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Variable Length Memory Chains (VLMC), which are generalizations of finite order Markov chains, are an essential
tool to modelize random sequences in many domains, as well as an interesting object in contemporary probability
theory. The question of existence of stationary probability measures leads us to introduce a key combinatorial
structure for words produced by a VLMC: the Longest Internal Suffix. This notion allows us to state a necessary
and sufficient condition for a VLMC to admit a unique invariant probability measure.

This condition turns out to get a much simpler form for a subclass of VLMC: the stable VLMC. This natural
subclass, unlike the general case, enjoys a renewal property. Namely, a stable VLMC induces a semi-Markov chain
on an at most countable state space. Unfortunately, this discrete time renewal process does not contain the whole
information of the VLMC, preventing the study of a stable VLMC to be reduced to the study of its induced semi-
Markov chain. For a subclass of stable VLMC, the convergence in distribution of a VLMC towards its stationary
probability measure is established.

Finally, finite state space semi-Markov chains turn out to be very special stable VLMC, shedding some new
light on their limit distributions.

Keywords: Variable Length Memory Chains; stationary probability measure; Longest Internal Suffix; stable
context trees; semi-Markov chains

1. Introduction

In a Variable Length Memory Chain (VLMC), unlike fixed order Markov chains, the probability to
predict the next symbol depends on a possibly unbounded part of the past, the length of which depends
on the past itself. These relevant parts of pasts are called contexts. They are stored in a context tree.
With each context is associated a probability distribution prescribing the conditional probability of the
next symbol, given this context.

In this paper, we obtain some necessary and sufficient conditions to ensure existence and uniqueness
of a stationary probability measure for a general VLMC.

Pending a complete presentation in Section 2, let us now introduce a few objects, notably the com-
binatorial notion of alpha-LIS (LIS for Longest Internal Suffix), on which our main result is based. Let
A be a finite set, called the alphabet. A so-called context tree is a saturated tree T on this alphabet, i.e.
a tree such that each node has 0 or #A children. The leaves and the infinite branches of T are called
contexts. The set of contexts, supposed to be at most countable, is denoted by C.
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To each context c ∈ C is attached a probability distribution qc on A. Endowed with this probabilistic
structure, such a tree is named a probabilised context tree. Let R be the set of right-infinite words on
the alphabet A. The related VLMC is defined as the R-valued Markov chain (Un)n≥0 whose transitions
are given by

∀n ≥ 0,∀α ∈A, P(Un+1 = αUn|Un) = qcont(Un)(α),

where cont(u) ∈ C is defined as the only prefix of the right-infinite word u appearing as a context. See
Figure 1 for an example of context tree.

If π is a probability measure on R, asking π to be stationary for such a Markov chain (Un)n amounts
to saying that, for any finite word w which writes w = αv where α ∈ A and where v is a non-internal
finite word of the context tree,

π(wR) = qcont(v)(α)π(vR). (1)

In this equality, wR denotes the set of all right-infinite words that begin by w. This formula applies
again for π(vR), and so on, and so forth, until... it is not possible anymore, which means that the suffix
of w is of the form αs where α ∈A and s is an internal word of the context tree. This leads to pointing
out the following unique decomposition of any finite word w:

w = β1β2 . . . βpwαwsw,

where
• pw is a nonnegative integer and βi ∈A, for all i = 1, . . . , pw ,
• sw is the longest internal strict suffix of w,
• αw ∈A.
In this decomposition, sw is called the LIS of w and αwsw the alpha-LIS of w. Consequently, for

any stationary measure π and for any finite non-empty word w, write w = vαwsw where v is a finite
word and αwsw is the alpha-LIS of w so that iterating Formula (1) gives

π(wR) = casc(w)π(αwswR), (2)

where casc(w), the cascade of w, is defined as

casc(w) =
∏

1≤k≤pw

qcont(βk+1...βpw αwsw)(βk).

Elementary arguments on measures show thus that any stationary probability measure on R is deter-
mined by its value on the cylinders based on alpha-LIS of contexts. Denote by S the set of alpha-LIS
of finite contexts. This set is at most countable. Using Formulas (1) and (2), as developed in the proof
of Theorem 2.18, it turns out that, whenever π is stationary, all the π(αsR), for αs ∈ S are related by
the linear system

π(αsR) =
∑
βt∈S

π(βtR)Qβt,αs,

where the square matrix Q = (Qαs,βt )(αs,βt)∈S2 is defined by

Qαs,βt =
∑
c∈Cf

c=t ···
c=···[αs]

casc(βc).
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In this formula, Cf denotes the set of finite contexts, the notation c = · · · [αs] means that αs is the
alpha-LIS of c, while c = t · · · means that t is a prefix of c. In other words, (π(αsR))αs∈S is a left-
fixed vector of the matrix Q. The study of the matrix Q indexed by the alpha-LIS of contexts is a key
tool to characterize a stationary measure for the VLMC. Our main result, namely Theorem 2.18, has
the following weaker version that can be now stated.

Theorem. Let (T , q) be a probabilised context tree and U the associated VLMC. Assume that ∀α ∈ A,
∀c ∈ C, qc(α) �= 0. Then U admits a unique stationary probability measure if and only if the three
following points are satisfied:

(i) ∀αs ∈ S , the cascade series
∑

c∈Cf , c=···[αs] casc(c) converge. The sum is denoted by καs .
(ii) The matrix Q admits a unique line of left-fixed vectors.

(iii) For any left-fixed vector (vαs)αs∈S of Q,
∑

αs∈S vαsκαs < +∞.

The state space R of a VLMC is uncountable, placing the question of existence and uniqueness of
its invariant probability measures outside of the well marked out theory of Markov chains on countable
state spaces. Theorem 2.18 comes down to searching and studying left-fixed vectors of the at most
countable matrix Q.

When S is finite, condition (iii) in the previous theorem is automatically satisfied as soon as (i) holds.
Furthermore, in that case, preceding condition (ii) gets a complete answer thanks to finite dimensional
linear algebra. In the very particular case of stable context trees (see hereafter for a definition) having a
finite set of context alpha-LIS, Theorem 3.25 gives a complete characterization of VLMC’s that admit
stationary probability measures, which reduces to the convergence of the cascade series.

Note that the characterization given in the previous theorem is expressed via the cascades and the
probability distributions qc . Nevertheless, the role of context alpha-LIS suggests that the shape of the
context tree matters a lot.

The case of stable trees is particularly interesting, Section 3 is devoted to this case. In particular,
when a context tree is stable, the corresponding VLMC ends up owning renewal properties, which is
not the case for a non-stable VLMC – see Remark 3.5.

A tree is said stable when it is stable by the shift. In other words, for any letter α ∈ A and for any
finite word w, if αw ∈ T then w ∈ T . See Section 3.1 for a complete definition. In the stable case,
the crux of the matter is that the matrix Q is always stochastic and can be interpreted as the transition
matrix of some Markov chain on the set of context alpha-LIS. Indeed, when a VLMC (Un) is stable, if
one denotes by Zn the alpha-LIS of cont(Un), it turns out that the process (Zn) is an S-valued semi-
Markov chain. This induced semi-Markov chain brings out some renewal times which are the moments
cont(Un) changes its alpha-LIS. All this is detailed in Section 3.2.2.

It should be noticed that studying a stable VLMC (Un) is not just about studying the semi-Markov
chain (Zn) mentioned above. Indeed, the trajectories of (Un) cannot be recovered from the trajecto-
ries of (Zn). See Remark 3.14. However, it is the properties of the matrix Q detailed in Section 3.3
that provide increasingly simple and manipulable necessary and sufficient condition for existence and
uniqueness of a stationary probability measure for (Un) in Theorem 3.20 and Theorem 3.25. The latter
theorem also provides the convergence of the distributions of Un to the stationary probability measure.

As a final remark, we add in Section 3.5 another link between semi-Markov chains and VLMC: it is
shown that any semi-Markov chain on a finite state space is a VLMC associated with some particular
infinite stable probabilised context tree. Consequently, one deduces from Theorem 3.25 a necessary and
sufficient condition for a non-null semi-Markov chain to admit a limit distribution. The same condition
already appears in Barbu and Limnios [1] for aperiodic irreducible semi-Markov chains as a sufficient
condition.
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Throughout the text, without drowning the reader in a multitude of examples of context trees, we
chose to present enough cases of context trees that:

– answer natural questions about the different assumptions
– sometimes provide explicit calculations
– illuminate results and proofs.

Let us now indicate a non-exhaustive range of domains where Variable Length Memory Chains are
commonly used. VLMC are random models for character strings. When they have a finite memory,
they have been introduced in Rissanen [27] to perform data compression. They provide a parsimonious
alternative to fixed order Markov chain models, in which the number of parameters to estimate grows
exponentially fast with the order; they are also able to capture finer properties of character sequences.
When they have infinite memory – this will be our case of study – they provide a tractable way to build
models which are not finite order Markov chains. Furthermore they may be considered as a subclass of
“chaînes à liaisons complètes” (Doeblin and Fortet [12]) or “chains with infinite order” (Harris [22]).

