(of the VLMC) converges.

Note that the convergence of (all) the cascade series is sufficient to guarantee the

finiteness of Q’s entries. Actually, for a general VLMC, as it is made precise in Cénac

et al. (2018a), the convergence of the cascade series appears as a pivot condition when

dealing with existence and unicity of a stationary probability measure. In this chapter,

we state a necessary and sufficient condition for a special kind of VLMC: the stable
ones that have a finite S. The following proposition is proven in Cénac et al. (2018a).

PROPOSITION 1.2.– Let T be a context tree. The following conditions are

equivalent:

i) ∀α ∈ A, ∀w ∈ W , αw ∈ T =⇒ w ∈ T ;

ii) if c is a finite context and α ∈ A, then αc is non-internal;

iii) T ⊆ AT = {αw, α ∈ A, w ∈ T };

iv) for any VLMC (Un)n associated with T , the process (pref(Un))n∈N
is a

Markov chain that has the set of contexts as a state space.

The context tree is referred to as stable whenever one of these conditions is

fulfilled.

It turns out that the stability of T together with the non-nullness of the VLMC

imply both stochasticity and irreducibility of the matrix Q. Consequently, in the simple

case where Q is a finite-dimensional matrix, there exists (because of stochasticity) a

unique (because of irreducibility) left-fixed vector for Q. As a result of a much more

general result proven in Cénac et al. (2018a), this implies the existence and unicity of

a stationary probability measure for the VLMC, as stated below.
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THEOREM 1.3.– Let (T , q) be a non-null stable probabilized context tree. If

#S <∞, then the following are equivalent:

1) the VLMC associated with (T , q) has a unique stationary probability measure;

2) the cascade series converge (see definition 1.8).

Note that in the non-stable case, the matrix Q is generally not stochastic nor is it

even substochastic. Note also that, even in the stable case, when #S =∞, the matrix

Q may be stochastic, irreducible and positive recurrent, while the VLMC does not

admit any stationary probability measure. One can find such an example in remark

3.16, page 20 in Cénac et al. (2020), built with a “left comb of left comb”.

1.5. Where VLMC and PRW meet

On the one hand, a VLMC is defined by its context tree and its transition

probability distributions qc – in particular the double and the quadruple combs that

are stable trees with finitely many context α-LIS.

Necessary and sufficient conditions of existence and uniqueness of stationary

probability measures are given in terms of cascade series. On the other hand, for

PRW (defined from VLMC), recurrence properties are written in terms of persistence

times. Our aim is to build a bridge between these two families of objects and

properties. The meeting point turns out to be the semi-Markov processes of α-LIS

and bends.

1.5.1. Semi-Markov chains and Markov additive processes

Semi-Markov chains are defined following Barbu and Limnios (2008) because of

so-called Markov renewal chains (MRCs).

DEFINITION 1.9 (Markov renewal chain).– A Markov chain (Jn, Tn)n≥0 with state
space E × N is called a (homogeneous) MRC whenever the transition probabilities
satisfy: ∀n ∈ N, ∀a, b ∈ E , ∀j, k ∈ N,

P
(
Jn+1 = b, Tn+1 = k

∣∣Jn = a, Tn = j
)
= P

(
Jn+1 = b, Tn+1 = k

∣∣Jn = a
)

=: pa,b(k)

and ∀a, b ∈ E , pa,b(0) = 0. For such a chain, the family p = (pa,b(k))a,b∈A,k≥1 is
referred to as its semi-Markov kernel.
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DEFINITION 1.10 (Semi-Markov chain).– Let (Jn, Tn)n≥0 be an MRC with state
space E × N. Assume that T0 = 0. For any n ∈ N, let Bn be defined by

Bn =
n∑

i=0

Ti.

The semi-Markov chain associated with (Jn, Tn)n≥0 is the E-valued process
(Zj)j≥0 defined by

∀j such that Bn ≤ j < Bn+1, Zj = Jn.

Note that the sequence (Bn)n≥0 is a.s. increasing because of the assumption

pa,b(0) = 0 (instantaneous transitions are not allowed) that guarantees that Tn ≥ 1
a.s. for any n ≥ 1.

The Bn are jump times, the Tn are sojourn times in a given state and Zj stagnates

at a same state between two successive jump times. The process (Jn)n is called the

internal (underlying) chain of the semi-Markov chain (Zn)n.

The previous definitions make transitions to the same state between time n and

time n + 1 possible. Nevertheless, one can boil down to the case where pa,a(k) = 0
for all a ∈ E , k ∈ N (see the details in Cénac et al. 2018a).

A close notion, Markov additive processes, can be found in Çinlar (1972).

