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Abstract. Let m ≥ 3 be an integer. The so-called m-ary search tree is a discrete time Markov chain which is very popular in
theoretical computer science, modelling famous algorithms used in searching and sorting. This random process satisfies a well-
known phase transition: when m ≤ 26, the asymptotic behavior of the process is Gaussian, but for m ≥ 27 it is no longer Gaussian
and a limit WDT of a complex-valued martingale arises.

In this paper, we consider the multitype branching process which is the continuous time version of the m-ary search tree.
This process satisfies a phase transition of the same kind. In particular, when m ≥ 27, a limit W of a complex-valued martingale

intervenes in its asymptotics. Thanks to the branching property, the law of W satisfies a smoothing equation of the type Z
L=

e−λT (Z(1) +· · ·+Z(m)), where λ is a particular complex number, Z(k) are independent complex-valued random variables having

the same law as Z, T is a R+-valued random variable independent of the Z(k), and
L= denotes equality in law. This distributional

equation is extensively studied by various approaches. The existence and uniqueness of solution of the equation are proved by
contraction methods. The fact that the distribution of W is absolutely continuous and that its support is the whole complex plane
is shown via Fourier analysis. Finally, the existence of exponential moments of W is obtained by considering W as the limit of a
complex Mandelbrot cascade.

Résumé. Soit m ≥ 3 un entier. Très populaire en informatique fondamentale, l’arbre m-aire de recherche est une chaîne de Markov
à temps discret qui modélise de célèbres algorithmes de tri et de recherche de données. Ce processus aléatoire vérifie une transition
de phase bien connue : lorsque m ≤ 26, le comportement asymptotique du processus est gaussien. En revanche, lorsque m ≥ 27, il
n’est plus gaussien et fait apparaître la limite WDT d’une martingale à valeurs complexes.

Dans cet article, on considère le processus de branchement multitype qui est le plongement en temps continu de l’arbre m-aire
de recherche. Ce processus fait l’objet d’une transition de phase du même type. En particulier, lorsque m ≥ 27, son asymptotique
s’exprime à l’aide de la limite W d’une martingale complexe. Grâce à la propriété de branchement, la loi de W est solution d’une

équation en distribution du type Z
L= e−λT (Z(1) +· · ·+Z(m)) où λ est un nombre complexe particulier, les Z(k) sont des variables

aléatoires complexes indépendantes dont la loi est celle de Z, T est une variable aléatoire réelle positive indépendante des Z(k), et
L= désigne l’égalité en distribution. On étudie cette équation en loi par des approches variées. L’existence et l’unicité de solutions
sont prouvées par des méthodes de contraction. L’absolue continuité de W et le fait que son support soit le plan complexe tout
entier sont démontrés par analyse de Fourier. Enfin, on obtient l’existence de moments exponentiels en considérant W comme la
limite d’une cascade de Mandelbrot à valeurs complexes.
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1. Introduction

Consider a continuous time multitype branching process (X(t), t ≥ 0). Types are seen as colors of particles and there
are m− 1 colors, where m ≥ 3 is an integer. The reproduction of the process is given by a particular matrix R (written
in (2.1)), and any particle of colour j lives a random time of exponential distribution with parameter j . Such a classical
process is considered for example in Athreya and Ney [1] or Janson [12] and it is precisely defined in Section 2.

When it is stopped at the nth jump time, this process is nothing but the composition vector process (XDT
n ,n ≥ 0)

say, of the so-called m-ary search tree, which is an important algorithmic structure in computer science.
The continuous time random process (X(t), t ≥ 0) exhibits a phase transition: when m ≤ 26, the random vector

X(t) has a Gaussian behaviour when t tends to infinity. This fact, a consequence of classical results on branching
processes, has been known for a long time. Details are recalled in the beginning of Section 4.

When m ≥ 27, inspired by the methods used for a two-color Pólya urn in [5], we first prove in Section 4.1 that
X(t) admits the following asymptotic expansion:

X(t) = et ξv1
(
1 + o(1)

)+ 2�(eλ2tWv2
)(

1 + o(1)
)+ o

(
eσ2t

)
a.s.,

where λ2 is a particular complex number having a real part σ2 in ] 1
2 ,1[, ξ is a Gamma distributed random variable

and W a C-valued one and v1, v2 are linearly independent vectors defined in (2.4).
We are interested in the limit random variables Wk,k = 1, . . . ,m − 1, each corresponding to Xk(t) which denotes

the process X(t) when it starts from one particle of color k. Using the branching property, a system of dislocation
equations is written for the random vectors Xk(t) in Section 5.1. A system of fixed point equations satisfied by the
corresponding limit laws is then derived in Section 5.2. In particular, the complex-valued random variable W1 is a
solution of the fixed point equation

Z
L= e−λ2T

(
Z(1) + · · · + Z(m)

)
, (1.1)

where {Z(k): k ≥ 1} are independent copies of Z, T = τ(1) +· · ·+ τ(m−1), {τ(j): j ≥ 1} are random variables indepen-
dent of each other and independent of {Z(k)}, each τ(j) has distribution E xp(j) (we denote by E xp(j) the exponential
distribution of parameter j : it has density x �→ je−jx on ]0,∞[).

Further properties of W1 are derived from a thorough study of Eq. (1.1). We first show in Theorems 6.2 and 6.4
that Eq. (1.1) admits a unique square-integrable solution having a given mean. In particular, this implies that Eq. (1.1)
characterizes the distribution of W1. This result is proven by two contraction methods applied to the correspond-
ing smoothing transformations. The first one deals with suitable spaces of probability measures where the classical
Wasserstein metric is adapted to the complex field; it leads to Theorem 6.2. The second contraction method, that gives
a proof for Theorem 6.4, consists in working on Fourier transforms of solutions and provides a somewhat simpler
proof. Furthermore, this second method gives a result of existence and uniqueness for solutions of the convolution
equation

Φ(t) =
∫ +∞

0
Φm(t − u)fT (u)du, t ∈ C,

in a convenient space of functions, where fT denotes the density of T (see Remark 6.6).
Once the characterization of W1 by Eq. (1.1) is proven, it suffices to derive properties of solutions of this distribu-

tional equation. We show in this way the following results on the law of W1.

Theorem 1.1. When m ≥ 27, the complex-valued random variable W1 admits a density and its support is the whole
complex plane. Its Fourier transform satisfies

Eei〈t,W1〉 = O
(|t |−a

)
when |t | → +∞, for some a > 1.
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This theorem is a direct consequence of Theorem 7.1 that provides such properties for solutions of (1.1) admitting a
nonzero mean. Our proof consists in showing successively that the characteristic function of any solution has modulus
equal to 1 only at the origin, that it tends to zero at infinity, and finally that it is of order O(|t |−a) as |t | → ∞ for
some a > 1, so that it is square-integrable on C. In the approach we need to prove a nonlattice property of Eq. (1.1)
via Gelfand–Schneider theorem, using the algebraicity of λ2 (see proof of Lemma 7.4).

Theorem 1.2. When m ≥ 27, the random variable W1 admits exponential moments in a neighbourhood of the origin
of the complex plane. If L1(z) = EezW1 denotes its Laplace series, then L1 is holomorphic near 0 and, after a change
of variable, the function z �→ −ρ

z
L1(z

−λ2) is a solution of the differential equation

y(m−1) = ym.

Theorem 1.2 is immediately derived from Theorems 8.1 and 8.4 just as Theorem 1.1 was derived from Theorem 7.1.
To prove Theorems 8.1 and 8.4, we consider a solution of (1.1) as the limit of a complex Mandelbrot cascade. The
results are a consequence of fine analytical properties of the Fourier transform of the limit variable.

The paper is organized as follows. The continuous time multitype branching process is defined in Section 2. Its
relation with the m-ary search tree is detailed in Section 3, while Section 4 is devoted to the asymptotics of X(t) and
to its connection to the corresponding discrete time process. In Section 5, we use the branching property of the process
to show that the martingale limits of the continuous time process are related by a system of equations in law so that
the fixed point equation (1.1) emerges. These first four sections constitute the first part of the paper.

The second part of the paper consists in putting the focus on Eq. (1.1) that turns out to characterize the distribution
of W1 so that all results on solutions provide results on W1. In Section 6 we define the natural smoothing transform
associated with Eq. (1.1) and we show that it defines a contraction in the space of square-integrable probability
measures with given mean. Results on the support and on absolute continuity of solutions are obtained in Section 7.
Finally, Section 8 is devoted to the exponential moments and the Laplace series of solutions.

2. Definition of the branching process

In this section we introduce the definition of the continuous time multitype branching process (X(t)), and present the
spectral decomposition of its transition matrix.

2.1. Infinitesimal generator

In the whole paper, the underlying vector space is Rm−1 or sometimes Cm−1. Let R be the following square matrix of
order m − 1:

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1
−1 1

−1
. . .

. . . 1
m −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.1)

and for k = 1, . . . ,m− 1, let wk be the kth row vector of R: when 1 ≤ k ≤ m− 2, the kth coordinate of wk equals −1,
the (k + 1)th equals 1 and all the others are 0; wm−1 has m as first coordinate, −1 as last one, and 0 for all others.

Let G be the operator defined on functions f from Cm−1 to any real or complex vector space by the following
formula: for any vector v in Cm−1,

G(f )(v) =
m−1∑
k=1

klk(v)
[
f (v + wk) − f (v)

]
, (2.2)

where lk are the coordinate forms: lk(x1, . . . , xm−1) = xk .
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Definition 2.1. The right-continuous process X = (X(t), t ≥ 0) is the only continuous time Markov process with state
space Rm−1 having G as infinitesimal generator.

Equivalently, X is a continuous time multitype branching process with m − 1 types (or colors), having R as re-
production matrix. The kth coordinate of the vector X(t), namely lk(X(t)), is the number of particles of color k at
time t . A particle of color k lives a random exponential time with parameter k; when it dies, it reproduces one particle
of color k + 1 if k = 1, . . . ,m − 2, and m particles of color 1 if k = m − 1.

