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Enumeration of planar graphs:

how symbolic method and singularity analysis apply

– Lecture notes –

1 Introduction

Quick definition of a graph (in this talk, all graphs are labelled and simple: at most one edge
between two vertices, thus no loops), characterized by its adjacence matrix.

Example (3 connected components):
1 2 3 4 5

6 7 8 9 10

As labelled graphs,
1 2

3

4 and
1 2

34

are equal.

Quick definition of a planar graph: one can draw it in the plane without edge crossing.

Example: the graph
1 2

3 4

is not plane, but it is planar:
1 2

3 4

=
1 2

3 4

=
1 2

3

4

The smallest nonplanar graph is the complete graph on 5 vertices (often named K5).
Denote by gn the number of planar graphs on n vertices.

Theorem 1 (Giménez and Noy, 2008) When n tends to infinity,

gn ∼ gn!γnn−7/2

where g ≈ 0.42609.10−5 and γ ≈ 27.22688 are explicit (but intricately defined) numbers.

[Many consequences on random planar graphs and many other random combinatorial objects.]

How can one prove such a result?

This talk gives a rapid glance at a very powerful method for computing asymptotics of combi-
natorial objects: generating power series, symbolic method, analysis of singularities.
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2 A very famous example: asymptotics of binary trees

Definition of a (rooted plane) binary tree, leaf, internal node.
Denote by Cn the number of (rooted plane binary) trees having n internal nodes.
Elementary counting when the number of vertices is small.

C1 = 1

C2 = 2

C3 = 5

C4 = 14

Consider the generating (power) series of binary trees

C(x) =
∑
n≥0

Cnx
n = 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 + 132x6 + 429x7 + · · ·

Combinatorial decomposition: a tree is either empty or is defined by a root with two subtrees
(make a picture). Translating this fact as a recurrence relation on the Cn, and further into the
generating series langage leads to the equation

C(x) = 1 + xC(x)2. (1)

This is a particular case of the powerful so-called symbolic method. Comments. See [FS] for a
beautiful and rather complete landscape on the subject.

Solving quadratic Equation (1), one gets

C(x) =
1−
√

1− 4x

2x
,

the other solution being eliminated because C is a power series (nonnegative powers). Besides,
Taylor series of the square root function asserts that

√
1 + x = (1 + x)

1
2 =

∑
n≥0

(1
2

n

)
xn,

the equality being valid on the open disc D(0, 1) for the principal determination of the square
root (defined on C \ R≤0, values in {<z > 0}). This leads to the closed formula

Cn = −1

2
(−4)n+1

(
1/2

n+ 1

)
=

1

n+ 1

(
2n

n

)
.
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Using Stirling formula, and one gets the asymptotics when n tends to infinity:

Cn ∼
1√
π

4nn−3/2.

This result can be directly proven using the so-called Transfer Theorem that asserts the following
(the proof belongs to complex analysis, there are many extensions of this theorem).

Theorem 2 (Transfer Theorem) Let S(x) =
∑
snx

n be a power series with complex coeffi-
cients. Assume that:
(i) S has R > 0 as a convergence radius
(ii) in a camembert domain around R, the function x 7→ S(x) is analytic and admits an expansion
of the form

S(x) ∼ C
(

1− x

R

)α
when x tends to R in the domain, with C ∈ C and α ∈ C \ Z≥0.
Then, when n tends to infinity,

sn ∼
C

Γ (−α)
R−nn−α−1.

A camembert domain around R is an open subset of the complex plane of the form R

Evocation of singularity analysis, many many examples, see [FS].
Efficiency of coupling symbolic method and singularity analysis.

3 How symbolic method and singularity analysis apply to planar
graphs

A graph has vertices and edges that join vertices. A graph is said planar is it can be drawn in
the plane (on on the sphere S2) without edge crossing. The graphs we consider here are simple
(no loops and at most one edge between two vertices) and labelled (a label 1, 2, 3, . . . is given
to each vertex).
[Beware: graph 6= map.]