1.5.2. PRWs induce semi-Markov chains

Let us start with one-dimensional PRW, as defined in section 1.3.1. In this case,

at each time j, j ≥ 0, the increment Xj of the walk S takes d or u as a value (see

Figure 1.5). Let us see that (Xj)j≥0 is a semi-Markov chain, starting from X0 = d.

Remember that Bn denotes the nth jump times – see equation [1.5]. Define then (Jn)n
by

Jn := XBn . [1.22]

Moreover, let Tn be the nth waiting time, namely T0 = 0 and, for n ≥ 1,

Tn = Bn −Bn−1.

These waiting times are related to the persistence times τ by the following

formulas: for all k ≥ 1,

T2k := τuk and T2k−1 := τdk . [1.23]
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With these notations, (Jn, Tn)n≥0 is an MRC and its semi-Markov kernel is

written as: ∀α, β ∈ {u, d}, α 	= β, ∀k ≥ 1,

pα,β(k) =

⎛⎝k−1∏
j=1

qαjβ(α)

⎞⎠ qαkβ(β), [1.24]

as can be straightforwardly checked. Moreover, assumption 1.1 guarantees that the Tn

are a.s. finite. Besides, formulas [1.7] are written as

E (T2k) = Θu and E (T2k+1) = Θd.

The situation in dimension one is summarized by the following proposition.

PROPOSITION 1.3.– For a PRW in dimension one, defined by a VLMC associated

with a double comb, the sequence (Xj)j of the increments is an A-valued

semi-Markov chain with MRC (Jn, Tn)n as defined in [1.22] and [1.23] and its

semi-Markov kernel is given by equation [1.24].

Let us now deal with the two-dimensional PRW defined in section 1.3.2. At each

time j, j ≥ 0, the increment Xj of the walk S takes n, e, w or s as a value. But, as

already noted, changing direction depends on the time spent in the current direction

but also, contrary to the one-dimensional PRWs, on the previous direction. In other

words, the bends play the main role. This gives rise to the process (Zj)j , valued

in the set of bends {αβ : α, β ∈ A, α 	= β}, defined in the following manner:

Z0 = X−1X0 = ne and, for j ≥ 1, Zj = αβ if and only if Xj = β and the first letter

distinct from β in the sequence Xj−1, Xj−2, Xj−3, · · · is α. Let us see that (Zj)j≥0

is a semi-Markov chain. Use here notations (Jn)n, (Bn)n and (Tn)n of section 1.3.2.

Note that, contrary to the one-dimensional case, the waiting times Tn are not

independent. Nevertheless, (Jn, Tn)n≥0 is an MRC with semi-Markov kernel

pβα,αγ(k) :=

⎛⎝k−1∏
j=1

qαjβ(α)

⎞⎠ qαkβ(γ), [1.25]

as can be straightforwardly checked. Summarizing, the following proposition holds.

PROPOSITION 1.4.– For a PRW in dimension two, defined by a VLMC associated

with a quadruple comb, the sequence (Zj)j of the bends is a semi-Markov chain

with MRC (Jn, Tn)n as defined in section 1.3.2. Its semi-Markov kernel is given by

equation [1.25]. In addition, (Jn, Bn)n is a Markov additive process.
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1.5.3. Semi-Markov chain of the α-LIS in a stable VLMC

In this section, let us consider a more general case than a double comb or a

quadruple comb, namely a stable VLMC. In this case, there is always a semi-Markov

chain induced by the process (Un)n, as described in the following.

Let (Un)n≥0 be a stable non-null VLMC such that the series of cascades converge

(see definition 1.8). Recall that S denotes the set of context α-LIS of the VLMC. Let

(Cn)n≥0 be the sequence of contexts, and for n ≥ 0, let Zn be the α-LIS of Cn:

Cn = pref(Un) and Zn = αCnsCn .

PROPOSITION 1.5.– Let (Bn)n≥0 be the increasing sequence of times defined by

B0 = 0 and for any n ≥ 1,

Bn = inf {k > Bn−1, |Ck| ≤ |Ck−1|} = inf {k > Bn−1, Ck ∈ S}

and let Tn = Bn −Bn−1 for n ≥ 1 and T0 = 0. For any n ≥ 0, let Jn = ZBn . Then

i) Bn and Tn are a.s. finite and for αs ∈ S , E
(
Tn

∣∣Jn = αs
)
= καs;

ii) (Zn)n≥0 is an S-valued semi-Markov chain associated with the MRC

(Jn, Tn)n≥0;

iii) the associated semi-Markov kernel writes: ∀αs, βt ∈ S , ∀k ≥ 1,

pαs,βt(k) =
∑

c∈C, c=t···
c=···[αs]

|c|=|αs|+k−1

casc (βc) .