This branching continuous time process can be thought as the embedded process of a discrete Markov chain XDT =
(XDT

n )n∈N which is a Pólya-type discrete Markov chain associated with the node process of an m-ary search tree, an
important algorithmic structure in computer science. This connection is detailed in Section 3.

2.2. Spectral decomposition

Let RG be the matrix of G’s restriction to linear forms in the canonical basis (lk)1≤k≤m−1. One immediately checks
that

RG =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1
−2 2

−3
. . .

. . . m − 2
m(m − 1) −(m − 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where an empty entry means a zero entry. It has been established in many papers – see for example Mahmoud [16],
Chern and Hwang [6] or [4] – and it can be easily checked that RG’s (unitary) characteristic polynomial is

χRG
(λ) =

m−1∏
k=1

(λ + k) − m! = 	(λ + m)

	(λ + 1)
− m!, (2.3)

where 	 denotes Euler’s Gamma function. All eigenvalues are simple, 1 being the one having the largest real part. If
m = 3, the second eigenvalue is −3. When m ≥ 4, all eigenvalues different from 1 are nonreal, except −(m+ 1) when
m is odd.

When m ≥ 4, in the whole paper, λ2 will denote χRG
’s root having the second largest real part named σ2 and a

positive imaginary part named τ2.

The famous phase transition on m-ary search trees already mentioned in the introduction is due to the fact that

�(λ2) > 1/2 if and only if m ≥ 27.

See for example [4]. The assumption �(λ2) > 1/2 will be frequently used in the sequel.
We adopt the following notations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀n ∈ Z≥0,

(
z

n

)
= 	(z + 1)

n!	(z − n + 1)
= z(z − 1) · · · (z − n + 1)

n! ;

Hm(z) =
∑

1≤k≤m−1

1

z + k
;

u1(x1, . . . , xm−1) =
∑

1≤k≤m−1

kxk;

u2(x1, . . . , xm−1) =
∑

1≤k≤m−1

(
λ2 + k − 1

k − 1

)
xk;

v1 = 1

Hm(1)

(
1

k(k + 1)

)
1≤k≤m−1

;

v2 = 1

Hm(λ2)

(
1

k
(
λ2+k

k

))
1≤k≤m−1

.

(2.4)
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The linear forms u1 and u2 are eigenvectors of G, namely G(u1) = u1 and G(u2) = λ2u2. The vectors v1 and v2 are
left eigenvectors of RG, respectively associated with the eigenvalues 1 and λ2. They satisfy u1(v1) = u2(v2) = 1 and
u1(v2) = u2(v1) = 0. These spectral data had already been essentially computed in [4] and [18]. Note that, since λ2 is
not real, u2 and v2 have nonreal coordinates. Note also that v2 (for a complex vector v we denote by v its conjugate
vector composed of the complex conjugates of the components of v) is an eigenvector of RG linearly C-independent
from v2, that (v1, v2, v2) can be completed to provide a basis of complex eigenvectors of RG, and that its dual basis is
of the form (u1, u2, u2, . . .). In particular, u2(v2) = 0.

3. m-ary search trees and embedding

In this section we present the connection between m-ary search trees and the multitype branching process defined in
Section 2. This connection is the classical embedding of a discrete time Markov chain into a continuous time Markov
process.

3.1. m-ary search trees

We define here a discrete time Markov chain XDT = (XDT
n ,n ≥ 0) with values in Nm−1 \ {0}. The ith coordinate

of XDT
n is denoted by X

(i)
n and has a “physical” meaning detailed hereafter. The Markov chain XDT is a random

walk defined by an initial vector XDT
0 in Nm−1 \ {0} and by the following transition probabilities: ∀v ∈ Nm−1 \ {0},

∀k = 1, . . . ,m − 1,

q(v, v + wk) = klk(v)∑m−1
j=1 j lj (v)

, (3.1)

where the increment vectors wk are given in Section 2.1 and lk(v) denotes the kth coordinate of the vector v.
Classically (see Norris [17] and for a synthetic exposition Bertoin [3]), this discrete time Markov chain is embedded

in continuous time using a “Poissonization” of the time: given XDT , one can recover X = (X(t), t ≥ 0) as follows.
At time 0, X(0) = XDT

0 . For any vector v ∈ Rm−1, define1

q(v) :=
m−1∑
k=1

klk(v).

Let τ1 be a random time exponentially distributed with parameter q(XDT
0 ). For any time t ∈ [0, τ1[, let X(t) = X(0) =

XDT
0 . At time τ1, X jumps from v = X(0) to v+wk with probability given by formula (3.1). More generally, let τ0 = 0

and for any n ≥ 1, define the nth jumping time τn by

τn =
n−1∑
i=0

εi

q(XDT
i )

,

where εi are independent random variables having the same exponential distribution with parameter 1. Let

X(t) = X(τn) = XDT
n ∀t ∈ [τn, τn+1[.

At time τn+1, X jumps from v = X(τn) to v + wk with probability given by formula (3.1). It is easy to see that this
embedded process X(t) is the same one as the branching process defined in Section 2.1.

When XDT
0 = (1,0, . . . ,0), each X

(i)
n , i = 1, . . . ,m − 1, can be seen as the number of nodes of type i in a tree Tn:

the sequence (Tn,n ≥ 0) is a sequence of random m-ary trees which grow by successive insertions of keys in their
leaves. Each node of these trees contains at most m − 1 keys. Keys are i.i.d. random variables xi, i ≥ 1, with any
diffusive distribution on the interval [0,1]. The tree Tn,n ≥ 0, is recursively defined as follows: T0 is reduced to an
empty node-root; T1 is reduced to a node-root which contains x1, T2 is reduced to a node-root which contains x1 and
x2, . . . , Tm−1 has a node-root containing x1, . . . , xm−1. As soon as the (m − 1)th key is inserted in the root, m empty

1Note that q = u1 where u1 was defined by (2.4).
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subtrees of the root are created, corresponding from left to right to the m ordered intervals I1 =]0, x(1)[, . . . , Im =
]x(m−1),1[, where 0 < x(1) < · · · < x(m−1) < 1 are the ordered m − 1 first keys. Each following key xm, . . . , is
recursively inserted in the subtree corresponding to the unique interval Ij to which it belongs. As soon as a node is
saturated, m empty subtrees of this node are created.

For each i = {1, . . . ,m − 1} and n ≥ 1, X
(i)
n is the number of nodes in Tn which contain i − 1 keys (and i gaps or

free places) after insertion of the nth key; such nodes are named nodes of type i. We don’t worry about the number of
saturated nodes. The vector XDT

n is called the composition vector of the m-ary search tree. It provides a model for the
space requirement of the algorithm. One can refer to Mahmoud’s book [16] for further details on search trees.

Notice that, in this dynamics, the insertion of a new key is uniform on the gaps, as can be seen on the transition
probabilities (3.1).

3.2. Embedding

The embedding properties are summarized in the following lemma.

Lemma 3.1.

(1) For any n ≥ 1, the distribution of τn − τn−1 is E xp(n − 1 + N0), where N0 is the number of free places in X(0):
N0 = u1(X(0)).

(2) the processes (τn)n≥1 and (X(τn))n≥1 are independent.
(3) the processes (X(τn))n≥1 and (XDT

n )n≥1 have the same distribution.

Proof. Part (1) is a consequence of the fact that the minimum of k independent E xp(1)-distributed random variables
is E xp(k)-distributed, and that the total number of free places at time τn equals n − 1 + N0.

Part (2) is the classical independence between the jump chain and the jump times in such Markov processes. The
initial states and evolution rules of both Markov chains in discrete time and in continuous time are the same ones, so
that Part (3) holds. �

Convention. From now on, thanks to Part (3) of Lemma 3.1, we will as usual suppose that the discrete time process
and the continuous time process are built on the same probability space on which(

X(τn)
)
n≥1 = (

XDT
n

)
n≥1 a.s. (3.2)

Remark. The important benefit we get with the embedding is the independence in the continuous time process. This
independence is the key point for the dislocation equations later on.

4. Asymptotics and martingale connection

In this section we present the asymptotic behaviour of the continuous time multitype branching process (X(t))t in
three principal directions and its connection with the discrete time process (XDT

n ) defined in Section 3.1.

4.1. Asymptotics of the continuous time branching process

When m ≤ 26, the random vector X(t) satisfies a Gaussian asymptotics when t tends to infinity: firstly, the random
vector e−tX(t) converges almost surely to ξv1 where ξ is a positive random variable and v1 a deterministic vector
(in fact, v1 is defined by formula (2.4) and the proof of Theorem 4.1 shows that ξ is Gamma-distributed and that this
convergence is valid in any Lp , p ≥ 1). Secondly, X(t) can be decomposed as the sum X(t) = X1(t) + XI (t) of two
random vectors, where X1 is proportional to v1, XI belongs to some fixed supplementary subspace, e−tX1(t) → ξv1
almost surely and e−t/2XI (t) converges in distribution to

√
ξN where N is a centered Gaussian vector independent

of ξ . For a statement and a proof of these facts, one can refer to Theorem 3.1 and Example 7.8 in Janson [12].
When m ≥ 27, using the notations of Section 2 and especially the formula (2.4), the random vector X(t) admits a

3-dimensional almost sure expansion as t goes to infinity, described in Theorem 4.1. Denote by �(v2) (resp. (v2))
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the vector of Rm−1 made of the real (resp. imaginary) parts of v2’s coordinates. Then, geometrically speaking, The-
orem 4.1 gives the principal part of X(t)’s coordinates along the three linearly independent vectors v1, �(v2) and
(v2), the projection of X(t) on a supplementary subspace being almost surely negligible.