Variable length memory chains are also a particular case of processes defined by a g-function (where
the g-function is piecewise constant on a countable set of cylinders). Stationary probability measures
for VLMC are g-measures. The question of uniqueness of g-measures has been addressed by many
authors when the function g is continuous (in this case, the existence is straightforward), see Johansson
and Öberg [23], Fernández and Maillard [14]. Recently, interest raised also for the question of existence
and uniqueness when g is not continuous, see Gallo [17], Gallo and Garcia [18], De Santis and Piccioni
[11] for a perfect simulation point of view and the more ergodic theory flavored Gallo and Paccaut [19]
and Ferreira, Gallo and Paccaut [15].

VLMC are used in bioinformatics, linguistics or coding theory to modelize how random words
grow or to classify words. In bioinformatics, both for protein families and DNA sequences, identifying
patterns that have a biological meaning is a crucial issue. Using VLMC as a model enables to quantify
the influence of a meaning pattern by giving a transition probability on the following letter of the
sequence. In this way, these patterns appear as contexts of a context tree (Bejerano and Yona [2]). An
appropriate model requires to consider possibly unbounded lengths. In addition, when the context tree
is recognised to be a signature of a family (of proteins say), this gives an efficient statistical method to
test whether or not two samples belong to the same family (Busch et al. [3]).

Therefore, estimating a context tree is an issue of interest and many authors (statisticians or not,
applied or not) stress the fact that the height of the context tree should not be supposed to be bounded.
This is the case in Galves and Leonardi [20] where the algorithm CONTEXT is used to estimate an
unbounded context tree and also in Garivier and Leonardi [21]. Furthermore, as explained in Csiszár
and Talata [10], the height of the estimated context tree grows with the sample size so that estimating
a context tree by assuming a priori that its height is bounded is not realistic.

Classical random walks have independent and identically distributed increments. In the literature,
Persistent Random Walks refer to random walks having a Markov chain of finite order as an increment
process. For such walks, the dynamics of trajectories has a short memory of given length and the
random walk itself is not Markovian any more. Recently, as pointed in Cénac et al. [4,7–9], persistent
random walks can be viewed as Random Walks with increments built from VLMC for an infinite
context tree.

In biology, persistent random walks are one possible model to address the question of anomalous
diffusions in cells (see, for instance, Fedotov, Tan, and Zubarev [13]). Actually, such random walks are
non Markovian, the displacements and the jumping times are correlated.

There is a large literature on constructing efficient estimators of context trees, as well for finite or
infinite context trees. Our point of view is not a statistical one, and we focus here on the probabilistic
properties of infinite memory VLMC as random processes, and more specifically on the main property
of interest for such processes: existence and uniqueness of a stationary measure.
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In Section 2, the definitions of a general VLMC, LIS and alpha-LIS of finite words are given, leading
to the main theorem (Theorem 2.18). Section 3 is devoted to the stable case, providing a necessary and
sufficient condition for the existence and uniqueness of an invariant probability measure for the VLMC.
The correspondence with semi-Markov model is detailed. Proofs are postponed in Section 1 of the
supplemental article Cénac et al. [5]. Finally, Section 4 is devoted to open problems and conjectures.

2. Definitions, notations and main results in the general case

2.1. Probabilised context trees and VLMC

In the whole paper, A denotes a finite set having at least two elements, called the alphabet. Its elements
are called letters. All main results in the article hold for an arbitrary A but, for readability reasons, the
proofs are written taking A= {0,1} whenever this assumption can be made without loss of generality.
Let R be the set of right-infinite words on the alphabet, written by simple concatenation:

R= {αβγ · · · : α,β, γ · · · ∈A}.
The set of finite words, sometimes denoted by A∗ in the literature, will be denoted by W :

W =
⋃
n∈N

An,

the set A0 := {∅} being reduced to the empty word.1 When v,w ∈ W and r ∈ R, the concatenation of
v and w (resp. w and r) is denoted by vw (resp. wr). Moreover, a finite word w being given,

wR

denotes the cylinder made of right-infinite words having w as a prefix.
A VLMC is an R-valued Markov chain, defined by a so-called probabilised context tree. We give

hereunder a compact description. One can refer to Cénac et al. [6] for an extensive definition.2

A context tree is a rooted tree T built on the alphabet A, which has an at most countable set of
infinite branches; an infinite sequence r ∈ R is an infinite branch of T whenever all its finite prefixes
belong to T . As usual, the nodes of the tree are canonically labelled by words on A. In the example
of Figure 1, the alphabet is {0,1} and the tree has two infinite branches: (01)∞ and 1∞. For a finite
word w ∈ W , w∞ denotes the right-infinite word www · · · . A node of a context tree T will be called
a context when it is a finite leaf or an infinite branch of T . The sets of all contexts, finite leaves and
infinite branches are respectively, denoted by

C, Cf and Ci .

These sets are at most countable. A finite word w ∈ W will be called an internal node when it is
strictly internal as a node of T ; it will be called non-external whenever it is internal or a context. In the

1In the whole paper, N= {0,1, . . . } denotes the set of non-negative integers.
2In Cénac et al. [6], and in most of the literature on the subject, VLMC are processes on left-infinite words, growing to the right.
This convention forces to make frequently use of reversed words in the discourse. Because of this drawback, we make here the
opposite choice.
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same vein a finite word or a right-infinite sequence will be said external when it is strictly external and
non-internal when it is external or a context. The set of internal words is denoted by

I.

Remark 2.1. An infinite tree on a finite alphabet being given, the fact that it is a context tree or not
is not directly related to the growth of the number f (n) of leaves at height n when n tends to infinity.
Indeed, f (n) may grow slowly whereas the set of infinite branches is not countable. Conversely, f (n)

may grow rapidly while the set of infinite branches is countable. One can refer to the first appendix
in Ferreira, Gallo and Paccaut [15] for more precise statements.

Definition 2.2 (cont of a non-internal word). Let T be a context tree and w be a non-internal finite
or infinite word. Then, cont(w) denotes the unique prefix of w which is a context of T .

For a more visual representation, hang w by its head (its left-most letter) and insert it into the tree,
the head of w being placed at the root; the only context through which the word goes out of the tree is
its cont – see Figure 1.

A probabilised context tree is a context tree T endowed with a family of probability measures
q = (qc)c∈C on A indexed by the (finite and infinite) contexts of T . To any probabilised context tree,
one can associate a VLMC (Variable Length Memory Chain), which is the R-valued Markov chain
(Un)n≥0 defined by its transition probabilities given by

∀n ≥ 0,∀α ∈ A, P(Un+1 = αUn|Un) = qcont(Un)(α).

The set R is endowed with its cylinder σ -algebra, generated by the cylinders wR, w ∈ W . In the
whole paper, the left-most letter of the sequence Un ∈ R is denoted by Xn so that the random sequences
grow by adding successive letters X0, X1, X2, . . . on the left of U0:

∀n ≥ 0, Un+1 = Xn+1Un.

Figure 1. An example of context tree on the alphabet A = {0,1}. It has two infinite branches: 1∞ and (01)∞.
The cont of any right-infinite word or finite word beginning by 010111101000 · · · is the context 01011.



VLMC: Characterization of stationary probability measures 2017

Remark 2.3. A context tree is never empty because it contains at least its root. The smallest context
tree is thus reduced to its root ∅. Once probabilised by a single probability measure q∅ on A, this tree
gives rise to the simplest VLMC which consists in a sequence of i.i.d. q∅-distributed random variables
(Xn)n. Besides, the tree {∅} is the only context tree that does not get any internal node. Since the
combinatorial aspect of our study is heavily based on internal nodes of context trees (notion of LIS,
see Section 2.2), we make the following small restriction.

– In the whole paper, all context trees are supposed not to be reduced to their root. –

Remark 2.4. When the context tree has at least one infinite context, the initial letter process (Xn)n≥0

is generally not a Markov process. When the context tree is finite, (Xn)n≥0 is a usual A-valued Markov
chain whose order is the height of the tree, that is, the length of its longest branch.

This section ends by two definitions that will be used in the sequel: our main results on VLMC hold
for non-null ones and the shift appears as a useful technical tool.

Definition 2.5 (Non-nullness). A probabilised context tree (T , q) is non-null whenever qc(α) �= 0 for
every c ∈ C and every α ∈ A. A non-null VLMC is a VLMC defined by a non-null probabilised context
tree.

Definition 2.6 (Shift mapping). The shift mapping σ :R →R is defined by σ(αβγ δ · · · ) = βγ δ · · · .
The definition is extended to finite words (with σ(∅) =∅).