The proof is detailed in Cénac et al. (2018a). It relies on the way the VLMC grows

between two jump times: at the beginning, letters are added to the current context Cn,

the α-LIS does not change and the length of the current context increases one by one.

At a certain time (a.s. finite), adding a letter to the current context does not provide a

context any more but an external node. At this moment, it happens (it is not trivial and

only holds for a stable context tree) that

i) the α-LIS of the current context is renewed;

ii) the length of the current context does not grow;

iii) the current context begins by a lis.

These mechanisms explain the expressions of Bn and the formula giving the

semi-Markov kernel.
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REMARK 1.3.– In the very particular case of the double or quadruple comb, the

semi-Markov chain (Zn)n contains as much information as the chain (Un)n. But in

general, the semi-Markov chain (Zn)n contains less information than the chain

(Un)n. To illustrate this, here is an example with a finite context tree.

α-LIS αs contexts having αs as an α-LIS

10 10,010,110,0010,0110

000 000

111 111,0111

0011 0011

In this example, 0010 and 0110 are two contexts of the same length, with the

same α-LIS 10 and beginning by the same lis 0. Hence, if we know that Jn = 10,

Bn+1 − Bn = 3 and Jn+1 = 10, then Zj is uniquely determined between the two

successive jump times, whereas there are two possibilities to reconstruct the VLMC

(Un)n. With the notations of proposition 1.5, there are two cascade terms in p10,10(3):

p10,10(3) = P (CBn+1 = 010, CBn+2 = 0010, CBn+3 = 10010|CBn
= 10)

+ P (CBn+1 = 110, CBn+2 = 0110, CBn+3 = 10110|CBn = 10)

= q10(0)q010(0)q0010(1) + q10(1)q110(0)q0110(1)

= casc(10010) + casc(10110).

1.5.4. The meeting point

Summing up, the announced close encounter can be done with the following

(commutative) diagram, together with the following explanations.

MRC
(
JV
n , Tn

)
n

VLMC (Un)n

MAP
(
JW
n ,Mn

)
n

PRW (Sn)n

Semi-Markov
(
ZW
n

)
n

Semi-Markov
(
ZV
n

)
n

D

N

R

L

SV

B

SW

[1.26]

The mapping D consists of defining the PRW from the VLMC: the random

increments of the PRW are the initial letters of a VLMC. With the notations above,

Sn =
∑

0≤k≤n Xk, where Xk is the initial letter of Uk.
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The mapping L associates with a VLMC the process of its successive different

α-LIS that turns out to be an MRC when considered together with its jump times Tn

(see section 1.5.3). Here, JV
n is the nth distinct α-LIS of the successive right-infinite

words U0, U1, U2, · · · and Tn is the length of the nth run of identical letters in the

sequence X0, X1X2, · · · The power V refers to the VLMC.

The mapping B associates with a PRW (Sn)n the process of its successive

different bends (changes of directions). With our notations, JW
n is the nth distinct

bend and Mn is the value of S at the precise moment when the nth bend JW
n occurs

(see section 1.5.2). The power W refers to the PRW.

The mapping SV only consists of defining a semi-Markov process from an MRC,

as stated in section 1.5.1. The mapping SW is defined in the same manner: it maps a

MAP
(
JW
n ,Mn

)
n

to the semi-Markov chain of the MRC
(
JW
n ,Mn −Mn−1

)
n

.

The mapping N acts on the first coordinate by reversing words: JV
n = JW

n . The

notation w stands for the reversed word of w: ab = ba. For the second coordinate,

remark first that Mn −Mn−1 is always of the form kα, where k is a positive integer

and α an increment vector. The integer Tn is this k.

Finally, the mapping R is simply the reversing of words: ZV
n = ZW

n .

In fact, in these particular situations (double and quadruple combs), the

composition SV ◦ L is a bijection (see remark 1.3). Therefore, all these mappings are

also one-to-one, showing that all these processes are essentially equivalent.

Now when our different processes are related, let us translate the parameters,

properties and assumptions that come from the VLMC world in terms of PRW and

vice versa.

Dimension one

The PRW in dimension one is driven by a VLMC based on the so-called double

comb, as it was defined in example 1.2. The contexts of this tree are the ukd, which

have ud as an α-LIS, and the dku, which have du as an α-LIS (k ≥ 1 for both families

of contexts). The cascades of the contexts write

casc
(
ukd
)
=

k−1∏
j=1

qujd(u) and casc
(
dku
)
=

k−1∏
j=1

qdju(d)

and there are two cascade series

κud =
∑
k≥1

casc
(
ukd
)

and κdu =
∑
k≥1

casc
(
dku
)
.
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Theorem 1.3 guarantees that, under non-nullness assumption, this VLMC admits

an invariant probability measure if and only if κud < ∞ and κdu < ∞. Since the

double comb is a very simple context tree, one can also make a direct computation

that leads to the following result: a non-null double comb VLMC admits a σ-finite
stationary measure if and only if casc

(
ukd
)
→ 0 and casc

(
dku
)
→ 0 when k tends

to infinity.