Notice that these results had been partially proven in a more general frame by Athreya and Ney [1] and adapted
to this particular branching process by Janson [12]. More precisely, since RG is diagonalizable on C, choose a basis
(vλ)λ∈Sp(RG) of complex eigenvectors of RG and name its dual basis (uλ)λ∈Sp(RG). Then, the spectral decomposition
Cm−1 =⊕

Cvλ gives rise to the corresponding projections uλvλ on all eigenlines. With this material, Janson’s result
can be stated in the following way: for any λ ∈ Sp(RG),

(i) if �(λ) > 1/2, e−λtuλ(X(t)) converges almost surely to some (nonnormal) random variable. In particular, let
ξ = limt→+∞ e−t u1(X(t));

(ii) if �(λ) < 1/2, e−t/2uλ(X(t)) converges in law to some product
√

ξN where N is a centered normal distribution
independent of ξ (note that �(λ) = 1/2 never happens).

Nevertheless, the global almost sure and Lp remainder ε3(t) in Theorem 4.1 is a new result.

Theorem 4.1 (Asymptotics of continuous time process). Suppose that m ≥ 27. Then, with the notations of Section 2
and especially the formulae (2.4), as t tends to infinity,

X(t) = et ξv1
(
1 + ε1(t)

)+ 2�(eλ2tWv2
)(

1 + ε2(t)
)+ eλ2tε3(t), (4.1)

where

• ξ is a positive Gamma-distributed random variable with expectation N0 = u1(X(0)) (total weighted number of
particles at time 0),

• W is a complex-valued random variable that admits moments of all orders p ≥ 1 and whose expectation equals
u2(X(0)),

• the real-valued random variables ε1(t) and ε2(t) and the real random vector ε3(t) tend to 0 as t tends to +∞,
almost surely and in any Lp-space, p ≥ 1.

In other words, if one denotes by ϕ any argument of the complex number W , the trajectory of the random vector
X(t), projected in the 3-dimensional real vector space spanned by the vectors (�(v2),(v2), v1) is almost surely
asymptotic to the (random) spiral⎧⎨

⎩
x(t) = 2|W |eσ2t cos(τ2t + ϕ),

y(t) = −2|W |eσ2t sin(τ2t + ϕ),

z(t) = ξet ,

drawn on the (random) revolution surface

4|W |2z2σ2 = ξ2σ2
(
x2 + y2),

when t tends to infinity. See Fig. 1

In the whole paper, W denotes our hero, namely the limit complex-valued random variable that appears in X(t)’s
expansion, as in Theorem 4.1.

Proof of Theorem 4.1. Denote by A the endomorphism of Rm−1 having tRG as matrix in the canonical basis. Let also
M(t) = exp(−t A)X(t), for any t ≥ 0. By standard arguments from multitype branching process theory, (M(t))t≥0
is a vector-valued martingale. Since m ≥ 27, the real part of λ2 belongs to ]1/2,1[ so that the projected martingales
u1(M(t)) and u2(M(t)) converge in Lp for any p ≥ 1. For proofs of these results, see for example Athreya and Ney
[1] or Janson [12] (especially Lemma 10.2 of Janson’s paper for the Lp-boundedness, X being here an irreducible
process in the sense of [12]). The random variables ξ and W are respectively defined by{

ξ = limt→+∞ u1
(
e−t AX(t)

)= limt→+∞ e−t u1
(
X(t)

)
,

W = limt→+∞ u2
(
e−t AX(t)

)= limt→+∞ e−λ2t u2
(
X(t)

)
.

(4.2)
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Fig. 1. Spiral in the vector space spanned by (�(v2),(v2), v1) to which X(t) is a.s. asymptotic.

An alternative proof of the Lp convergence can be made using the techniques of [19], as developed in [5] for two-
colour urn processes. In particular, ξ ’s distribution is attained by explicit computation of its moments: for any non-
negative integer p, an elementary computation shows directly from (2.2) that the (so-called reduced) polynomial

Q := u1(u1 + 1)(u1 + 2) · · · (u1 + p − 1)

is an eigenvector for X’s infinitesimal generator G, associated with the eigenvalue p. Thus EQ(X(t)) = eptQ(X(0))

for any t . Besides, because of (4.2), Q(X(t)) = ept ξp(1 + o(1)) as t tends to infinity, almost surely and in L1. Finally,
the last two equalities provide

Eξp = Q
(
X(0)

)= 	(N0 + p)

	(N0)
.

This shows that the law of ξ is a Gamma distribution with parameter N0 since a Gamma distribution is completely
determined by its moments. The matrix RG is diagonalizable on C since all roots of its characteristic polynomial are
simple (see (2.3)). Extending notations (2.4), let (uλ)λ∈Sp(A) be a basis of linear forms, each uλ being an eigenvector
of G associated with the (complex) eigenvalue λ. Let also (vλ)λ∈Sp(A) be the dual basis of (uλ)λ∈Sp(A), each vλ being
thus a vector that satisfies uλ(vμ) = δλ,μ (Kronecker’s notation). Note that one can choose uλ2 = u2 and, consequently,
vλ2 = v2 (cf. notations (2.4)).

For any t ≥ 0, split the spectral decomposition of the vector X(t) with respect to G into four terms:

X(t) =
∑

λ∈Sp(A)

uλ

(
X(t)

) · vλ = X1(t) + X2(t) + X3(t) + X4(t),

where⎧⎪⎪⎨
⎪⎪⎩

X1(t) = u1
(
X(t)

)
v1,

X2(t) = uλ2

(
X(t)

)
vλ2 + uλ2

(
X(t)

)
vλ2

,

X3(t) =∑
1/2<�λ<�λ2

uλ

(
X(t)

)
vλ,

X4(t) =∑
�λ<1/2 uλ

(
X(t)

)
vλ.

Note that this partition of Sp(A) is valid because 1
2 is not an eigenvalue of A as can be checked from (2.3). We deal

separately with these four components of X(t). Define ε3 by ε3(t) = X3(t) + X4(t), for any t ≥ 0.
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• The formulae (4.2) provide directly the asymptotics

⎧⎪⎨
⎪⎩

X1(t) = (
et ξ + o

(
et
))

v1,

X2(t) = (
eλ2tW + o

(
eλ2t

))
v2 + (

eλ2tW + o
(
eλ2t

))
v2

= 2�((eλ2tW + o
(
eλ2t

))
v2
)
,

leading to the first two terms of the expansion (4.1).
• Suppose that λ is an eigenvalue of A such that 1

2 < �λ < �λ2. Then, with the same general arguments as in the
very beginning of the proof, it can be seen that

uλ

(
M(t)

)= e−tλuλ

(
X(t)

)
and that (uλ(M(t)))t≥0 is a convergent martingale, bounded in any Lp , p ≥ 1. In particular, uλ(X(t)) = o(eλ2t ) as t

tends to infinity, almost surely and in any Lp , p ≥ 1. This shows that X3(t) is o(eλ2t ) when t → +∞.
• It remains to deal with the small eigenvalues, namely with all λ such that �λ < 1

2 .

Lemma 4.2. Suppose that λ is an eigenvalue such that �λ < 1
2 and let η > 0. Then, e−(1/2+η)tuλ(X(t)) is bounded

almost surely and in any Lp-space, p ≥ 1.

The proof of this lemma is given just hereafter. Therefore, if �λ < 1
2 , then

e−λ2t uλ

(
X(t)

)= e(1/2+η−λ2)t
[
e−(1/2+η)tuλ

(
X(t)

)]−→
t→∞ 0

almost surely as soon as 0 < η < �λ2 − 1
2 . Such η exist because �λ2 > 1

2 . This shows that X4(t) is o(eλ2t ) when
t → +∞. The same argument holds for the Lp convergence, making the proof complete. �

Proof of Lemma 4.2. The main idea consists in taking advantage of the following fact: when t belongs to the interval
[τn, τn+1[, the vector X(t) remains equal to XDT

n . This being considered, we make use of the moment bounds of the
discrete time process that can be found in [19] (Theorem 3.4(1)): when �λ < 1

2 ,

∀p ≥ 1,∀ε > 0, E
∣∣uλ

(
XDT

n

)∣∣p = O
(
np(1/2+ε)

)
, n → +∞. (4.3)

• Almost sure bound: we prove that

lim
C→+∞ P

(∃t > 0, e−(1/2+η)t
∣∣uλ

(
X(t)

)∣∣> C
)= 0, (4.4)

which suffices to get the almost sure boundedness. Let C > 0, η > 0 and let λ be an eigenvalue such that �λ < 1
2 . The

jump time τn tends almost surely to +∞ which is a classical result that can be deduced from Lemma 3.1, so that

P
(∃t > 0, e−(1/2+η)t

∣∣uλ

(
X(t)

)∣∣> C
)

≤
∑
n≥0

P
(∃t ∈ [τn, τn+1[, e−(1/2+η)t

∣∣uλ

(
X(t)

)∣∣> C
)
.

Since X(t) = XDT
n for any t ∈ [τn, τn+1[, this leads to

P
(∃t > 0, e−(1/2+η)t

∣∣uλ

(
X(t)

)∣∣> C
)

≤
∑
n≥0

P
(∣∣uλ

(
XDT

n

)∣∣> Ce(1/2+η)τn
)
.
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Conditioning with respect to τn, using Markov inequality and the fact that τn and XDT
n are independent, one gets

successively, for any p ≥ 1:

P
(∃t > 0, e−(1/2+η)t

∣∣uλ

(
X(t)

)∣∣> C
) ≤

∑
n≥0

E
(
P
(∣∣uλ

(
XDT

n

)∣∣> Ce(1/2+η)τn |τn

))

≤
∑
n≥0

E

(
E|uλ(X

DT
n )|p

Cpep(1/2+η)τn

)
= 1

Cp

∑
n≥0

E
∣∣uλ

(
XDT

n

)∣∣pE
(
e−p(1/2+η)τn

)
.