The kth iteration of σ is denoted by σk (and σ 0 denotes the identity map on R or W).

2.2. LIS and alpha-LIS, cascades and cascade series

As pointed out in the introduction, the study of invariant probability measures naturally leads to the
following notion of Longest Internal Suffix. If w ∈ W is a non-empty finite word, w can be uniquely
written as

w = β1β2 . . . βpwαwsw,

where
• pw ≥ 0 and βi ∈A, for all i ∈ {1, . . . , pw},
• αw ∈A,
• sw is the longest internal strict suffix of w.

Note that sw may be the empty word. When pw = 0, there are no β’s and w = αwsw .

Definition 2.7 (LIS and alpha-LIS). Let T be a context tree and w a finite non-empty word on A.
With the notations above, the Longest Internal Suffix sw is abbreviated as the LIS of w; the non-internal
suffix αwsw is called the alpha-LIS of w.

To compute the LIS of a non-empty finite word w = β1β2 . . . βn, check whether β2β3 . . . βn is inter-
nal or not. If it is internal, that is the LIS of w. If not, check whether β3β4 . . . βn is internal or not, etc.
The first time you get an internal suffix (this happens inevitably because ∅ is always an internal word,
the context tree being not reduced to its root, see Remark 2.3), this suffix is the LIS of w.
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Any non-empty word has an alpha-LIS, but the objects of main interest are the alpha-LIS of contexts.
The set of alpha-LIS of finite contexts of T will be denoted by S(T ), or more shortly by S :

S = {
αcsc, c ∈ Cf

};
this is an at most countable set (like C). For any u,v,w ∈ W , the notations

v = u · · · and w = · · · [u] (3)

stand respectively, for “u is a prefix of v” and “u is the alpha-LIS of w”.

Example 2.8 (computation of a LIS).

In this example, the alphabet is A= {0,1} and the context tree
is defined by its finite contexts which are the following ones:
(01)p00, (01)r1, 01r0, 1q00, 1q01, p ≥ 0, q ≥ 1, r ≥ 2.
Take for example the context 010100, colored red in the con-
text tree. Remove successively letters from the left until you
get an internal word: 10100 is external, 0100 is noninternal,
100 is noninternal, 00 is noninternal. In this sequence, the suf-
fix 0 is the first internal one: this is the LIS of 010100. The
last removed letter is α = 0 so that the alpha-LIS of 010100
is 00.

In the following array, the left-hand column consists in the list of alpha-LIS of all the finite contexts
of the tree. For every αs ∈ S , the list of all finite contexts having αs as an alpha-LIS is given in the
right-hand column.

αs ∈ S finite contexts having αs as an alpha-LIS

00 1q00, (01)p00, p ≥ 0, q ≥ 1
101 1q01, q ≥ 1

01011 (01)r1, r ≥ 2
01r0, r ≥ 2 01r0

Remark 2.9. The finiteness of the set Ci of infinite branches on one side, and that of the set S of
context alpha-LIS on the other side are not related. In Example 3.27, one finds a context tree for which
S is finite while Ci is infinite. In the tree of Example 2.8, S is infinite while Ci is finite. The left-comb
of left-combs has infinite Ci and S (see Remark 3.17). Finally, the double bamboo (see page 2025) has
finite Ci and S .

Definition 2.10 (Cascade). Let (T , q) be a probabilised context tree. If w ∈ W writes w =
β1β2 . . . βpαs where p ≥ 0 and where αs is the alpha-LIS of w, the cascade of w is defined as

casc(w) =
∏

1≤k≤p

qcontσk(w)(βk),

where an empty product equals 1, which occurs if and only if w is equal to its own alpha-LIS. In the
above formula, σ denotes the shift mapping, see Definition 2.6. The cascade of ∅ is defined as being 1.

Note that casc(αs) = 1 for any αs ∈ S .
In Example 2.8, casc(010100) = q101(0)q0100(1)q100(0)q00(1).
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Remark 2.11. Assume that A = {0,1}. For any w ∈ W , casc(w) = casc(0w) + casc(1w) if and only
if w is non-internal; indeed, if w is internal, the sum equals 2 whereas casc(w) ≤ 1. This equivalence
generalizes straightforwardly to an arbitrary alphabet.

Definition 2.12 (Cascade series). For every αs ∈ S , the cascade series of αs (related to (T , q)) is
the at most countable family of cascades of the finite contexts having αs as their alpha-LIS. In other
words, with notations (3), it is the family(

casc(c)
)
c∈Cf ,c=···[αs].

Since the cascades are positive numbers, the summability of a family of cascades of a probabilised
context tree is equivalent to the convergence of the series associated to any total order on the set of
contexts indexing the family. The assertion

∀αs ∈ S,
∑
c∈Cf

c=···[αs]

casc(c) < +∞ (4)

will be called convergence of the cascade series. For every αs ∈ S and k ≥ 1, denote

καs(k) =
∑

c∈Cf , c=···[αs]
|c|=|αs|+k−1

casc(c). (5)

When the cascade series converge, καs denotes the sum of the cascade series relative to αs ∈ S :

καs =
∑
c∈Cf

c=···[αs]

casc(c) =
∑
k≥1

καs(k). (6)

In the following sections, the convergence of cascade series turns out to be an important part of
the characterization of stationary probability measures. This is made precise by Theorem 2.18 and
Theorem 3.20. In some particular cases, the convergence of cascade series just becomes a necessary
and sufficient condition for existence and uniqueness of an invariant probability measure (see Theo-
rem 3.25).

2.3. Alpha-LIS matrix Q and left-fixed vectors

For any (αs,βt) ∈ S2, with notations (3), define

Qαs,βt =
∑
c∈Cf

c=t ···
c=···[αs]

casc(βc) ∈ [0,+∞]. (7)

As the set S is at most countable, the family Q = (Qαs,βt )(αs,βt)∈S2 will be considered a matrix, finite
or countable, for an arbitrary order on S . The convergence of the cascade series of (T , q) is sufficient
to ensure the finiteness of Q’s entries.

The matrix Q plays a central role in the statement of Theorem 2.18, which is the main result of the
paper.
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Definition 2.13 (Left-fixed vector of a matrix). Let A = (a	,c)(	,c)∈E2 be a matrix with real entries,
indexed by a totally ordered set E supposed to be finite or denumerable. A left-fixed vector of A is a
row-vector X = (xk)k∈E ∈ R

E , indexed by E , such that XA = X. In particular, this implies that the
usual matrix product XA is well defined, which means that for any c ∈ E , the series

∑
	 x	a	,c is

convergent. Note that, whenever X and A are infinite dimensional and have nonnegative entries, this
summability does not depend on the chosen order on the index set E .

2.4. Stationary measures for a VLMC

Definitions and notations of the previous sections allow us to state results on stationary measures for a
VLMC. In this section, no assumption is made on the shape of the context tree. After two key lemmas,
we state the main Theorem 2.18 that establishes precise connections between stationary probability
measures of the VLMC and left-fixed vectors of the matrix Q defined in Section 2.3. Theorem 2.18
is valid for any context tree. Section 3 shows what happens to this result when assumptions (stability,
mainly) are made on the shape of the tree. In particular, Remark 3.26 shows how Theorem 2.18 (or
Theorem 3.25) applies in the case of finite trees.

Definition 2.14 (Stationary probability measure for a VLMC). Let U = (Un)n≥0 be a VLMC. A
probability measure π on R is said U -stationary (or also U -invariant) whenever π is the distribution
of every Un as soon as it is the distribution of U0.

Assume that π is a probability measure on R, invariant for a VLMC defined on a given context
tree. As already mentioned in the introduction, π(wR) = qcont(v)(α)π(vR) for any letter α and any
non-internal finite word w = αv. The cascade of w is the product that arises after the largest number
of possible iterations of that formula, so that π(wR) = casc(w)π(αwswR). These formulae are the
subject of the simple but very useful Lemma 2.15, named Cascade Formulae. Equality (9) can be seen
as a founding formula that leads to Theorem 2.18.

Lemma 2.15 (Cascade formulae). Let (T , q) be a probabilised context tree and π be a stationary
probability measure for the corresponding VLMC.

(i) For every non-internal finite word w and for every α ∈ A,

π(αwR) = qcont(w)(α)π(wR).

(ii) For every right-infinite word r ∈ R and for every α ∈A,

π(αr) = qcont(r)(α)π(r). (8)

(iii) For every finite non-empty word w, if one denotes by αwsw the alpha-LIS of w, then

π(wR) = casc(w)π(αwswR). (9)

The following lemma ensures that a stationary probability measure weights finite words and only
finite words.

Lemma 2.16. Let π be a stationary probability measure of a non-null VLMC. Then

(i) ∀w ∈ W , π(wR) �= 0;
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(ii) ∀r ∈ R, π(r) = 0.