Small labelled planar graphs:

g1 = 1 1× 1

g2 = 2 1× 1 2 and 1× 1 2

g3 = 8 1×
1 2

3

and 3×
1 2

3

and 3×
1 2

3

and 1×
1 2

3

3



g4 = 64

1×
1 2

34

and 6×
1 2

34

and 12×
1 2

34

and 3×
1 2

34

and 12×
1 2

34

and 4×
1 2

34

and 4×
1 2

34

and 3×
1 2

34

and 12×
1 2

34

and 6×
1 2

34

and 1×
1 2

3

4

Consider the exponential generating series of planar graphs (Sloane’s A066537)

G(x) =
∑
n≥0

gn
n!
xn = 1 + x+ 2

x2

2!
+ 8

x3

3!
+ 64

x4

4!
+ 1023

x5

5!
+ 32071

x6

6!
+ 1823707

x7

7!
· · ·

[Exponential generating series are suitable ones for labelled objects, see [FS].]
The proof of Theorem 1 is based on the analysis of singularities of G.

– What can be said on G so that one can make this singularity analysis ? –

Definition of a connected planar graph.
By symbolic method (a graph is a set of connected graphs),

G(x) = expC(x)

where

C(x) =
∑
n≥0

cn
n!
xn = 1 + x+

x2

2!
+ 4

x3

3!
+ 38

x4

4!
+ 727

x5

5!
+ 26013

x6

6!
+ 1597690

x7

7!
· · ·

is the exponential generating series of connected planar graphs. Analytic singularities of G will
be deduced from singularities of C.

Definition of a 2-connected planar graph. Denote by

B(x) =
∑
n≥0

bn
n!
xn

the exponential generating series of 2-connected planar graphs. From the combinatoric decompo-
sition of pointed connected planar graphs (a graph with a chosen vertex) in pointed 2-connected
components, the symbolic method implies that

xC ′(x) = x exp
[
B′
(
xC ′(x)

)]
.

Thus, the power series F (x) = xC ′(x) satisfies the implicit equation

F (x) = x expB′ (F (x)) , (2)

so that analytic singularities of F are related to those of B (or B′).

Works from Tutte’s sphere, Mullin and Schellenberg (1968), Walsh (1982), Bender, Gao and
Wormald ([BGW], 2002) on maps and graphs show the following successive facts. They are
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all due to combinatorial properties of graphs and maps, translated into the generating function
langage. Denote by

B2(x, y) =
∑

n≥0,q≥0
bn,qy

q x
n

n!

the bivariate power series in x and y, where bn,q denotes the number of 2-connected planar
graphs having n (labelled) vertices and q (non labelled) edges. Note that

B(x) = B2(x, 1).

Claim There are bivariate power series U(x, z), D(x, y) and M(x, y) related by the following
relations:

U(x, y) = xy
(

1 + y (1 + U(x, y))2
)2

(3)

M(x, y) = Rat (x, y, U(x, y)) (4)

M (x,D(x, y))

2x2D(x, y)
− log

1 +D(x, y)

1 + y
+

xD2(x, y)

1 + xD(x, y)
= 0 (5)

∂B2(x, y)

∂y
=
x2

2

[
1 +D(x, y)

1 + y
− 1

]
. (6)

In Formula (4), Rat denotes an explicit simple rational fraction in 3 variables on Q which can
be easily written on one line (see [BGW] or [GN]). In fact, D and M have combinatorical
interpretations: M is the bivariate generating series of 3-connected rooted maps and D is the
bivariate generating series of planar graphs with two distinguished vertices, called poles, such
that adding an edge between the poles creates a 2-connected planar graph.
From (6), (5), (3) and (4), one deduces first that B has a unique dominant singularity at some
positive number R and then that it admits an expansion of the form

B(x) = B0 +B2

(
1− x

R

)
+B4

(
1− x

R

)2
+B5

(
1− x

R

)5
2

+O
(

1− x

R

)3
when x tends to R in a suitable camembert domain. The positive real number R is defined by
some transcendental equation of the form h(R) = 0, the function h being explicitely written in
the rational-exponential algebra. The numbers Bk are log-rational explicit functions of R.
Coming back to Relation (2), one shows that F admits a unique dominant singularity at ρ =
ReB2/R together with an expansion of the form

F (x) = F0 + F2

(
1− x

ρ

)
+ F3

(
1− x

ρ

) 3
2

+O

(
1− x

ρ

)2

when x tends to ρ in a suitable camembert domain. The numbers Fk are explicit functions of R.
Finally, Giménez and Noy show that G admits a unique singularity at ρ and an expansion at ρ
in a camembert domain of the form

G(x) = G0 +G2

(
1− x

ρ

)
+G4

(
1− x

ρ

)2

+G5

(
1− x

ρ

) 5
2

+O

(
1− x

ρ

)3

,

where the Gk are explicit functions of R and the Bk. The last step consists in using the transfer
lemma that leads to Theorem 1.
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