The density of the nth jump time τn is the function

u ∈ R �−→ ne−u
(
1 − e−u

)n−11R+(u),

so that its Laplace transform can be elementarily computed: for any s ≥ 0,

E
(
e−sτn

)= n!	(s + 1)

	(s + 1 + n)
∼ 	(s + 1)n−s , n → +∞.

Together with (4.3), this leads to: ∀η > 0,∀ε > 0, ∀p ≥ 1,

E
∣∣uλ

(
XDT

n

)∣∣pE
(
e−p(1/2+η)τn

)= O

(
1

np(η−ε)

)
, n → +∞,

which is the general term of a convergent series as soon as one takes ε < η and p > 1
η−ε

. Finally, letting C tend to
infinity shows (4.4).

• Bound in Lp-space: let p ≥ 1 and t > 0. Then,∥∥e−(1/2+η)tuλ

(
X(t)

)∥∥p

p
= e−(1/2+η)ptE

∣∣uλ

(
X(t)

)∣∣p.

Using the relation with the discrete time process (XDT
n )n, one has successively

∥∥e−(1/2+η)tuλ

(
X(t)

)∥∥p

p
= e−(1/2+η)pt

∑
n≥0

E
(
1τn≤t<τn+1

∣∣uλ

(
X(t)

)∣∣p)

= e−(1/2+η)pt
∑
n≥0

E
(
1τn≤t<τn+1

∣∣uλ

(
XDT

n

)∣∣p)

= e−(1/2+η)pt
∑
n≥0

E(1τn≤t<τn+1)E
(∣∣uλ

(
XDT

n

)∣∣p),
where the last equality holds due to the independence between τn and XDT

n . Besides, τn and τn+1 −τn are independent
and τn+1 − τn is E xp(n + N0)-distributed (see (3.1)), so that, using the density of τn written above, one gets

E(1τn≤t<τn+1) = E
(
1t≥τnE(1τn+1−τn≥t−τn |τn)

)
= E

(
1t≥τne−(n+N0)(t−τn)

)
=
∫ t

0
e−(n+N0)(t−u)ne−u

(
1 − e−u

)n−1 du

≤ ne−(n+1)t

∫ t

0

(
eu − 1

)n−1eu du = (
1 − e−t

)ne−t .

Thus,∥∥e−(1/2+η)tuλ

(
X(t)

)∥∥p

p
≤ e−te−(1/2+η)pt

∑
n≥0

(
1 − e−t

)n
E
(∣∣uλ

(
XDT

n

)∣∣p).
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Let now ε > 0. On one hand, (4.3) implies that

E
(∣∣uλ

(
XDT

n

)∣∣p)= O
(
np(1/2+ε)

)
.

On the other hand, Stirling’s formula applied to generalized binomial coefficients yields classically that for any α ∈ C,

[
zn
]
(1 − z)−α−1 = nα

	(α + 1)

(
1 + O

(
1

n

))
,

where the notation [zn]A(z) means the coefficient of zn in the power expansion of A(z) at the origin. Consequently,

E
(∣∣uλ

(
XDT

n

)∣∣p)= O
([

zn
]
(1 − z)−1−p(1/2+ε)

)
.

This implies that for any ε > 0, there exists a constant Cε such that for any t > 0,∥∥e−(1/2+η)tuλ

(
X(t)

)∥∥p

p
≤ Cεe−te−(1/2+η)pt

(
1 − (

1 − e−t
))−1−p(1/2+ε) = Cεe−pt(η−ε).

It suffices to take ε = η/2 to conclude that the Lp-norm of e−(1/2+η)tuλ(X(t)) is bounded above. �

Remark 4.3. The distribution of W is infinitely divisible, because it is the limit of infinitely divisible ones, obtained by
scaling and projection of infinitely divisible ones. Indeed, in finite time, for any x0 ∈ Rm−1, denote by (Xx0(t), t ≥ 0)

the process (X(t), t ≥ 0) defined in Section 2.1 starting from initial state x0. By the branching property

Xx0(t)
L= [n]Xx0/n(t),

where the notation [n]X denotes the sum of n independent copies of the random variable X. The infinite divisibility of
W had already been noticed by Janson ([12], proof of Theorem 3.9).

4.2. Martingale connection

In this subsection, we use the embedding equality (3.2) to deduce connections between the asymptotic behaviours of
XDT

n when n → +∞ and X(t) when t → +∞.
The Markov chain (XDT

n )n exhibits a well-known phase transition of the same kind as the continous time process:
when m ≤ 26, with notations of Section 2.4, n−1/2(XDT

n − nv1) converges in law to a centered Gaussian vector (see
Mahmoud’s book [16]). For m ≥ 27, it has been proved in [4] and [18] that

XDT
n = nv1 + 2�(nλ2WDT v2

)+ o
(
nσ2
)

a.s. and in Lp,∀p ≥ 1, (4.5)

where v1, v2 are the deterministic vectors defined in (2.4), WDT is the limit of a complex-valued martingale. Moreover,
WDT admits moments of all orders that can be recursively calculated and satifies WDT = limn→∞ n−λ2u2(X

DT
n )

almost surely.

Proposition 4.4. The following two assertions hold:

lim
n→+∞ne−τn = ξ a.s. and in Lp,∀p ≥ 1, (4.6)

W = ξλ2WDT a.s. with ξ and WDT independent. (4.7)

The equality (4.7), commonly referred to as martingale connection, establishes the link between W and WDT . In this
way, the results on W in the present paper can be seen as a first step to a better knowledge of WDT distribution.

Proof of Proposition 4.4. We first prove (4.6). Applying the first projection to the embedding equality (3.2), we
obtain that

u1
(
X(τn)

)= u1
(
XDT

n

)
a.s.,

where u1 has been defined in (2.4). This is the total number of free places at time τn, and is equal to n − 1 + N0 =
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n(1 + o(1)). Therefore, by (4.2) and the fact that the splitting times τn tend almost surely to +∞ when n goes to +∞,
we have

ξ = lim
t→+∞ e−t u1

(
X(t)

)= lim
n→+∞ne−τn a.s.

This gives (4.6).
We then prove (4.7). Applying the second projection to the embedding equality (3.2) we obtain

u2
(
X(τn)

)= u2
(
XDT

n

)
a.s.,

where u2 has been defined in (2.4). Using again (4.2) and the fact that τn goes to +∞ when n goes to +∞, we get

W = lim
t→+∞ e−λ2t u2

(
X(t)

)= lim
n→+∞ e−λ2τnu2

(
XDT

n

)
.

Therefore, (4.7) follows from (4.6) and from the asymptotics in discrete time recalled in (4.5) and the following lines.
Since ξ = limn ne−τn , WDT = limn n−λ2u2(X

DT
n ) and since (τn)n and (XDT

n )n are independent, the variables ξ and
WDT are independent as well. Note that, in using (4.5) for the above, we have also used the fact (from the end of
Section 2) that u2(v2) = 0. �

Remark 4.5. Fill and Kapur [9] proved that WDT is the unique solution in the space of probability distributions with
a given mean and finite second absolute moment of the fixed point equation

Z
L=

m∑
k=1

(Vk)
λ2Z(k), (4.8)

where the Vk are the spaces in the statistical order of (m − 1) i.i.d. random variables uniformly distributed on [0,1].
Because R-valued stable distributions are solutions of the fixed point equation (4.8) when λ is a real number, it is
somehow natural to ask whether a λ-stable distribution is a solution of Eq. (4.8) for a complex number λ. By λ-stable
we mean operator-stable when the operator is given by a two dimensional matrix λ = σ + iτ = (

σ
τ

−τ
σ

)
as introduced

by Sharpe [22]. It is known since Hudson et al. [11] that a λ-stable distribution has infinite moments of order p for
p > 1/�(λ). Consequently, neither W nor WDT (which have moments of any order) can be stable distributions.

5. A distributional equation

In this section we derive a distributional equation satisfied by the limit variable of the continuous time branching
process with an appropriate norming. We shall see that this equation characterizes the limit distribution.

5.1. Vectorial finite time dislocation equations

Let us write dislocation equations for the continuous time branching process at finite time t . We write Xj(t) for X(t)

when the process starts from X(0) = ej , where ej denotes the j th vector of the canonical basis of Rm−1 (whose j th
component is 1 and all the others are 0). This means that the process starts from an ancestor of type j .

Notice that the distribution of the first splitting time τ1 depends on the ancestor’s type; denote by τ(j), j =
1, . . . ,m − 1, the first splitting time when the process starts from X(0) = ej . Thus τ(j) is E xp(j) distributed.

The branching property applied at the first splitting time gives:

∀t > τ1,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X1(t)
L= X2(t − τ(1)),

X2(t)
L= X3(t − τ(2)),

. . .

Xm−2(t)
L= Xm−1(t − τ(m−2)),

Xm−1(t)
L= [m]X1(t − τ(m−1)),

(5.1)

where the notation [m]X denotes the sum of m independent copies of the random variable X.
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In the following, let

T = τ(1) + · · · + τ(m−1), (5.2)

where the τ(j) are independent of each other and each τ(j) is E xp(j) distributed. Let us give some elementary proper-
ties of T that we shall need. It is easy to see that T has density

fT (u) = (m − 1)e−u
(
1 − e−u

)m−21R+(u), u ∈ R, (5.3)

so that e−T has a Beta distribution with parameters 1 and m − 1. A straightforward change of variable under the
integral shows that for any complex number λ such that �(λ) > 0,

Ee−λT =
∫ +∞

0
e−λufT (u)du = (m − 1)B(1 + λ,m − 1) (5.4)

= (m − 1)!∏m−1
k=1 (λ + k)

, (5.5)

where B denotes Euler’s Beta function:

B(x, y) =
∫ 1

0
ux−1(1 − u)y−1 du = 	(x)	(y)

	(x + y)
, �x > 0,�y > 0.