For a proof of this lemma, see Section 1 of the supplemental article Cénac et al. [5], page 2.

Remark 2.17. Thanks to Lemma 2.16(ii), when π is a stationary probability measure, both members
of Equality (8) vanish. In fact, all formulae in Lemma 2.15 remain true when π is a σ -finite invariant
measure. In this case, Formula (8) may be an equality between two non-zero real numbers. See Re-
mark 2.21 and Section 2 in the supplemental article Cénac et al. [5] for further comments on σ -finite
invariant measures.

Everything is now in place to state the main theorem. Denote by M1(R) the set of probability
measures on R. For a given context tree T , define the mapping f as follows:

f :M1(R) −→ [0,1]S
π 
−→ (

π(αsR)
)
αs∈S .

Theorem 2.18. Let (T , q) be a non-null probabilised context tree and U the associated VLMC.

(i) Assume that there exists a finite U -stationary probability measure π on R. Then the cascade
series (4) converge. Furthermore, using notation (6),

∑
αs∈S

π(αsR)καs = 1.

(ii) Assume that the cascade series (4) converge. Then, f induces a bijection between the set of
U -stationary probability measures on R and the set of left-fixed vectors (vαs)αs∈S of Q that
have non-negative entries and which satisfy

∑
αs∈S

vαsκαs = 1.

The proof of Theorem 2.18 is given in Section 1 of the supplemental article Cénac et al. [5], page 3.
This theorem naturally calls for several questions and remarks: for instance, does everything boil

down to Q? Can the theorem be extended to σ -finite invariant measures? Can Theorem 2.18 be
improved for particular context trees? For finite ones? What role does the non-nullness assumption
play?

Remark 2.19. One could be tempted to see f (π) as an invariant measure for some Markov chain
associated with the matrix Q, reducing the study of invariant probability measures of a VLMC to the
study of stationary probability measures of the Markov chain associated with Q. This is generally not
true.

Firstly, even when it is finite-dimensional, Q is generally not stochastic, excluding any hope of
interpreting it as the transition matrix of some Markov chain. Take for instance the small context tree
on the alphabet A = {0,1} pictured hereunder. It gets three context alpha-LIS we order the following
way: 00, 10 and 1. The matrix Q writes straightforwardly as follows. For instance, its first line’s sum



2022 P. Cénac et al.

equals 1 + q00(1).

Q =
⎛
⎜⎝

casc(000) casc(100) casc(100)

casc(0010) casc(1010) casc(1010)

casc(0011) casc(1011) casc(1011) + casc(11)

⎞
⎟⎠

Second, even when Q is row-stochastic (which is the case when the context tree is stable, see Propo-
sition 3.16), its probabilistic interpretation is not that simple. In the stable case, Q can be seen as the
transition matrix of the underlying Markov chain of some semi-Markov chain, namely the process of
the context alpha-LIS of the VLMC. Section 3.2 is devoted to this fact.

Finally, in general, even in the case of stable VLMC, one cannot reconstruct the VLMC from the
process of its alpha-LIS: both processes are not equivalent, the VLMC being strictly richer than the
process of its alpha-LIS. See Remark 3.14 for an example and further comments.

Remark 2.20. Non-nullness appears as some irreducibility assumption on the Markov process on
right-infinite words. One can find in Cénac et al. [6] simple examples of not non-null VLMC’s defined
on infinite context trees that admit infinitely-many invariant probability measures.

Remark 2.21. One may wonder whether a non-null VLMC can admit invariant σ -finite measures that
have an infinite total mass. The answer is clearly affirmative as can be seen on the left comb, which

is the context tree shaped as follows, the alphabet being A = {0,1}: . Once this tree has been

probabilised by the non-null family (q0n1)n≥0, define cn as being

cn := casc
(
0n1

) =
n∏

k=0

q0k1(0).

Then, as soon as cn tends to 0 when n tends to infinity whereas the series
∑

cn diverges, the correspond-
ing VLMC gets an invariant σ -finite measure with infinite total mass. This can be straightforwardly
checked – however, computation details can be found in Cénac et al. [6].

Moreover, the same argument as in the proof of Lemma 2.16(ii) shows that a U -invariant σ -finite
measure always vanishes on rational right-infinite words, that is, on eventually periodic words. One
may thus wonder whether a non-null VLMC can admit invariant σ -finite measures that have an infinite
total mass and take a positive value on some irrational infinite word. The answer is also affirmative. An
example is developed in the appendix, based on a context tree which has irrational contexts and whose
Q matrix is (necessarily) transient.

3. The stable case

In this section, a restriction on the shape of the tree is placed, called stability, defined in Section 3.1.
As already said in the introduction, although being very particular, the set of stable trees appears as
a very rich class, notably through its links with semi-Markov chains. These links, detailed in Sec-
tion 3.2.2 (stochasticity and irreducibility of Q, construction of the induced semi-Markov chain de-
noted by (Zn)n≥0), exhibit renewal properties of the VLMC.
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The extra structure brought by the stability enables to simplify the statement of Theorem 2.18, turn-
ing it into a necessary and sufficient condition for existence and uniqueness of a stationary probability
measure, for countable S (Theorem 3.20) and finite S (Theorem 3.25, where the convergence of the
law of (Un) towards the invariant measure is also obtained).

It must be once again emphasized that the trajectories of the VLMC (Un) cannot be recovered from
the trajectories of the underlying semi-Markov chain (Zn) (See Remark 3.14). Our results on stable
VLMC cannot straightforwardly be deduced from those existing in the semi-Markov literature.

3.1. Definitions

Proposition 3.1. Let T be a context tree. The following conditions are equivalent.

(i) ∀α ∈A, ∀w ∈W , αw ∈ T =⇒ w ∈ T . In other words, σ(T ) ⊆ T .
(ii) If c is a finite context and α ∈ A, then αc is non-internal.

(iii) T ⊆AT , where AT = {αw,α ∈A,w ∈ T }.
(iv) For any VLMC (Un)n associated with T , the process (Cn)n∈N := (cont(Un))n∈N is a Markov

chain with state space C.

A proof of this Proposition 3.1 can be found in Section 1.2 of the supplemental article Cénac et al.
[5], page 6.

Definition 3.2 (Shift-stable tree, stable VLMC). A context tree is shift-stable,3 shortened in the
sequel as stable when one of the four equivalent conditions of Proposition 3.1 is satisfied. A VLMC is
also called stable when it is defined by a probabilised stable context tree.

The following two lemmas, which do not hold for general trees, will be used to get an accurate
description of the structure of the context alpha-LIS process, as developed in Section 3.2.2.

Lemma 3.3. Let T be a stable context tree.

(i) Any context alpha-LIS is a context. In otherwords, S ⊆ C.
(ii) Assume that c is a finite context having αs as an alpha-LIS. Then all σk(c), 0 ≤ k ≤ |c| − |αs|

are also contexts having αs as an alpha-LIS.

Proof. Let αs ∈ S and let c = · · · [αs] ∈ Cf (notation (3)). Since T is stable, for any k ∈ N, the node
σk(c) is either internal or a context. By maximality of s, this implies that the σk(c), for 0 ≤ k ≤
|c| − |αs|, have αs as a suffix and are noninternal, thus contexts. This proves (ii), thus (i). �

Lemma 3.4. Let T be a stable context tree and c ∈ C. Let Ac := {α ∈A, αc /∈ C}. Then,

1. if Ac =∅, then c does not admit any context LIS as a prefix;
2. for every α ∈ Ac, there exists a unique context LIS tα such that

(i) c = tα · · ·
(ii) αtα ∈ C.
Furthermore, for every β /∈ Ac, βtα /∈ C.

3This property of trees is also called 0-subperiodic by some authors, like Lyons [25], Lyons and Peres [26] or shift-invariant by
Furstenberg [16].



2024 P. Cénac et al.

The proof of this lemma is given in Section 1 of the supplemental article Cénac et al. [5], page 6.
Note in passing the following formula, proven during the proof of Proposition 3.1 and valid in the

case of stable context trees: if s ∈ R is a right-infinite word and if α ∈A is any letter, then

cont(αs) = cont
(
α cont(s)

)
.

This formula is the foundation for the renewal properties of stable VLMC’s, as described hereunder.
For any n ≥ 0 and for any letter β , because of this formula, cont(βUn) depends on Un only through
its cont. More precisely, if Cn denotes cont(Un), then cont(βUn) = cont(βCn). Furthermore, thanks
to Lemma 3.4, if c is any finite context having αs as an alpha-LIS and if β is any letter, two disjoint
cases may occur: either βc is a context which has again αs as an alpha-LIS, or βc is an external
word, cont(βc) being its own alpha-LIS. This fact contains in germ the announced renewal property
of a stable VLMC, as completely formalized in Proposition 3.13, the context alpha-LIS’s constituting
renewal patterns of a stable VLMC: once Un has begun by a context alpha-LIS, the process will never
make use of letters in the past beyond this alpha-LIS.