It turns out that, on the side of the one-dimensional PRW, assumption 1.1 and the

expectations of the persistence times τu1 and τd1 are functions of these cascades so that

one can relate the above properties of the VLMC to the results of section 1.3.1 on

one-dimensional PRW. The expectations of the waiting times are exactly the sums of

cascades: κud = Θu and κdu = Θd.

Finally, one can assert:⎛⎜⎝ casc
(
ukd
)
−→
k→∞

0

and

casc
(
dku
)
−→
k→∞

0

⎞⎟⎠ ⇐⇒ assumption 1.1

� �

⎛⎝ The VLMC admits
a σ−finite

invariant measure

⎞⎠ ⇐⇒
(

τu1 and τd1
are a.s. finite

)

and ⎛⎜⎜⎜⎜⎝
∑
k≥1

casc
(
ukd
)
<∞

and∑
k≥1

casc
(
dku
)
<∞

⎞⎟⎟⎟⎟⎠ ⇐⇒
(

τu1 and τd1
are integrable

)

�

⎛⎝ The VLMC admits
a unique probability
invariant measure

⎞⎠
The link between recurrence or transience of the PRW and the behavior of the

VLMC is only partial. For instance, the PRW may be recurrent while there is no

invariant probability measure for the VLMC. The PRW may even be transient while

the VLMC admits an invariant probability measure (see Table 1.1).



26 Statistical Topics and Stochastic Models for Dependent Data with Applications

Dimension two

The PRW in dimension two is driven by a VLMC based on the so-called quadruple

comb, as it is defined in example 1.2. Here, the contexts are the αkβ, where α, β ∈
A = {n, e, w, s}, α 	= β, k ≥ 1. The α-LIS of the context αkβ is αβ, and its cascade

is written as

casc
(
αkβ
)
=

k−1∏
i=1

qαiβ(α).

Therefore, there are 12 cascade series, namely

καβ =
∞∑
k=1

casc
(
αkβ
)
, α, β ∈ A, α 	= β. [1.27]

As in dimension one, since the quadruple comb is a stable context tree having

a finite set of context α-LIS, the non-null VLMC that drives the two-dimensional

PRW admits a unique stationary probability measure if and only if the 12 cascade

series [1.27] converge. This is a consequence of theorem 1.3 and, here again, due to the

simplicity of the quadruple comb, one can directly check that a non-null quadruple-
comb VLMC admits a σ-finite stationary measure if and only if casc

(
αkβ
)
→ 0 when

k tends to infinity for every α, β ∈ A, α 	= β.

The transition matrix of the Markov process (Jn)n of the PRW bends, denoted

by P in formula [1.13], is also written as

P (βα, αγ) =
∑
n≥1

casc (γαnβ)

and all other entries vanish. Relating this expression to definition [1.21] of the Q-

matrix of the VLMC leads to the following:

P (βα, αγ) = Qαβ,γα [1.28]

so that, up to the re-ordering that consists of reversing the indices αβ � βα, the

stochastic matrices P and Q are the same ones. Note that, since the quadruple comb

is stable, the process of the α-LIS of the VLMC is Markovian and Q is its transition

matrix. Referring to the commutative diagram [1.26], formula [1.28] amounts to

saying that the Markov chains
(
JV
n

)
n

and
(
JW
n

)
n

are identical.
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In terms of persistence times of the PRW versus stationary measures for the

VLMC, the properties stated in section 1.3.2 show that the following equivalences

hold: ⎛⎝ for all α, β ∈ A, α 	= β,

casc
(
αkβ
)
−→
k→∞

0

⎞⎠ ⇐⇒ assumption 1.2

� �

⎛⎝ The VLMC admits
a σ−finite

invariant measure

⎞⎠ ⇐⇒
(
∀n, Tn is a.s. finite

)
and ⎛⎜⎝ for all α, β ∈ A, α 	= β,∑

k≥1

casc
(
αkβ
)
<∞

⎞⎟⎠ ⇐⇒ (∀n, Tn is integrable)

�

⎛⎝ The VLMC admits
a unique probability
invariant measure

⎞⎠
The counterexample cited in theorem 1.2 is supported by these equivalences: an

example of recurrent two-dimensional PRW having a transient skeleton (Mn)n cannot

be found without assuming that the Tn are a.s. finite but non-integrable, as shown

in Cénac et al. (2020). Reading the above equivalences shows that such a PRW must

be driven by a VLMC the series of cascades of which diverge, while their general

terms tend to zero at infinity.
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