In particular,

mE
∣∣e−λT

∣∣
⎧⎨
⎩

< 1 if �(λ) > 1,

= 1 if �(λ) = 1,

> 1 if �(λ) < 1.

(5.6)

5.2. Distributional equation satisfied by the limit variable

After projections of variables Xj(t) (the process starting from X(0) = ej ) with u2, scaling with e−λ2t and taking the
limit when t goes to infinity, we get the variables

Wj := lim
t→+∞ e−λ2t u2

(
Xj(t)

)
,

so that the system (5.1) on Xj(t) leads to the following system of distributional equations on Wj :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W1
L= e−λ2τ(1)W2,

W2
L= e−λ2τ(2)W3,

. . .

Wm−2
L= e−λ2τ(m−2)Wm−1,

Wm−1
L= e−λ2τ(m−1) [m]W1.

(5.7)

This shows that W1 is a solution of the following fixed point equation:

Z
L= e−λ2T

(
Z(1) + · · · + Z(m)

)
, (5.8)

where Z(i) are independent copies of Z, which are also independent of T .
In terms of the Fourier transform

ϕ(t) := E exp
{
i〈t,Z〉}= E exp

{
i�(tZ)

}
, t ∈ C,
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where 〈x, y〉 = �(xy) = �(x)�(y) + (x)(y), Eq. (5.8) reads

ϕ(t) =
∫ +∞

0
ϕm
(
te−λ2u

)
fT (u)du, t ∈ C, (5.9)

where fT is defined by (5.3). Notice that this functional equation can also be written in a convolution form: if Φ(t) :=
ϕ(eλ2t ) for any t ∈ C, then Φ satisfies the following functional equation:

Φ(t) =
∫ +∞

0
Φm(t − u)fT (u)du, t ∈ C. (5.10)

In the following sections, we prove that the distributional equation (5.8) characterizes the law of W1 and we get
several results on W1: for example W1 has a density on the whole complex plane, and admits exponential moments.
All these results appear as a particular case of a slightly more general situation given hereafter. From now on, for any
complex number λ, consider the distributional equation

Z
L= e−λT

(
Z(1) + · · · + Z(m)

)
, (5.11)

where Z(i) are independent copies of Z, which are also independent of T . In terms of Fourier transforms, it reads

ϕ(t) =
∫ +∞

0
ϕm
(
te−λu

)
fT (u)du, t ∈ C, (5.12)

where fT is defined by (5.3).
Notice that when Z is a solution of the distributional equation (5.11), with finite and nonzero first moment, then λ

is a root of the polynomial function (2.3). In particular, λ is an algebraic number.

6. The smoothing transformation

A solution of the distributional equation (5.11) is a fixed point of the associated smoothing transformation defined
hereafter by (6.1). Endowing a suitable space of probability measures with two distances, we prove that the smoothing
transformation is a contraction for both metrics. This provides two alternative approaches for the study of Eq. (5.11)
by the contraction method. Using the Wasserstein distance as a first metric, we adapt the classical contraction method
developed in [10,20] and [21]. The second metric is defined in terms of Fourier transforms of measures; it provides a
short proof of our result.

For any complex number C, let M2(C) be the space of probability distributions on C admitting a second absolute
moment and having C as expectation.

Let λ be a complex number. For any probability measure μ on C, let

Kμ := L
(
e−λT

(
Z(1) + · · · + Z(m)

))
, (6.1)

where T is given by (5.2), Z(i) are independent random variables of law μ, which are also independent of T . Following
Durrett and Liggett [8] who considered the case of real random variables, we call K the smoothing transformation.
Note that K depends on m and λ.

Lemma 6.1. If λ is a root of the characteristic polynomial (2.3) such that �(λ) > − 1
2 and if C is any complex number,

then K maps M2(C) into itself.

Proof. Since �(λ) > −1, the random variable e−λT has an expectation. Furthermore, by (5.4), mEe−λT = 1 as λ is a
root of (2.3). This ensures the conservation of the expectation by K . Since �(λ) > − 1

2 , then E|e−λT |2 < ∞ and Kμ

admits a second absolute moment whenever μ does. Therefore Kμ ∈ M2(C) whenever μ ∈ M2(C). �

Notice that a solution of Eq. (5.11) is a fixed point of K . We shall use the Banach fixed point theorem for two
different metrics on M2(C) to study the existence and uniqueness of solutions of Eq. (5.11).
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6.1. Wasserstein distance

Let d2 be the Wasserstein distance on M2(C) (see for instance Dudley [7]): for μ,ν ∈ M2(C),

d2(μ, ν) =
(

min
(X,Y )

E
(|X − Y |2))1/2

,

where the minimum is taken over couples of random variables (X,Y ) having respective marginal distributions μ and
ν; the minimum is attained by the Kantorovich–Rubinstein Theorem – see for instance Dudley [7], p. 421. With this
distance d2, M2(C) is a complete metric space.

Theorem 6.2. Let λ ∈ C be a root of the characteristic polynomial (2.3) such that �(λ) > 1
2 , and let C ∈ C. Then K

is a contraction on the complete metric space (M2(C), d2), and the fixed point equation (5.11) has a unique solution
Z in M2(C).

We now come back to the limit variable W1 of m-ary search trees. Since EW1 = 1 and E|W1|2 < ∞, the following
corollary is a direct consequence of Theorem 6.2, applied for λ = λ2.

Corollary 6.3. The distribution of the limit complex random variable W1 is the unique solution in the space M2(1)

of the fixed point equation (5.11).

Proof of Theorem 6.2. We argue as in [10,20] and [21] where real random variables were considered.
By the Banach fixed point theorem, it suffices to show the contraction property. Let μ,ν ∈ M2(C). Let (X,Y )

be a couple of complex-valued random variables such that L(X) = μ, L(Y ) = ν and d2(μ, ν) = √
E|X − Y |2. Let

(Xi, Yi), i = 1, . . . ,m be m independent copies of the d2-optimal couple (X,Y ), and T be a real random variable with
density fT defined by (5.3), independent from all (Xi, Yi). Then,

L
(

e−λT

m∑
i=1

Xi

)
= Kμ and L

(
e−λT

m∑
i=1

Yi

)
= Kν,

so that

d2(Kμ,Kν)2 ≤ E

∣∣∣∣∣
(

e−λT

m∑
i=1

Xi

)
−
(

e−λT

m∑
i=1

Yi

)∣∣∣∣∣
2

= E

∣∣∣∣∣e−λT
m∑

i=1

(Xi − Yi)

∣∣∣∣∣
2

= E
∣∣e−λT

∣∣2E

∣∣∣∣∣
m∑

i=1

(Xi − Yi)

∣∣∣∣∣
2

= E
∣∣e−λT

∣∣2( m∑
i=1

E|Xi − Yi |2 +
∑
i �=j

E(Xi − Yi)(Xj − Yj )

)

= mE
∣∣e−2λT

∣∣d2(μ, ν)2.

Since 2�(λ) > 1, we have mE|e−2λT | < 1 (see (5.6)). Therefore K is a contraction on M2(C) and the proof is
complete. �
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6.2. Distance defined with Fourier transforms

We now give an alternative approach for the characterization of the limit distribution via Fourier analysis. We define
another distance d∗

2 on M2(C) as follows. Take μ,ν ∈ M2(C) and denote respectively ϕ and ψ their characteristic
functions. By definition of M2(C), both ϕ and ψ admit the expansion ϕ(t) = 1 + i〈t,C〉 + O(|t |2) when t tends to 0.
Therefore, one can define d∗

2 (μ, ν) by

d∗
2 (μ, ν) = sup

t∈C\{0}
|ϕ(t) − ψ(t)|

|t |2 .

Clearly, d∗
2 (μ, ν) < ∞, and d∗

2 is a distance on M2(C). It can be easily checked that (M2(C), d∗
2 ) is a complete

metric space.
The following result is a counterpart of Theorem 6.2. It gives an alternative proof for the existence and uniqueness

of the solution of Eq. (5.11) in the class of probability measures on C with a given mean and finite second moments.

Theorem 6.4. Let λ ∈ C be a root of the characteristic polynomial (2.3) such that �(λ) > 1
2 , and let C ∈ C. Then K

is a contraction on the complete metric space (M2(C), d∗
2 ), and the fixed point equation (5.11) has a unique solution

Z in M2(C).

Proof. Thanks to Banach fixed point theorem, it suffices to prove that K is a contraction on M2(C) equipped with the
metric d∗

2 . Let μ,ν ∈ M2(C) and let ϕ and ψ be their respective characteristic functions. An elementary computation

shows that the Fourier transform of Kμ is t �→ Eϕm(e−λT t) with a corresponding formula for ν. We have |ϕ| ≤ 1,
|ψ | ≤ 1, so that

E
∣∣ϕm

(
e−λT t

)− ψm
(
e−λT t

)∣∣≤ mE
∣∣ϕ(e−λT t

)− ψ
(
e−λT t

)∣∣.
Together with the inequality |ϕ(z) − ψ(z)| ≤ d∗

2 (μ, ν)|z|2 applied to z = e−λT t , this implies that

d∗
2 (Kμ,Kν) ≤ mE

(
e−2�(λ)T

)
d∗

2 (μ, ν).