Remark 3.5. A general (non-stable) VLMC does not enjoy such a renewal phenomenon.

The filament of all words

Consider for instance the context tree built as follows on the alphabet
A = {0,1}. Take the right-infinite word u = 0100011011000001 · · ·
obtained by concatenating all finite words ordered by increasing length
and alphabetical order: 0, 1, 00, 01, 10, 11, 000, etc. Let Tu be the
context tree spanned by u – namely the smallest context tree that
contains u as infinite branch. We name Tu the filament of all words. Let
also U be a non-null VLMC obtained by probabilising Tu. Relatively to
this tree, any finite word is the suffix of some internal node. Let thus w

be an arbitrary finite prefix of U0, and p be a finite word such that pw

is internal. With positive probability, U|p| = pw · · · so that cont(U|p|)
has pw as a strict prefix: the transition from U|p| to U|p|+1 depends on
a prefix of U0 strictly longer than w. Consequently, no finite prefix of
U0 can play the role of a renewal pattern for the random process U .

Observe that this situation is generic in the following sense: a right-infinite word r on {0,1} drawn
uniformly at random has the following property. For any finite word w ∈ W , almost surely, w is a
pattern of r . Thus, the phenomenon just described for Tu holds for any context tree having this infinite
word r as an infinite branch.

Let (Un)n be a stable VLMC. For every n, let Cn = cont(Un). As seen in Proposition 3.1, the process
(Cn)n is a Markov chain. In addition, Cf is an absorbing set for the chain (Cn)n – as soon as a finite
context is seen, all the following contexts will be finite. This is a consequence of the renewal property
described above. Therefore, the chain induced by (Cn)n on the absorbing set Cf is again a Markov
chain that enjoys the following properties.

Lemma 3.6. Let U = (Un)n be a non-null stable VLMC. For any n, let Cn = cont(Un). Then, the
Markov chain induced by (Cn) on Cf is irreducible and aperiodic.

The proof of this lemma is made in Section 1 of the supplemental article Cénac et al. [5], page 6.
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In view of this lemma, it would be tempting to try to study the recurrence properties of this Markov
chain (Cn)n and then to apply the classical results on countable Markov chains to get a stationary prob-
ability measure for the VLMC itself. However, it appears that these recurrence properties are not at all
obvious. Moreover, this would mean ignoring the crucial renewal properties of the alpha-LIS process,
which are highlighted in Section 3.2.2. That is why it is more fruitful to work with the matrix Q – in
general a smaller matrix than the transition matrix of (Cn)n. Nevertheless, the irreducibility and aperi-
odicity of (Cn)n will help proving the convergence of the law of (Un)n towards the invariant measure
of the VLMC, in the case of finitely many alpha-LIS (see Theorem 3.25).

Definition 3.7 (Stabilizable tree, stabilized of a tree). A context tree T is stabilizable whenever the
stable tree

⋃
n∈N σn(T ) has at most countably many infinite branches, that is, when the latter is again

a context tree. When this occurs,
⋃

n∈N σn(T ) is called the stabilized of T ; it is the smallest stable
context tree containing T .

For example, the left-comb is stable. On the contrary, the bamboo blossom is

non-stable; it is stabilizable, its stabilized being the double bamboo .

Remark 3.8. A context tree is not necessarily stabilizable as the following examples, built on the
alphabet {0,1}, show.

This context tree consists in saturating the infinite word
010212 . . .0k1k · · · by adding hairs. This filament tree is
stabilizable, its stabilized being the context tree having
the {0	1k0k+11k+1 · · · } and the {1	0k1k+10k+1 · · · }, k ≥
1, 0 ≤ 	 ≤ k − 1 as internal nodes. Its countably many
infinite branches are the 0k1∞ and the 1k0∞, k ≥ 0.

As defined in Remark 3.5, the filament of
all words Tu is not stabilizable. Indeed,
any finite word belongs to the smallest
stable tree that contains Tu, the latter be-
ing thus the complete tree {0,1}N, which
has uncountably many infinite branches.
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Remark 3.9. In Ferreira, Gallo and Paccaut [15], the authors obtain results on existence and unique-
ness of stationary measures for any v-free context tree T , meaning that there exists a finite word v that
does not appear as a subword of any word in T . This is related to the shift-stable property: a context
tree T is v-free if and only if its stabilized tree T̂ is not the full tree {0,1}N. In particular, any stable
context tree is v-free and the filament of all words described in Remark 3.8 is not v-free.

Remark 3.10. Let (T , q) be a stabilizable probabilised context tree and T̂ its stabilized. For every
context c of T̂ , define q̂c = qcont(c) where the function cont is relative to T . Then (T , q) and (T̂ , q̂)

define the same VLMC.
This is straightforward be-
cause both VLMC, as Markov
processes on R, have the
same transition probabilities.
The example of the opposite
figure illustrates this construc-
tion for the bamboo blossom
and its stabilized tree, the dou-
ble bamboo.

3.2. Stable VLMC and semi-Markov chains

In this section, semi-Markov chains are defined, following Barbu and Limnios [1]. Section 3.2.2 is
devoted to show that any stable VLMC (Un)n≥0 induces an underlying semi-Markov chain (Zn)n≥0:
the state space is the set S of the context alpha-LIS and Zn is the alpha-LIS of the context cont(Un).
This semi-Markov chain entirely describes the renewal property that arises in a stable VLMC and
gives an explicit interpretation of the matrix Q. Nevertheless, the trajectories of the VLMC cannot be
recovered from those of the induced semi-Markov chain – see Remark 3.14. Despite this, interestingly,
when the set of context alpha-LIS is finite, Theorem 3.25 and Theorem 3.30 below make it possible to
derive equivalences between NSC4 for the VLMC to admit a stationary probability measure and NSC
for the associated semi-Markov chain to have a limit distribution. This is developed in Section 3.6.

3.2.1. Definitions

Semi-Markov chains are defined thanks to so-called Markov renewal chains – see Barbu and
Limnios [1].

Definition 3.11 (Markov Renewal Chain). If E is any set, a Markov chain (Jn, Tn)n≥0 with state
space E ×N is called a (homogeneous) Markov Renewal Chain (shortly MRC) whenever the transition
probabilities satisfy: ∀n ∈ N, ∀a, b ∈ E , ∀j, k ∈ N,

P(Jn+1 = b,Tn+1 = k|Jn = a,Tn = j) = P(Jn+1 = b,Tn+1 = k|Jn = a) =: pa,b(k)

and ∀a, b ∈ E , pa,b(0) = 0. For such a chain, the family p = (pa,b(k))a,b∈A,k≥1 is called its semi-
Markov kernel.

4The acronym NSC is used for “necessary and sufficient condition”.
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Definition 3.12 (Semi-Markov Chain). Let (Jn, Tn)n≥0 be a Markov renewal chain with state space
E ×N. Assume that T0 = 0. For any n ∈ N, let Sn be defined by

Sn =
n∑

i=0

Ti.

The semi-Markov chain associated with (Jn, Tn)n≥0 is the E -valued process (Zj )j≥0 defined by

∀j such that Sn ≤ j < Sn+1, Zj = Jn.

Note that the sequence (Sn)n≥0 is almost surely increasing because of the assumption pa,b(0) = 0
(instantaneous transitions are not allowed) that guarantees that Tn ≥ 1 almost surely, for any n ≥ 1.

The Sn are jump times, the Tn are sojourn times in a given state and Zj stagnates at a same state
between two successive jump times. The process J = (Jn)n, called the internal (or underlying) chain of
the semi-Markov chain (Zn)n, is a Markov chain on E . For this Markov chain, the transition probability
between states a and b is the number pa,b = ∑

k≥1 pa,b(k).
Definitions 3.11 and 3.12 make transitions of J to the same state between time n and time n + 1

possible. Nevertheless, one can boil down to the case where pa,a(k) = 0 for all a ∈ E , k ∈ N, thus
obtaining a semi-Markov chain with true jumps. Indeed, suppose that there exist some a ∈ E and k ∈N

such that pa,a(k) �= 0 for a certain semi-Markov chain (Zn). Consider the chain (Z′
n) obtained from

(Zn) by forgetting the jumps to the same position. It is the semi-Markov chain associated with the
MRC (J ′

n, T
′
n)n≥0 defined by T ′

0 = 0, J ′
0 = J0 a.s. and by the following semi-Markov kernel p′: for

a, b ∈ E , a �= b, p′
a,b(1) = pa,b(1) and for k ≥ 2,

p′
a,b(k) = P

(
J ′

1 = b,T ′
1 = k|J0 = a

)
= pa,b(k) +

k−1∑
i=1

pa,a(i)p
′
a,b(k − i) (10)

(and thus p′
a,a(k) = 0 for any k ≥ 0). Note that even if the semi-Markov chains (Zn) and (Z′

n) do not
have the same internal chains, they get the same trajectories. It is worth noticing that the conditional
expectations of T1 and T ′

1 are simultaneously finite or infinite. Indeed, a straightforward calculation
from (10) leads to: for a ∈ E ,

E
(
T ′

1|J ′
0 = a

) ×
(

1 −
∑
i≥1

pa,a(i)

)
= E(T1|J0 = a). (11)

Moreover, denoting pa,b = ∑
k≥1 pa,b(k) and p′

a,b = ∑
k≥1 p′

a,b(k), one gets p′
a,b = pa,b∑

c �=a pa,c
, as

shortly mentioned in Barbu and Limnios [1]. Since we make use of both versions of a semi-Markov
chain in the paper – with true jumps or not, it seemed important to us to devote these few lines to
underline how they are connected.