Since 2�(λ) > 1, we have mE(e−2�(λ)T ) < 1 (see (5.6)). Therefore the above inequality shows that K is a contraction
on (M2(C), d∗

2 ). �

Remark 6.5. Denote F2(C) the space of Fourier transforms of elements of M2(C). When λ is a root of the character-
istic polynomial (2.3) such that �(λ) > 1

2 , the smoothing transformation K can be identified as a map (also denoted
by K) on F2(C) given by

(Kϕ)(t) := Eϕm
(
e−λT t

)
, t ∈ C. (6.2)

The proof of Theorem 6.4 also shows that K is a contraction of F2(C) for the metric (also denoted by d∗
2 ) defined on

F2(C) by

d∗
2 (ϕ,ψ) := sup

t �=0

|ϕ(t) − ψ(t)|
|t |2 . (6.3)

Let D2(C) be the space of all continuous functions ϕ : C → C that admit an expansion ϕ(t) = 1 + i〈t,C〉+ O(|t |2)
at 0 and such that ‖ϕ‖∞ ≤ 1. Clearly, D2(C) contains F2(C). One can show that formula (6.2) defines a mapping
from D2(C) into itself and that K is a contraction for the metrics defined by (6.3). This provides a proof of existence
and uniqueness of solutions of (5.12) on D2(C).

Remark 6.6. One can deal with the convolution equation (5.10) by arguments in the same vein. Similar computations
show that this equation has a unique solution in the space E2(λ,C) of continuous functions Φ : C → C that admit an
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expansion Φ(z) = 1 + i〈eλz,C〉 + O(e2λz) when |z| tends to +∞ and such that ‖Φ‖∞ ≤ 1. This result appears once
again as a consequence of Banach theorem on E2(λ,C) for the metric

d(Φ,Ψ ) = sup
z∈C

∣∣∣∣Φ(z) − Ψ (z)

e2λz

∣∣∣∣.
As a consequence, this shows in particular that the Fourier (complex) transform ϕ of W1 satisfies: for any w ∈ C∗ and
for any branch of the logarithm,

ϕ(w) = Φ

(
logw

λ2

)
,

where Φ is the unique solution in E2(λ2,1) of Eq. (5.10). This result is the reversed version of the change of variable
Φ(z) = ϕ(eλ2z) that led from (5.9) to (5.10).

7. Density and support

In this section we prove results on the absolute continuity and on the support of solutions of the distributional equation
(5.11) via Fourier analysis. As applications, we show that the distribution of the limit variable W1 coming from the
multitype branching process (X(t)) always has a density and that its support is the whole complex plane.

Theorem 7.1. Let λ be a complex number such that λ �= 1 and �(λ) > 0. Let Z be a complex-valued random variable
solution of the distributional equation (5.11)

Z
L= e−λT

(
Z(1) + · · · + Z(m)

)
,

with E|Z| < ∞ and EZ �= 0. Then the following assertions hold:

(i) the support of Z is the whole complex plane C;
(ii) as |t | → ∞, Eei〈t,Z〉 = O(|t |−a), for any a ∈]0, 1

�(λ)
[;

(iii) the distribution of Z has a density with respect to the Lebesgue measure on C.

Remark 7.2. When λ = 1, the distributional equation (5.11) becomes

X
L= e−T

(
X(1) + · · · + X(m)

)
. (7.1)

By Section 6, it admits a unique solution in the space M2(C) of probability measures on C, with a given mean C.
Moreover, from the dislocation equations (5.1), a similar argument shows that

ξ := lim
t→+∞ e−t u1

(
X(t)

)
is a solution of this equation. By Theorem 4.1, ξ is Gamma-distributed. Therefore the unique solution of (7.1) in
M2(C) is Cγ where γ is Gamma(1)-distributed, and its support is the half line CR+.

The following corollary gives the main result for the limit variable W1 of the multitype branching process. It is a
direct consequence of Theorem 7.1 since EW1 = 1.

Corollary 7.3. The distribution of W1 admits a density with respect to the Lebesgue measure on C, and its support is
the whole complex plane C. Moreover, as |t | → ∞, Eei〈t,W1〉 = O(|t |−a) for each a ∈]0, 1

�(λ2)
[.

The proof of Theorem 7.1 runs along the following lines. Let ϕ be the Fourier transform of any solution Z of (5.11).
We prove that ϕ is in L2(C) because it is dominated by |t |−δ for some δ > 1 so that the inverse Fourier–Plancherel
transform provides a square integrable density for Z. The guiding idea consists in adapting usual methods (developed
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in [13] and [14]) used for positive real-valued random variables to our complex-valued case thanks to the function
defined for r ≥ 0 by

ψ(r) = max|t |=r

∣∣ϕ(t)
∣∣.

From now on,

A = e−λT .

We proceed by a series of lemmas. The first lemma concerns a property of the support of Z. For a complex-valued
random variable Z and for a complex number z, by definition,

z ∈ Supp(Z) ⇐⇒ ∀ε > 0, P
(|Z − z| ≤ ε

)
> 0.

Lemma 7.4. Let z ∈ C. Then

z ∈ Supp(Z) �⇒ D
(
0, |z|)⊆ Supp(Z),

where D(0, |z|) denotes the open disc with center 0 and radius |z|.

Proof. We first prove the following implication:

[
a ∈ Supp(A) and z ∈ Supp(Z)

] �⇒ maz ∈ Supp(Z).

Indeed, let ε > 0, a ∈ Supp(A) and z ∈ Supp(Z). Let also Z(1), . . . ,Z(m) be independent copies of Z. Then, with
positive probability, |A − a| ≤ ε and |Z(k) − z| ≤ ε for any k. Therefore, with positive probability,

∣∣A(Z(1) + · · · + Z(m)
)− maz

∣∣ =
∣∣∣∣∣mz(A − a) + A

m∑
k=1

(
Z(k) − z

)∣∣∣∣∣
≤ mε|z| + (|a| + ε

)
mε.

The positive real ε being arbitrary, this shows that maz ∈ SuppA(Z(1) + · · · + Z(m)) which implies that maz ∈
Supp(Z) by Eq. (5.11), proving the claim.

Let z ∈ Supp(Z). Since Supp(T ) = R+ (see (5.3)), the claim implies that for any t ≥ 0, me−λt z ∈ Supp(Z).
Iterating this property of Supp(Z) shows that

{
mne−λt z, n ∈ N, t ∈ R+

}⊆ Supp(Z). (7.2)

Since the support of a probability measure is a closed set, to show that D(0, |z|) ⊆ Supp(Z) it suffices to prove that
{mne−λt , n ∈ N, t ∈ R+} is everywhere dense in the unit disc. Taking logarithm, we show hereafter that

G := N logm + 2iπN − λR+

is everywhere dense in the half-strip

B := {x + iy, x < 0,−2π < y ≤ 0}

which implies the desired result.
Let σ and τ denote respectively the real and imaginary parts of λ. Remember that, as soon as Z is a solution of

Eq. (5.11) such that E|Z| < ∞ and EZ �= 0, then λ is a root of χRG
defined by (2.3); this implies that λ is an algebraic

number, and so is σ/τ .
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Let us prove that ρ := iπ/ logm is a transcendental number. In fact, if ρ were algebraic, then by the Gelfond–
Schneider theorem,2 mρ would be a transcendental number; but this is impossible because mρ = exp(iπ) = −1.
Therefore ρ is a transcendental number.

It follows that 2πσ/(τ logm) is not an algebraic number, hence not a rational number. So by a classical result,

N logm − N
2πσ

τ
is a dense subset of R.

Let b = x + iy ∈ B with x < 0 and −2π < y ≤ 0, and let ε > 0. Approximating the real number x − yσ
τ

by an element
of N logm − N 2πσ

τ
, we take n, k ∈ N such that∣∣∣∣

(
n logm − k

2πσ

τ

)
−
(

x − yσ

τ

)∣∣∣∣≤ ε.

Therefore

|b − g| ≤ ε, where g = n logm + 2ikπ − tλ ∈ G with t = 2kπ − y

τ
≥ 0.

This completes the proof of Lemma 7.4. �

Lemma 7.4 leads to the following key property of ψ , which will imply that the characteristic function ϕ of Z

satisfies the Cramér condition and then the Riemann–Lebesgue condition.

Lemma 7.5. ∀r > 0,ψ(r) < 1.

Proof. Obviously, ψ(0) = 1 and ψ(r) ≤ 1 for any r ≥ 0. Suppose that r0 > 0 is such that ψ(r0) = 1. Take thus z0 ∈ C

and θ0 ∈ R such that

|z0| = r0 and Eei〈z0,Z〉 = eiθ0 .

The complex random variable ei(〈z0,Z〉−θ0) is of mean 1 and takes its values on the unit disc, so that it is almost surely
equal to 1. This implies that Supp(Z) is contained in a set of countably many parallel lines of the complex plane. This
contradicts Lemma 7.4 since such a set of lines is negligible with respect to the Lebesgue measure on C. �

Remark 7.6. The preceding arguments show the following assertion: for any complex-valued random variable Z, if
|E(ei〈z0,Z〉)| = 1 for some z0 ∈ C \ {0}, then Supp(Z) ⊆ a + bZ + cR for some a, b, c ∈ C (a set of countably many
parallel lines). The algebraicity of λ that leads to the proof of Lemma 7.4 can thus be seen as a nonlattice assumption
on the fixed point equation (5.11).

We now prove that the characteristic function ϕ satisfies the Riemann–Lesbesgue condition.

Lemma 7.7. limr→+∞ ψ(r) = 0.

Proof. We argue as in the proof of Theorem 3.1 of [13] or Lemma 3.1 of [14]. Notice that from the distributional
equation (5.12) we have

ψ(r) ≤ E
(
ψm

(
r|A|)). (7.3)

• We first prove that lim supr→+∞ ψ(r) = 0 or 1. By Fatou’s lemma,

lim sup
r→+∞

ψ(r) ≤ E lim sup
r→+∞

ψm
(
r|A|)=

(
lim sup
r→+∞

ψ(r)
)m

,

2The Gelfond–Schneider theorem states that if a and b are algebraic numbers with a �= 0,1 and if b is not a rational number, then any value of

ab = exp(b loga) is a transcendental number.
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the last equality coming from P(|A| > 0) = 1. So the real number l := lim supr ψ(r) satisfies both l ≤ 1 and l ≤ lm;
this implies that l = 0 or 1.