3.2.2. A semi-Markov chain induced by a stable VLMC

A stable VLMC always induces a semi-Markov chain, as described in the following.
Let (Un)n≥0 be a stable non-null VLMC and assume that C0 = cont(U0) is a finite context. Recall

that S denotes the set of context alpha-LIS of the VLMC. For every n ≥ 0, let Cn be the context of Un

and Zn be the alpha-LIS of Cn:

Cn := cont(Un) and Zn := αCnsCn . (12)
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Figure 2. Evolution of a VLMC (Uj ) between two “jumping” times Sn and Sn+1. On the figure, right-infinite
words USn

,USn+1, . . . grow to the left when time increases from the bottom to the top. Their respective cont’s
(which are contexts) are CSn

,CSn+1, . . . , they are colored. On the figure, the successive alpha-LIS are marked in
blue, they stagnate at αs during the time Tn+1 = Sn+1 − Sn and jump at βt at time Sn+1 = Sn + i + 1.

Let us describe the evolution of these two processes, when the VLMC (Uj )j is growing by adding
successively a letter on the left. One can refer to Figure 2 as a visual support of this description. For
j ≥ 0, assume that Cj = · · · [αs] has αs as an alpha-LIS. When adding a letter β , two cases can occur
(recall that since the context tree is stable, if c is a context and β ∈ A, then βc is non-internal – see
Proposition 3.1(ii)):

– either βCj is a context and then Cj+1 = βCj = · · · [αs]. In this case the process Z stagnates at
αs;

– or βCj is not a context and then by Lemma 3.4, Cj begins with some LIS t and βt is a context
being its own alpha-LIS. In that case, Cj+1 = βt and Z jumps at βt . Notice that the term jumps is
not completely adequate because αs = βt could occur. With this evolution in mind, let (Sn)n≥0 be the
increasing sequence of times defined by S0 = 0 and for any n ≥ 1,

Sn := inf
{
k > Sn−1, |Ck| ≤ |Ck−1|

}
, (13)

with the usual convention that it equals +∞ whenever ∀k > Sn−1, |Ck| > |Ck−1|. Let also T0 = 0 and,
for every n ≥ 1, denote by Tn the difference

Tn := Sn − Sn−1. (14)

Finally, for any n ≥ 0, let

Jn := ZSn. (15)

With these notations, the processes (Tn)n≥0 and (Jn)n≥0 evolve as follows. Assume that Jn = CSn =
ZSn = αs ∈ S for some n ≥ 0. For i ≥ 1, when adding a letter β , as long as βCSn+i−1 remains a context,
then ZSn+i = ZSn = αs = Jn. The first time when βCSn+i is not a context (we shall see that this occurs
almost surely if and only if Assumption (16) is fulfilled), then Sn+1 = Sn + i, CSn+i = βt ∈ S and
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Jn+1 = βt . It turns out that (Zn)n≥0 is a semi-Markov chain having (Jn, Tn)n≥0 as an underlying
(Markov renewal) chain, as specified in the following proposition.

Proposition 3.13. Let (Un)n≥0 be a stable non-null VLMC such that

∀αs ∈ S, lim
k→∞καs(k) = 0, (16)

where καs(k) is defined in (5). Assume that C0 = cont(U0) is a finite word. Then with the above nota-
tions (12), (13), (14) and (15),

(i) Sn and Tn are almost surely finite. Furthermore, for every αs ∈ S and every n ≥ 1,

E(Tn|Jn−1 = αs) = καs ∈ [0,+∞].

See (6) where καs = ∑
k≥1 καs(k) is defined;

(ii) the jump times Sn can also be written Sn = inf{k > Sn−1,Ck ∈ S};
(iii) (Zn)n≥0 is an S-valued semi-Markov chain associated with the Markov renewal chain

(Jn, Tn)n≥0. The associated semi-Markov kernel writes: ∀αs,βt ∈ S , ∀k ≥ 1,

pαs,βt (k) =
∑

c∈C, c=t ···
c=···[αs]

[2pt]|c|=|αs|+k−1

casc(βc).

Moreover, Q is the transition matrix of the S-valued Markov chain (Jn)n≥0.

One can find a proof of Proposition 3.13 in the supplemental article Cénac et al. [5] on page 7.

Remark 3.14. The semi-Markov chain (Zn) contains less information than the chain (Un). To illus-
trate this, here is an example with a finite context tree on the alphabet {0,1}.

alpha-LIS αs contexts having αs as an alpha-LIS

10 10, 010, 110, 0010, 0110
000 000
111 111, 0111

0011 0011

In this example, 0010 and 0110 are two contexts of the same length, with the same context alpha-
LIS 10 and beginning by the same context LIS 0. Hence if we know that Jn = 10, Sn+1 − Sn = 3 and
Jn+1 = 10, then Zj is uniquely determined between the two successive jump times, whereas there are
two possibilities to reconstruct the VLMC (Un). With the notations above, there are two cascade terms
in p10,10(3):

p10,10(3) = P(CSn+1 = 010,CSn+2 = 0010,CSn+3 = 10010|CSn = 10)

+ P(CSn+1 = 110,CSn+2 = 0110,CSn+3 = 10110|CSn = 10)

= q10(0)q010(0)q0010(1) + q10(1)q110(0)q0110(1)

= casc(10010) + casc(10110).
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3.3. Properties of Q in the stable case

For a given probabilised context tree, the matrix Q, that has been defined in Section 2.3 by Formula (7),
plays a central role in our main Theorem 2.18. In the case of stable trees, Proposition 3.13 gives a
probabilistic interpretation of Q as the transition matrix of some Markov chain. This section is devoted
to gathering properties of Q (or of the Markov chain Q is the transition matrix of).

Definition 3.15. A square (finite or denumerable) matrix (ar,c)r,c having non-negative entries is said
to be row-stochastic whenever all its rows (are summable and) sum to 1, that is,

∀r,
∑

c

ar,c = 1.

The following assertion is a consequence of Proposition 3.13, (iii). Remember that the numbers
καs(k) are defined by (5). Notice also that one can also make a direct combinatorial proof using
Lemma 3.4.

Proposition 3.16. Let (T , q) be a stable probabilised context tree. Assume that

∀αs ∈ S, lim
k→∞καs(k) = 0. (17)

Then, the matrix Q has finite entries and is row-stochastic.

The row-stochasticity of Q writes

∀αs ∈ S,
∑
βt∈S

Qαs,βt = 1.

Remark 3.17. Any stochastic matrix with strictly positive coefficients A = (ai,j )i≥0,j≥0 is the ma-
trix Q associated with some non-null probabilised stable context tree. It may be realised for instance
with a left-comb of left-combs as follows.

The left-comb of left-combs is the con-
text tree on the alphabet {0,1} as drawn
on the left: the finite contexts are the
0p10q1, p,q ≥ 0. A left-comb of left-
combs is a stable context tree. Its has in-
finitely many infinite branches, namely
0∞ and the 0p10∞, p ≥ 0.

For any p,q ≥ 0, the alpha-LIS of 0p10q1 is 10q1. In particular, the set S of alpha-LIS of contexts
is infinite. In this case, for any q ≥ 0, the set of contexts having 10q1 as an alpha-LIS is also infinite.

Probabilise this context tree by a family (qc)c of probability measures on {0,1}. Denote, for every
q,p ≥ 0,

cq,p = casc
(
0p10q1

) =
∏

0≤k≤p−1

q0k10q1(0).
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Assumption (17) is equivalent to cq,p converging to 0 when p tends to ∞, for any q . The square
matrix Q is infinite and, under the latter assumption, its entries write

Q10q1,10p1 = casc
(
10p10q1

) = cq,p − cq,p+1.