• Suppose that lim supr ψ(r) = 1. By Lemma 7.5, ψ(1) < 1. For any ε ∈]0,1 − ψ(1)[, define

{
r1(ε) = max

{
r ∈]0,1[,ψ(r) = 1 − ε

}
,

r2(ε) = min
{
r > 1,ψ(r) = 1 − ε

}
.

These quantities are well defined because ψ(0) = 1 and ψ is continuous. Then ψ(r1(ε)) = ψ(r2(ε)) = 1 − ε and for
any r ∈ [r1(ε), r2(ε)],ψ(r) ≤ 1 − ε.

Let us prove that r1(ε) goes to 0 when ε tends to 0. Take any limit point ρ of r1(ε). Since ψ is continuous,
ψ(ρ) = 1 − ε which implies by Lemma 7.5 that ρ = 0: the only possible limit point is 0.

By (7.3), we have

ψ(r) ≤ Eψ
(
r|A|).

Iterating this inequality we see that for all n ≥ 1,

ψ(r) ≤ Eψ
(
r|A1| · · · |An|

)
,

where (|Ai |)i≥1 are independent copies of |A|. With the notation

λn(r, ε) := P
(
r1(ε) < r|A1| · · · |An| ≤ r2(ε)

)
,

we have for any r > 0

ψ(r) ≤ (1 − ε)λn(r, ε) + 1 − λn(r, ε) = 1 − ελn(r, ε).

Again by (5.12),

1 − ε = ψ
(
r2(ε)

)≤ Eψm
(
r2(ε)|A|)≤ E

(
1 − ελn

(
r2(ε)|A|, ε))m.

In other words

E(1 − (1 − ελn(r2(ε)|A|, ε))m)

ε
≤ 1. (7.4)

We are going to pass to the limit in the above ratio when ε tends to 0. Rewrite

λn

(
r2(ε)|A|, ε)= P

(
r1(ε)

r2(ε)
< |A||A1| · · · |An| ≤ 1

)
,

and remember that r1(ε) ≤ 1 ≤ r2(ε) and that r1(ε) goes to 0 when ε tends to 0, so that r1(ε)
r2(ε)

≤ r1(ε)
1 goes to 0 when ε

tends to 0. Consequently,

λn

(
r2(ε)|A|, ε)−→

ε→0
P
(
0 ≤ |A||A1| · · · |An| ≤ 1

)= μn

(|A|) a.s.,

where, for any x > 0,

μn(x) := P
(
x|A1| · · · |An| ≤ 1

)
.

Therefore

1 − (1 − ελn(r2(ε)|A|, ε))m
ε

−→
ε→0

mμn

(|A|) a.s.
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The above ratio is a function of ε, uniformly bounded on the compact set [0,1 − ψ(1)], so that by dominated conver-
gence and (7.4),

E(1 − (1 − ελn(r2(ε)|A|, ε))m)

ε
−→
ε→0

mEμn

(|A|)≤ 1. (7.5)

Besides, by Markov’s inequality

1 − μn(x) ≤ xE
(|A1| · · · |An|

)= x
(
E|A|)n.

Since �(λ) > 0, E|A| = E|e−λT | < 1 (see (5.4)), which implies that limn→∞ μn(x) = 1, so that

lim
n→∞ Eμn

(|A|)= 1

by dominated convergence. This contradicts (7.5) because m ≥ 2. �

We need an information about the decay rate of ϕ(t), of the form ϕ(t) = O(|t |−δ) for some δ > 0 when |t | → ∞.
To this end, we shall use the following Gronwall-type technical Lemma of [13] (see also Lemma 3.2 in [14]).

Lemma 7.8 [13]. Let ψ : R+ → R+ be a bounded function and let B be a positive random variable such that for
some constants p ∈]0,1[, a > 0,C ≥ 0 and for all r > 0,

ψ(r) ≤ pEψ(Br) + Cr−a.

If pE(B−a) < 1, then ψ(r) = O(r−a) as r → ∞.

This is Lemma 4.1 of [13]. It can be proved as follows.
Let {Bi} be independent copies of B . Then by induction, for all n ≥ 1 and all r > 0,

ψ(r) ≤ pnEψ(B1 · · ·Bnr) + Cr−a
[
1 + pE

(
B−a

)+ · · · + (
pE
(
B−a

))n−1]
.

Letting n → ∞ we see that for all r > 0,

ψ(r) ≤ Cr−a/
[
1 − pE

(
B−a

)]
.

Lemma 7.9. For all a ∈]0, 1
�(λ)

[, as r → ∞,

ψ(r) = O
(
r−a

)
.

Proof. We have already seen from the distributional equation (5.12) that

ψ(r) ≤ E
(
ψm

(
r|A|)),

where A = e−λT . By Lemma 7.7, for any ε > 0, there is some rε > 0 such that ∀r ≥ rε , ψ(r) ≤ ε. So

ψ(r) ≤ εm−1Eψ
(
r|A|)+ P

(
r|A| ≤ rε

)
.

Therefore by Markov inequality, for a ∈]0, 1
�(λ)

[,

ψ(r) ≤ εm−1Eψ
(
r|A|)+ r−a(rε)

aE
(|A|−a

)
.

By (5.4), E(|A|−a) = (m − 1)B(1 − a�(λ),m − 1) < ∞. Taking ε > 0 small enough such that εm−1E(|A|−a) < 1,
we see that the desired result follows from Lemma 7.8 and the preceding inequality on ψ(r). �

We can now finish the proof of Theorem 7.1.
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Proof of Theorem 7.1. Part (i) of the theorem comes from two facts as shown in the following.
On the one hand, by Lemma 7.4, as soon as z ∈ C is a point in the support of Z, we have D(0, |z|) ⊆ Supp(Z),

where D(0, |z|) denotes the open disc with center 0 and radius |z|.
On the other hand, the support of Z is unbounded. Indeed, as in (7.2), at the beginning of the proof of Lemma 7.4,

as soon as z ∈ C \ {0} is a point in the support of Z, for any t > 0 and for any n ∈ N, mne−λt z is in the support of Z.
For Part (ii), notice that by Lemma 7.9, for all a ∈]0, 1

�(λ)
[,

ϕ(t) = O
(
t−a

)
as |t | → ∞. (7.6)

Since EZ �= 0, by Eq. (5.12) we obtain mEe−λT = 1, hence mE|e−λT | = mEe−�(λ)T > 1 as soon as (λ) �= 0. Notice
that if (λ) = 0, then λ = 1 by the equation mEe−λT = 1. So the hypotheses λ �= 1 and EZ �= 0 imply that (λ) �= 0
and �(λ) < 1 (cf. (5.6)). It follows that (7.6) holds for some a > 1, so that the Fourier transform ϕ of Z is in L2.
Therefore by the inversion formula of Fourier–Plancherel transform, the distribution of Z has a density in L2 with
respect to the Lebesgue measure on C. This ends the proof of Theorem 7.1. �

Remark 7.10. In fact we have the following more general result. Let λ be a complex number with σ := �(λ) > 0,
τ := (λ) �= 0 and satisfying the arithmetical condition:

πσ

τ logm
/∈ Q

and let Z be a nontrivial solution of Eq. (5.11) (with or without first moment). Then the distribution of Z is absolutely
continuous with respect to the Lebesgue measure on C, and its support is the whole complex plane C.

To see the conclusions of Remark 7.10, we can argue as follows. In the general case where the expectation of Z

may not exist, Lemma 7.4 still holds thanks to the arithmetical condition. The rest of the proof is the same, except at
the end, where �(λ) > 1 is no more ensured. Nevertheless we have an additional argument by iteration. Iterating the
distributional equation (5.11), we obtain for n ≥ 1,

Z
L=

∑
u1···un∈{1,...,m}n

AAu1 · · ·Au1···un−1Z
(u1···un),

where A = e−λT , Au are independent copies of A (indexed by finite sequences of integers u), Z(u) are independent
copies of Z, the two families {Au} and {Z(u)} are also independent of each other; by convention, Au1 · · ·Au1···un−1 is
taken to be 1 when n = 1. It is convenient to rewrite this equation in the form

Z
L=

mn∑
j=1

YjZ
(j), (7.7)

where Z(j) are independent copies of Z which are also independent of {Yj }. For fixed y = (yj : 1 ≤ j ≤ mn) with∏mn

j=1 yj �= 0, by Lemma 7.9, for a ∈]0,1/�(λ)[ and some constant c > 0,

∣∣∣∣∣E exp

(
i

〈
t,

mn∑
j=1

yjZ
(j)

〉)∣∣∣∣∣≤
mn∏
j=1

c|tyj |−a = C(y)|t |−mna,

where C(y) = ∏mn

j=1 c|yj |−a > 0 does not depend on t . Let n ≥ 1 be large enough such that mna > 1. Then∑mn

j=1 yjZ
(j) is absolute continuous (with respect to the Lebesgue measure on C) as its Fourier transform is square

integrable on C. This implies that for each Borel set B of C with Lebesgue measure 0, we have

P

(
mn∑
j=1

yjZ
(j) ∈ B

)
= 0.

It follows from Eq. 7.7 (by conditioning on (Yj )) that P(Z ∈ B) = 0.
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8. Exponential moments and Laplace series

In this section we consider a solution Z of Eq. (5.11) and we show that its exponential moments exist in a neighborhood
of 0, so that the moment exponential generating series of Z defines an analytic function in a neighbourhood of the
origin. We show that this function satisfies a very simple differential equation.