A row-stochastic positive infinite matrix A being given, a simple calculation shows that if one defines
the probability measures q0p10q1 of a left-comb of left-combs by

q0p10q1(1) = aq,p

1 − ∑p−1
k=0 aq,k

,

then Q10q1,10p1 = aq,p . The question whether any stochastic matrix (with some zero coefficients) can
be realized as the Q matrix of some non-null stable VLMC seems to be more difficult. Namely, zero
coefficients in Q assuming non-zero qc(α) constraint the shape of the context tree.

Proposition 3.18. Let (T , q) be a non-null stable probabilised context tree. Then the matrix Q is
irreducible.

See Section 1 of the supplemental article Cénac et al. [5], page 8 for a proof of this proposition.

3.4. Stationary measure for a stable VLMC vs recurrence of Q

The following result links the existence and the uniqueness of a stationary probability measure of a
VLMC to the recurrence of Q. Let us recall the definition of recurrence and state a necessary and
sufficient condition to get a (unique) invariant probability measure for stable trees. In the sequel, a
stochastic matrix is a row-stochastic one – see Definition 3.15. Note that the powers of a stochastic
matrix are well defined and also stochastic.

Definition 3.19. Let A = (ai,j )i,j be a stochastic irreducible countable matrix. Denote by a
(k)
i,j the

(i, j)-th entry of the matrix Ak . The matrix A is recurrent whenever there exists i such that

∞∑
k=1

a
(k)
i,i = +∞.

Any stochastic irreducible countable matrix may be viewed as the transition matrix of an irreducible
Markov chain with countable state space. The recurrence means that there is a state i (and this is true
for every state because of irreducibility) for which the number of returns has infinite expectation. This
is also equivalent to the first return time being a.s. finite, see for example Kitchens [24] page 198.
When in addition the expectation of the return times are finite, the matrix is classically called positive
recurrent.

Theorem 3.20. Let (T , q) be a non-null probabilised context tree. Assume that T is stable. Then, the
following assertions are equivalent.

1. The VLMC associated with (T , q) has a unique stationary probability measure
2. The VLMC associated with (T , q) has at least a stationary probability measure
3. The three following conditions are satisfied:

(c1) the cascade series (4) converge
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(c2) Q is recurrent
(c3)

∑
αs∈S vαsκαs < +∞, where (vαs)αs is the unique non-negative left-fixed vectors of Q, up

to multiplication by a positive real number.

A proof of Theorem 3.20 is given in Section 1.2 of the supplemental article Cénac et al. [5], page 9.
Notice that Theorem 3.20 is a direct consequence of Theorem 2.18 and of the fact that Q is stochastic.
In the present article, the stochasticity of Q is deduced from its interpretation as the transition matrix of
some semi-Markov chain (Proposition 3.13). Notice, as already mentioned just before Proposition 3.16,
that this stochasticity can also be proved by a direct combinatorial proof. In this sense, Theorem 3.20
can be understood as being independent from the fact that the process (Zn)n of successive context
alpha-LIS of the VLMC (Un)n is a semi-Markov chain (our current notations).

Remark 3.21. Actually, as shown in the end of the proof, when Q is recurrent and when the series∑
αs∈S vαsκαs converges, then Q is positive recurrent. Furthermore, all the vαs are then positive, thanks

to Lemma 2.16.

Remark 3.22. There exist non-null stable probabilised context trees such that (c1) and (c2) are ful-
filled, but not (c3), hence with no stationary probability measure. Here is an example based on a
left-comb of left-combs, already introduced in Remark 3.17.

Let vp = 1
p+1 − 1

p+2 and Rp = ∑
q≥p vq = 1

p+1 for every p ≥ 0 (more generally, on can build
similar examples based on positive sequences (vp)p such that

∑
p≥0 vp = 1 and

∑
p pvp diverges).

Define S by

S(x) =
∑
q≥0

vqx
1

q+1 .

This series is normally convergent on the real interval [0,1] so that S is continuous on [0,1] and
satisfies S(0) = 0 and S(1) = 1. Furthermore, S is derivable and increasing on [0,1] since the derived

series converges normally on any compact subset of ]0,1]. Finally, S(x) ≥ vqx
1

q+1 on [0,1] for every
q ≥ 0. Consequently, for every t > 0, there exists Ct > 0 such that

∀x ∈ [0,1], S−1(x) ≤ Ctx
t . (18)

Take now the probabilised left-comb of left-combs defined by the relations (see notations in Re-
mark 3.17)

∀q,p ≥ 0, cq,p = S−1(Rp)
1

q+1 .

Note that these equations fully define the corresponding VLMC because the probabilities q0p10q1 are
characterized by these cq,p via the equalities q0p10q1(0) = cq,p+1/cq,p . The definition of S implies
that

∑
q≥0 vqcq,p = Rp for every p ≥ 0, which precisely means that v = vQ (the row-vector v is a

left-fixed vector for Q). Besides, for any q ≥ 0, applying (18) for t = 2(q + 1) leads to inequalities

∀p ≥ 0, cq,p ≤ C2(q+1)

(
1

p + 1

)2

.

Thus, the positive sequences (vq)q and (cq,p)p,q satisfy the following properties.

1. ∀q ≥ 0,
∑

p cq,p < ∞,
2. ∀p ≥ 0,

∑
q≥0 vqcq,p = ∑

q≥p vq ,
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3.
∑

q vq < ∞,
4.

∑
q,p≥0 vqcq,p = +∞.

In terms of the VLMC, with general notations of Section 2.2, these properties translate into:

1. the cascade series converge (for αs = 10q1, καs = ∑
p cq,p),

2. v = (vαs)αs∈S is a left-fixed vector for Q,
3.

∑
αs∈S vαs < ∞,

4.
∑

αs∈S vαsκαs = +∞.

Therefore, (c1) is fulfilled and (c3) is not. Finally, the stability of the context tree and the conver-
gence of cascade series imply the stochasticity of Q by Proposition 3.16, which force the vector
u = (1,1, . . . ,1, . . . )� to be a right-fixed vector for Q. Moreover, 〈v,u〉 = ∑

αs∈S vαs < ∞. Observ-
ing that Q is aperiodic (for it is strictly positive) and using Remark 7.1.17 p. 207 of Kitchens [24], this
implies the positive recurrence of Q.

Remark 3.23. One may wonder whether (c1) =⇒ (c2). The answer is no. There exists a VLMC de-
fined by a stable tree such that the cascade series converge and the matrix Q is transient.

To build such an example, recall that, by Remark 3.17, any stochastic matrix with strictly positive
coefficients can be realized as the matrix Q of a stable tree (take for example a left-comb of left-combs).
The matrix A = (ai,j )i≥1,j≥1 defined by

• ai,i+1 = 1 − 1
(i+1)2 for all i ≥ 1,

• ai,j = 1
(i+1)22j−1 if j ≥ i + 2,

• ai,j = 1
(i+1)22i+1−j if j ≤ i

is stochastic and transient. Indeed, if one associates a Markov chain to the stochastic matrix A and if
one denotes by T1 the return time to the first state,

P(T1 = ∞) ≥
∏
i≥1

ai,i+1 ≥
∏
i≥2

(
1 − 1

i2

)
= 1

2
.

Consider now the VLMC defined by a left-comb of left-combs probabilised in the unique way such that
Q10q1,10p1 = aq,p for every (p, q), like in Remark 3.17. A simple computation shows that the series of
cascade converges (geometrically). Simultaneously, since Q is transient, Theorem 3.20 shows that the
VLMC admits no stationary probability measure.

Notice that Theorem 3.20 also provides results for non-stable trees as the following corollary shows,
using Remark 3.10.

Corollary 3.24. Let (T , q) be a non-null probabilised context tree. Suppose that T is stabilizable and
denote by T̂ its stabilized. Using the notations of Remark 3.10, if (T̂ , q̂) satisfies the conditions of
Theorem 3.20, then the VLMC associated with (T , q) admits a unique invariant probability measure.
If not, it does not admit any invariant probability measure. In particular, a VLMC associated to a
stabilizable context tree never admits several stationary probability measures.

When the matrix Q is finite dimensional, stochastic and irreducible, it admits a unique left-fixed
vector up to scalar multiplication. This leads to the following theorem.
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Theorem 3.25 (Finite number of alpha-LIS). Let (T , q) be a non-null probabilised context tree and
U = (Un)n be the VLMC it defines. Assume that T is stable and that #S < ∞. Then (i), (ii) and (iii)
are equivalent.

(i) U admits at least a stationary probability measure.
(ii) U admits a unique stationary probability measure.

(iii) The cascade series (4) converge.

Moreover, whenever one of the previous assertion is true then, for every distribution of U0 that does
not charge any infinite context, for every finite word w,

P(Un ∈ wR)−→
n→∞π(wR)

where π denotes the unique U -invariant probability measure.

The proof of Theorem 3.25 is made in Section 1 of the supplemental article Cénac et al. [5], page 9.

Remark 3.26 (Case of finite trees). Assume that U is a non-null VLMC defined by a finite context
tree. One gets an equivalent process Û by properly probabilising the stabilized context tree – see
Remark 3.10. Since there are finitely many contexts, all the cascade series converge – they are all
finite sums. Then, Theorem 3.25 applies, showing that Û – thus U – always admits a unique stationary
probability measure. This is not surprising because in that case, U can be seen as an ordinary irreducible
Markov chain whose order is the height of its context tree – see Remark 2.4.

The following example shows how one can apply Theorem 3.25.

Example 3.27. The so-called left-comb of right-combs is particularly simple because if has only one
context alpha-LIS. The left-comb of right-combs augmented by a cherry stem, a variation of the former
one, gets four context alpha-LIS. Because of Theorem 3.25, both corresponding VLMC have a (unique)
stationary probability measure if and only if their cascade series converge.

The left-comb of right-combs, built on the alphabet {0,1},
is drawn on the left. Its finite contexts are the 0p1q0, p ≥
0, q ≥ 1. It has infinitely many infinite branches, namely
the 0p1∞, p ≥ 0. This context tree is stable and all finite
contexts have 10 as an alpha-LIS. The matrix Q, which is
thus 1-dimensional, is reduced to (1). The convergence of
the unique cascade series consists in the summability of
the double sum

∑
p≥0,q≥1

p−1∏
j=0

q0j 1q0(0)

q−1∏
k=1

q1k0(1).
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The left-comb of right-combs with a cherry stem consists in
simply replacing the context 10 of the preceding tree by the
cherries 100 and 101. The tree is still stable and it has four
context alpha-LIS, as resumed in the array.

alpha-LIS αs contexts having αs as an alpha-LIS

100 100
101 101
010 0p10, p ≥ 1
110 0p1q0, p ≥ 0, q ≥ 2

In this last example, the convergence of the cascade series is equivalent to the finiteness of both sums

κ010 =
∑
p≥1

p−1∏
k=1

q0k10(0) and κ110 =
∑

p≥0,q≥2

p−1∏
j=0

q0j 1q0(0)

q−1∏
k=2

q1k0(1).

3.5. A semi-Markov chain is a stable VLMC

In this section, it is shown that any semi-Markov chain on a finite state space is a VLMC associated
with some particular infinite stable probabilised context tree. Consequently, one deduces from Theorem
3.25 a necessary and sufficient condition for a non-null semi-Markov chain to admit a limit distribution.
This condition already appears in Barbu and Limnios [1].

Definition 3.28. If b ≥ 2, the b-comb is the context tree on an alphabet A of cardinality b having
{αkβ : α,β ∈ A, α �= β, k ≥ 1} as a set of finite contexts.

As an example, Figure 3 represents the 4-comb.

Theorem 3.29. Let b be an integer, b ≥ 2. Every semi-Markov chain with true jumps on a state space
having b elements is the process of initial letters of a VLMC on the b-comb.

In the proof, placed in Section 1 of the supplemental article Cénac et al. [5] on page 11, the cor-
respondence between the b-comb and the semi-Markov chain is made explicit. More precisely, the
probability distributions at each context of the b-comb are given, such that the initial letter process of
the VLMC has the same distribution as a given semi-Markov chain with b states.

Figure 3. The b-comb for b = 4.
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Theorem 3.30. Let (Zn)n≥0 be a semi-Markov chain with true jumps on a finite state space E . Denote
by p = (pα,β(k))α,β∈E,k≥1 its semi-Markov kernel and assume that for any α,β ∈ E , α �= β, k ≥ 1,
pα,β(k) �= 0. Then, the following properties are equivalent.

(i) (Zn)n≥0 admits a limit distribution.
(ii) For every α ∈ E , the series

mα :=
∑
k≥1

k

(∑
γ∈E

pα,γ (k)

)

is convergent.

A proof of Theorem 3.30 can be found in Section 1 of the supplemental article Cénac et al. [5],
page 12.

Remark 3.31. The sum mα is readily seen as a mean sojourn time: mα = E(T1|J0 = α). Theorem 3.30
establishes that mα < ∞ for any α ∈ E is a necessary and sufficient condition for a semi-Markov
chain with true jumps and with a positive semi-Markov kernel to admit a limit distribution. Thus, the
sufficient assumption mα < ∞ for any α ∈ E in Barbu and Limnios [1] becomes a NSC when also
assuming that for any α,β ∈ E , α �= β, k ≥ 1, pα,β(k) �= 0.

3.6. From a VLMC to its induced SMC and back (finite number of alpha-LIS)

The above allows us to go a little further for a non-null stable VLMC (Un) and its associated semi-
Markov chain (Zn) of its successive context alpha-LIS, in the case when there are finitely many alpha-
LIS’s. Remark 3.14 asserts that one cannot recover the VLMC (Un) from the semi-Markov chain (Zn)

(see Section 3.2.2). Nevertheless, one may ask whether the NSC for existence of a limit distribution
for the semi-Markov chain (Zn) is the same as the NSC for existence and uniqueness of a stationary
probability measure for the VLMC (Un). The answer is yes.

Indeed, under the assumptions of Theorem 3.25 (finite number of alpha-LIS), the induced S-valued
semi-Markov chain (Zn) has a finite number of states. Thus, Theorem 3.30 applies and gives a NSC for
(Z′

n), the semi-Markov chain with true jumps deduced from (Zn) by formulas (10). This NSC writes
m′

αs < +∞ where

m′
αs = E

(
T ′

1|J ′
0 = αs

) =
∑
k≥1

k

( ∑
βt �=αs

p′
αs,βt

)
.

Besides, thanks to (11), m′
αs < +∞ is equivalent to mαs < +∞ since, as already noticed in Re-

mark 3.31, mαs = E(T1|J0 = αs). Thanks to Proposition 3.13(i) and its proof, E(T1|J0 = αs) = καs ,
so that

καs = mαs.

Moreover, in Theorem 3.25, καs < +∞ for any αs ∈ S is the NSC for existence and uniqueness of a
stationary probability measure for a stable VLMC with a finite number of alpha-LIS. Summarizing,
the following holds.

Proposition 3.32. Let (Un)n be a non-null stable VLMC admitting a finite number of alpha-LIS. Let
(Zn)n be the S-valued process of its alpha-LIS – see Formula (12). Then, the following properties are
equivalent.
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(i) (Un)n≥0 admits a unique stationary probability measure.
(ii) The cascade series (4) converge.

(iii) (Zn)n≥0 admits a limit distribution.

4. Open problems and conjectures

4.1. Right-fixed vectors for Q

Take a probabilised context tree. When the tree is stable and whenever the sequence (καs(n))n converge
to 0 for every αs ∈ S , the square matrix Q can be seen as the transition matrix of some S-valued
Markov chain, so that it turns out to be stochastic – see Proposition 3.16. This is not true in general if
one removes the stability assumption (Remark 2.19). We nevertheless make the following conjecture.

Conjecture 4.1. For any probabilised context tree, whenever the sequence (καs(n))n converge to 0 for
every αs ∈ S , the matrix Q always admits 1 as a right-eigenvalue.

In particular, thanks to Theorem 2.18, if a context tree has a finite set of alpha-LIS and if this con-
jecture is true, then the corresponding VLMC always admits at least one invariant probability measure
as soon as its (finitely many) cascade series converge.

4.2. Convergence of cascade series

Consider two very simple examples on the alphabet A = {0,1}, pictured hereunder: the left comb and
the bamboo blossom – see Cénac et al. [6] for a complete treatment of stationary probability measures
for these VLMC. It turns out that the left comb gets one context alpha-LIS and thus one cascade series,
that can be convergent or not depending on the distributions qc. The bamboo blossom gets two context
alpha-LIS, both cascade series being always convergent with geometrical rates whatever the (non-null)
distributions qc are. This phenomenon, which seems to be generalizable, leads us to the following
conjecture.

Conjecture 4.2. Take a non-null probabilised context tree. When the tree does not have any infinite
shift-stable subtree, all the cascade series converge, with geometrical rates.

4.3. Vanishing of cascades and σ -finite invariant measures

Take a stable probabilised context tree. As recalled just above (Section 4.1), whenever the sequence
(καs(n))n converge to 0 for every αs ∈ S (we call this assumption vanishing of cascades), the square
matrix Q is stochastic by Proposition 3.16. Moreover, Theorem 2.18 or Theorem 3.20 asserts that the
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convergence of cascade series is a necessary condition for the VLMC to admit an invariant probability
measure. As stated herunder, the vanishing of cascades is conjectured to be a necessary condition for
the VLMC to admit an invariant σ -finite measure.

Conjecture 4.3. Let U be a VLMC defined by a probabilised stable context tree. Assume that U admits
an invariant σ -finite measure. Then, for every αs ∈ S , the sequence (καs(n))n tends to 0 when n tends
to infinity (and, consequently, Q is stochastic).
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