Theorem 8.1. Let λ ∈ C be a root of the characteristic polynomial (2.3) with �(λ) > 1/2 and let Z be a solution of
Eq. (5.11). There exist some constants C > 0 and ε > 0 such that for all t ∈ C with |t | ≤ ε,

Ee〈t,Z〉 ≤ e�(t)+C|t |2 and Ee|tZ| ≤ 4e|t |+2C|t |2 . (8.1)

To prove this theorem, we use Mandelbrot’s cascades in the complex setting (see Barral et al. [2] for independent
interest about complex Mandelbrot’s cascades). We use the notation A = e−λT . Then mEA = 1 because λ is a root of
the characteristic polynomial (2.3) and mE|A|2 < 1 because �(λ) > 1/2 (see (5.6)). Let Au,u ∈ U be independent
copies of A, indexed by all finite sequences of integers

u = u1 · · ·un ∈ U :=
⋃
n≥1

{1,2, . . . ,m}n

and set Y0 = 1, Y1 = mA and for n ≥ 2,

Yn =
∑

u1···un−1∈{1,...,m}n−1

mAAu1Au1u2 · · ·Au1···un−1 .

As mEA = 1, (Yn)n is a martingale. This martingale has been studied by many authors in the real random variable
case, especially in the context of Mandelbrot’s cascades, see for example [14] and the references therein. It can be
easily seen that

Yn+1 = A

m∑
i=1

Yn,i , (8.2)

where Yn,i for 1 ≤ i ≤ m are independent of each other and independent of A and each has the same distribution as
Yn. Therefore for n ≥ 1, Yn is square-integrable and

VarYn+1 = (
E|A|2m2 − 1

)+ mE|A|2 VarYn,

where VarX = E(|X − EX|2) denotes the variance of X. Since mE|A|2 < 1, the martingale (Yn)n is bounded in L2,
so that the following result holds.

Lemma 8.2. Let λ be a root of the characteristic polynomial (2.3) with �(λ) > 1/2. Then, when n → +∞,

Yn → Y∞ a.s. and in L2,

where Y∞ is a (complex-valued) random variable with variance

Var(Y∞) = E|A|2m2 − 1

1 − mE|A|2 .

Notice that, passing to the limit in (8.2) gives a new proof of the existence of a solution Z of Eq. (5.11) with EZ = 1
and finite second moment whenever �(λ) > 1/2. From Section 6, we have the uniqueness of solution of this equation
so that Theorem 8.1 is proved as soon as it holds for Y∞.
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Lemma 8.3. Under the condition of Lemma 8.2, there exist some constants C > 0 and ε > 0 such that for all t ∈ C

with |t | ≤ ε, we have

Ee〈t,Y∞〉 ≤ e�(t)+C|t |2 . (8.3)

Proof. As in [20] and [15] (where a similar problem for real random variables was considered), we use an induction
argument. Notice that by Eq. (8.2), writing

ϕn(t) := Ee〈t,Yn〉, t ∈ C, n ≥ 0,

we have

ϕn+1(t) = Eϕm
n (At), t ∈ C. (8.4)

We shall prove that there exist some constants C > 0 and ε > 0 such that for all n ≥ 0 and all t ∈ C with |t | ≤ ε, we
have

ϕn(t) ≤ e�(t)+C|t |2 . (8.5)

Let us prove (8.5) by induction. The inequality holds clearly for n = 0 since ϕ0(t) = e�(t). Assume that it holds for
some n ≥ 0 and all t ∈ C with |t | ≤ ε. Then writing A = A1 + iA2 (Ai ∈ R), using |A| ≤ 1 and Eq. (8.4), we have for
t = t1 + it2 (ti ∈ R) with |t | ≤ ε,

ϕn+1(t) ≤ E exp
{
m
(
A1t1 + A2t2 + C|A|2(t2

1 + t2
2

))}
= e�(t)+C|t |2g(t1, t2), (8.6)

where g(t1, t2) = Eeh(t1,t2) with

h(t1, t2) = (mA1 − 1)t1 + mA2t2 + C
(
m|A|2 − 1

)(
t2
1 + t2

2

)
.

Notice that g(0,0) = 1. It remains to prove that (0,0) is a local maximum of g. Clearly,

∂g

∂ti
= Eeh

[
∂h

∂ti

]
, i = 1,2,

∂2g

∂t2
i

= Eeh

[(
∂h

∂ti

)2

+ ∂2h

∂t2
i

]
, i = 1,2,

∂2g

∂t1∂t2
= Eeh

[
∂h

∂t1

∂h

∂t1
+ ∂2h

∂t1∂t2

]
.

Notice that, a.s.

∂h

∂t1
(0,0) = (mA1 − 1),

∂h

∂t2
(0,0) = mA2,

∂2h

∂t1∂t2
(0,0) = 0,

∂2h

∂t2
i

(0,0) = 2C
(
m|A|2 − 1

)
, i = 1,2.

Recall that mEA = 1, so that mEA1 = 1 and mEA2 = 0; hence

∂g

∂t1
(0,0) = E(mA1 − 1) = 0,

∂g

∂t2
(0,0) = E(mA2) = 0,
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so that (0,0) is a critical point of g. Moreover,

∂2g

∂t2
1

(0,0) = E
[
(mA1 − 1)2 + 2C

(
m|A|2 − 1

)]
,

∂2g

∂t2
2

(0,0) = E
[
(mA2)

2 + 2C
(
m|A|2 − 1

)]
,

∂2g

∂t1∂t2
(0,0) = E(mA1 − 1)(mA2).

As E(m|A|2 −1) < 0 (recall that �(λ) > 1/2), it follows that the Hessian matrix at (0,0) is definite negative for C > 0
large enough which implies that g(0,0) is a local maximum of g. So for ε > 0 small enough, g(t1, t2) ≤ g(0,0) = 1
for all t = t1 + it2 with |t | ≤ ε. Hence by (8.6), for such ε and C which do not depend on n, (8.5) holds for n + 1.
Therefore, by induction, it holds for all n ≥ 0.

Letting n → ∞ in (8.5), we see that inequality (8.3) holds by Fatou’s lemma. �

Proof of Theorem 8.1. By the uniqueness of solution of Eq. (5.11), L(Z) = L(Y∞). So by Lemma 8.3, there are
some constants C > 0 and ε > 0 such that the first inequality of (8.1) holds. To show the second one, notice that
|t ||�(Z)| + |t ||(Z)| takes one of the four values ±|t |�(Z) ± |t |(Z) (according to the signs of �(Z) and (Z)), so
that a.s.

e|tZ| ≤ e|t ||�(Z)|+|t ||(Z)|

≤ e|t |�(Z)+|t |(Z) + e|t |�(Z)−|t |(Z) + e−|t |�(Z)+|t |(Z) + e−|t |�(Z)−|t |(Z).

Taking expectation in both sides, and noticing that ±|t |�(Z) ± |t |(Z) = 〈(±1 ± i)|t |,Z〉, we see that the second
inequality in (8.1) follows from the first one. �

Suppose that Z is any solution of Eq. (5.11) under the assumptions of Theorem 8.1. The second inequality (8.1)
shows that the exponential generating series of absolute moments of Z has a positive radius of convergence so that
the formal Laplace series

L(z) :=
∑
p≥0

EZp

p! zp

defines an analytic function in a neighbourhood of the origin. One can also write L(z) = EezZ when |z| is sufficiently
small.

Let’s come back to the dislocation equations (5.7) satisfied by the limit variables W1, . . . ,Wm. These variables
admit finite (absolute) moments at any order. For any k ∈ {1, . . . ,m}, let Lk be the formal Laplace series defined by

Lk(z) :=
∑
p≥0

E(W
p
k )

p! zp.

The dislocation equations (5.7) imply recursive relations on Wk’s moments. Developing these relations with the multi-
nomial formula implies that Lk satisfy the formal differential system{

∀k ∈ {1, . . . ,m − 2}, Lk(z) + λ2
k

zL′
k(z) = Lk+1(z),

Lm−1(z) + λ2
m−1zL′

m−1(z) = (
L1(z)

)m
,

(8.7)

with boundary conditions{
Lk(0) = 1, 1 ≤ k ≤ m − 1,

L′
k(0) = E(Wk) = u2

(
Xk(0)

)= (
λ2+k−1

k−1

)
.
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Since W1 satisfies the assumptions of Theorem 8.1, the series L1 has a positive radius of convergence as shown
above. Therefore, the same holds for all Lk because of the system (8.7) so that the Lk define, near the origin, analytic
functions related by (8.7).

Let ρ be any complex (m − 1)th root of (−1)m(m − 1)!. For any k ∈ {1, . . . ,m}, define

Gk(z) := (−1)kρ(k − 1)!Lk(z
−λ2)

zk
,

where z−λ2 denotes any determination of the logarithm. For sufficiently large |z|, this formula defines an analytic
function on a slit plane. Reporting in formula (8.7) shows that the functions Gk satisfy the simple differential system

{∀k ∈ {1, . . . ,m − 2}, G′
k = Gk+1,

G′
m−1 = Gm

1 .

In particular, G1 is solution of the differential equation y(m−1) = ym. We sum up these results in the following
statement.

Theorem 8.4. Let W1 be the complex-valued limit distribution for the multitype branching process of m-ary search
trees as defined in Section 5.2. Then:

(i) the Laplace series L1(z) = E(ezW1) has a positive radius of convergence;
(ii) for any determination of the logarithm, the function

z �→ −ρ

z
L1
(
z−λ2

)
,

is a solution of the differential equation

y(m−1) = ym. (8.8)

Remark 8.5. As can be straightforwardly checked, the function yκ(z) := κ
1−z

is a solution of Eq. (8.8) when the

complex number κ satisfies κm−1 = (m − 1)!. Nonetheless, G1 is not a function of this form.
Indeed, since L1(w) = 1 + w + o(w) in a neighbourhood of the origin, G1 admits the expansion

G1(z) = −ρ

z
− ρ

z1+λ2
+ o

(
1

z1+λ2

)
,

while yκ satisfies

κ

1 − z
= −κ

z
− κ

z2
+ o

(
1

z2

)
.

One concludes by uniqueness of (complex) power expansions, because λ2 �= 1.
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